总结是一种自我反思的方式,可以帮助我们发现问题并及时改进。写心得体会的时候,我们可以借鉴一些优秀的范文和样例,从中学习和吸取经验。- 以下是一些关于心得体会的范文,希望对大家写作有所帮助。
解决问题的策略心得体会篇一
在生活中,我们时常遇到需要解决问题的情况。作为一种形象的表达方式,画图在我们解决问题时扮演着重要的角色。在我的学习和工作中,我深刻体会到画图解决问题的策略在解决问题中的重要性,大大提高了我的工作效率和解决问题能力。下面我将结合自身体会进行探讨分享。
第二段:画图解决问题的优势
画图是一种形象的表达方式,将抽象的事物转化为形象的可视化的物体,有着形象记忆的优势。因此,通过画图,我们可以更好地理解解决问题的思路和流程。同时,画图可以将信息更加简明化和直观化,让我们能够更好地把握问题的关键点,更迅速地找到解决问题的方案。
第三段:如何画图解决问题
首先,我们需要对问题有一个整体性的认识。其次,我们需要分析问题中的各个因素之间的联系和作用,可利用树形、思维导图,这些工具可以帮助我们捕捉问题的现象和本质。接着,我们需要对解决问题过程中的不同环节做出可视化的表达,比如状态转移图、UML图等。最后,我们需要对解决问题的过程进行总结和分析,得到最终的解决方案。
第四段:画图解决问题在工作中的应用
在工作中,我用画图方法解决了许多问题,比如组织架构变化、产品设计方案等。举例来说,当公司的人力资源布局调整时,我运用组织结构图的方式,将现有的人员情况,包括各个部门的职位和人员的数量和岗位职责清晰地表达了出来,经过调整和优化,现在公司的人员结构更合理和更高效。
第五段:结尾
总结来看,画图解决问题不仅可以让我们更好地认识问题和解决问题的思路,而且在实际应用中也会提高我们的工作效率和解决问题的能力,为我们的工作带来更多的好处。因此,在日常的工作和学习中,我们需要学会画图的策略,并且不断运用,才能更好地利用画图来解决问题,提高自己的生产力和竞争力。
解决问题的策略心得体会篇二
画图解决问题是一种非常常见的策略,在生活和学习中都有很广泛的应用。经过一段时间的实践和总结,对于这种方式,在学习中我已经有了一些心得和体会。本文从以下几个方面入手,探讨我的体会。
第二段:画图解决问题的优点
画图解决问题有其独特的优点。首先,画图可以将一个抽象的问题具象化,更加直观地呈现在眼前,使问题更加易于理解。其次,画图能够帮助我们把一个复杂的问题划分为更小、更容易解决的子问题,从而降低了解决问题的难度。综上所述,画图解决问题是一种简单而且实用的方法。
第三段:细致的线条,精准的表述
要想用画图解决问题,必须掌握一定的绘图技巧。画图的过程中,线条的细致程度可以直接影响到表述的准确性。因此,在绘图过程中,我们需要认真审视每一个细节,保证每一条线条的精准度。 同时,过多的线条也会导致不必要的混淆,使问题更加复杂。所以在绘图时,要注重线条的精简。
第四段:需要学会抽象思考
画图解决问题可以更加直观地呈现问题,但是对于一些较为抽象的问题,难度并不会因此而降低。这时候,我们需要学会抽象思考,抓住问题的本质。在掌握了问题所需要的基础概念后,我们可以用更加抽象的符号来表示问题,以此达到更清晰的表述。
第五段: 结论
画图解决问题是一种常见实用的方法。通过总结我的实践体会,认为画图解决问题具有直观易懂、划分问题、抽象思考等优点。因此,我们应该在学习和生活中多加运用,并在掌握基本的绘图技巧的同时,注重问题的简化和准确,以达到更好的效果。
解决问题的策略心得体会篇三
沈老师的课课堂机构清晰,三个板块,第一板块是简单回顾引入课题,第二板块是自主探索解决例题,联系过去感悟策略,第三板块巩固练习。
1、关键处的追问。出示例题后,学生读题,老师问:你知道了什么?学生回答。老师追问:有没有更深一点的理解?这时就有学生提出:周长22米,要注意周长的计算公式先要除以2,再来写长和宽。这里的追问就非常好,把这题的关键分析了出来,这样就为学生解决这道题正确列举作准备。
2、列举方法的展示。老师收集了学生的作业进行了展示,先展示的是凌乱的、缺的,然后展示按顺序的、全部列举的,学生通过对比就发现了“有序”列举的重要性。注意列举从哪里开始,按怎样的次序进行,感受这里“从大到小”“从小到大”列举的好处。这个环节的处理,就很容易得出一一列举时的'注意点。
3、教学资源的巧利用。沈老师在巩固练习环节设计了3个闯关题,每题分值分别是50、80、100,然后学生先完成这三题,到最后再问刚才你们答对了几题,有几种结果,学生再来计算分数。这样一来这个分数又是一道巩固题,学生也深刻体会到一一列举在生活中的运用,是按需产生的。
1、学生解决完例题后,老师问了2个问题:观察这几种围法,长、宽和面积是怎么变化的?不用木条、用绳子围,什么时候面积最大?我觉得这两个问题不需要,因为这两个问题都是指向这题的结论性,而本课重点在于一定要列举出所有围法才能找出本题答案。侧重点矛盾。
2、回顾一到四年级用过这个策略的题目时,沈老师让学生一个个的回答,这里浪费了比较多的时间,我认为其实只要展示出当时解题的方法,那么学生看到就能明白这里就是运用到了今天的一一列举的策略。从而知道策略不是无本之木、无源之水,更不是天降之物,总要在自己已有的经验上萌发的。
解决问题的策略心得体会篇四
今天学习了吴厚明老师的一节数学课《解决问题的策略》,又一次感觉到新教材的难教。新教材中对于解决问题的策略这部分的内容是一个重要的安排,是新教材的一个亮点,意图很明显,授之以渔嘛,给学生以方法的学习更重于知识的学习。
例2中出现的订阅报刊杂志,每人至少订一种,最多订3种,一共有多少种订法?《科学博览》《优秀作文》《小小发明家》。教者在学生理解题意的基础之上,让学生分类分析。订一种、两种、三种各有几种可能,并让学生通过小组合作分析的形式共同一一列举出所有的可能。大组交流时我认为应该将学生的`列举显示在黑板上,这样学生的理解更有样可寻,有样可依,对于后面题目的解答有一定的帮助。
在教学的过程中,引导学生运用一一列举的方法解决实际问题,让学生理解一一列举这种方法是在平时生活中经常运用的解决问题的方法。在教学中教者重在引导学生学会先分类,再有序地进行一一列举。学生对这部分内容的学习,有一定的难度,虽然只有两三条例题,但练习中的题目都需要教者引导学生仔细分析,方法的形成更需要一定的练习才行。
解决问题的策略心得体会篇五
第一段:引言(100字)
问题是生活中不可避免的一部分,无论是个人生活还是工作环境中,我们都会遇到各种各样的问题。如何高效地解决问题成为了一个关键的能力。在解决问题的过程中,我积累了一些心得和策略。在这篇文章中,我将分享这些经验和体会,希望对解决问题有所帮助。
第二段:主题句-培养积极心态和技巧的重要性(250字)
要解决问题,首先要拥有积极的心态。遇到问题时,我们往往会感到沮丧和无助,但这种消极的情绪只会加大问题的复杂性。相反,保持积极的心态,相信自己有能力克服问题,是解决问题的第一步。除了心态,一些技巧和习惯也对问题解决有帮助。例如,要具备积极主动的行动能力,主动找到问题所在并提出解决方法。同时,要保持耐心和冷静,尽量避免冲动和急躁的情绪。通过培养积极的心态和技巧,我们可以更好地解决问题。
第三段:主题句-分析和理解问题的重要性(250字)
在解决问题之前,我们需要深入分析和理解问题的本质。分析问题可以帮助我们找到问题的根源,从而采取恰当的解决策略。首先,我们可以通过提问来进一步剖析问题。问自己“为什么”和“如何”的问题,有助于我们更好地理解问题的背后原因。其次,我们可以采用SWOT分析的方法来评估问题的优势、劣势、机遇和威胁,以便找到解决方案。最后,我们要学会明确问题的范围和目标,将问题分解为更小的部分,以便更好地处理和解决。
第四段:主题句-寻求帮助和合作的力量(250字)
解决问题时,不要害怕寻求帮助或与他人合作。有时候,一个人的力量有限,但与他人携手合作,可以共同攻克困难。在寻求帮助时,我们可以向专业人士咨询,从他们的经验中获得启示和建议。此外,与团队合作也是解决问题的有效策略。不同的人有不同的观点和技巧,通过互相交流和合作,我们可以汲取他人的智慧,提高问题解决的效率和质量。因此,寻求帮助和合作是解决问题不可或缺的力量。
第五段:主题句-总结和展望(350字)
解决问题是一个不断学习和成长的过程。通过积极心态、分析问题、寻求帮助和合作等策略,我深刻体会到解决问题的重要性和方式。我相信,只要我们保持乐观、勇于面对问题并不断尝试,必定能够找到有效的解决方案。未来,我将继续学习和实践这些策略,不断提高自己解决问题的能力。同时,我也希望通过与他人分享我的经验,能够为更多人解决问题提供一些启示和帮助。问题并非不能解决,只要我们用心去思考和行动,就能找到解决的关键。
解决问题的策略心得体会篇六
问题无处不在,而我们想要获得成功和进步,就必须学会解决问题。然而,在解决问题的过程中,我们经常会遇到困难和挫折。经过一段时间的实践和思考,我总结出了一些问题解决的策略心得体会,希望能够分享给大家。
第二段:积极态度和冷静思考
在面对问题时,一个积极的态度和冷静的思考是解决问题的关键。首先,要保持积极的态度,相信自己能够找到解决问题的方法,不要被问题所困扰。然后,需要冷静思考,分析问题的原因和可能的解决方法。有时候,我们会因为情绪激动或者焦虑而难以思考清楚,这时就需要停下来,冷静下来,才能找到正确的解决办法。
第三段:寻求他人的帮助和倾听
在解决问题的过程中,寻求他人的帮助和倾听是非常重要的。有时候,我们可能陷入思维定势,无法找到解决问题的方法,这时候他人的建议和观点就会给予我们新的思路。此外,倾听他人的意见也可以让我们更客观地看待问题,从而找到更好的解决办法。然而,在寻求他人的帮助和倾听时,我们要保持谦虚和开放的态度,尊重他人的意见和建议,有时候也需要权衡不同的观点和选择适合自己的解决方法。
第四段:勇于尝试和调整策略
解决问题的过程中,我们要勇于尝试和调整策略。有时候,我们找到了一种解决方法,但是在实践中发现不奏效。这时候,我们不能放弃,而是要继续尝试其他的方法。同时,我们也要灵活调整策略,并适时地做出改变。有时候,问题的解决方法可能并不是一成不变的,而是需要不断调整和改进的。只有勇于尝试和调整策略,我们才能最终找到最合适的解决方法。
第五段:总结和展望
通过实践和思考,我意识到解决问题需要积极态度和冷静思考,需要寻求他人的帮助和倾听,需要勇于尝试和调整策略。这些策略心得帮助我解决了许多问题,使我在工作和生活中取得了进步和成就。然而,我也清楚地意识到问题解决是一个持续的过程,我们应该不断地学习和提高自己的解决问题的能力。相信只要我们坚持不懈地努力,掌握好问题解决的策略心得,就一定能够在未来面对各种问题时应对自如,取得更好的成绩和成功。
解决问题的策略心得体会篇七
1、放学后,我们两个同时从学校出发,分别向东去新华书店,向西去文具店,
问:这道题和例题有什么不同?
你能根据题意自己独立画线段图整理。
展示学生的线段图,并让学生说说自己是怎样想的。
补充合适的问题后,学生独立解答。交流的时候分别说清楚自己是怎么想的。
2、比较两题,找联系。
说说两题有什么不同?(方向上的不同,一个是相向的,一个是相背的)做手势。
什么相同?(都是求两断之间的距离,可以先分别算出各自的距离再相加,也可以先算出合起来的`速度再算总的路程。……)
1、先画图整理,再解答。
2、读题后问:这道题和刚才的有什么不同?可以怎么想?把你的算式写在作业本上。
3、读题后问:这道题和例题有什么联系?你会解答吗?
解决问题的策略心得体会篇八
一
单元教材分析
二
单元目标要求
教学用列表的策略解决实际问题。
三
单元设计意图
1 让学生把信息填入表格,学习整理信息的方法,体会对解决问题的作用。
(1) 把已知条件和要求的问题全部填进表里。
(2) 根据要解决的问题,选择相关的条件填入表格。
教材在编写上有以下特点。
第一, 选择相关的条件填入表格。
第二,利用表格、紧扣问题,设计解题步骤。
2 让学生在解决实际问题的过程中,逐渐养成整理信息的习惯。
(1) 从有形地整理到无形地整理。
(2) 解决新颖的问题。
第一,改变例题的教学观念。
四
单元目标达成分析
时间: 年 月 日
板块
教师活动
学生活动
教学目标及达成情况
小明
3本
18元
小华
5本
( )元
小军
( )本
42元
时间: 年 月 日
板块
教师活动
学生活动
教学目标及达成情况
桃 树
3 行
每行7棵
梨 树4 行
桃 树
3 行每行7棵
苹 果 树
8 行每行6棵你能根据题目呈现的信息,自己提问题,再设计表格填表并解答吗?选择典型题展示共同交流(让其他学生猜一猜被展示者的分析思路) 比较小结1、用列表的方法,来算算,用这些栅栏还可以围成长是几米的长方形? 长(米)8765宽(米)1234面积(平方米)8141820想一想,如何围面积最大?独立列表整理,互相交流分析数量关系的方法,独立列式解答检查订正3×7=21(棵) 8×6=48(棵)48-21=27(棵)独立提问题,设计表格,填表列式解答 互相交流引导观察:刚才我们用18根1米长的栅栏围成一个长方形,可以围出很多种情况。指出:在确定长方形周长后,长和宽越接近,面积就越大。 2、“想想做做”第1、3题说明:1、重点突出板块设计; 2、备课时重点突出教学设计(包括教师与学生活动设计) 3、教学反思在“活动目标及达成情况”栏填写。
解决问题的策略心得体会篇九
一
单元教材分析
二
单元目标要求
1、 使学生在解决问题的过程中初步学会应用替换和假设的策略分析数量关系,确定解题思路,并有效地解决问题。 2、 使学生在对自己解决实际问题过程的不断反思中,感受替换和假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。 3、 使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学习数学的信心。
三
单元设计意图
四
单元目标达成分析
课题:解决问题的策略—替换
板块
教师活动
学生活动
小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯的容量是大杯的1/3。小杯和大杯的容量各是多少毫升?2、提问:大杯和小杯的容量有着什么样的关系呢(小杯的容量是大杯的1/3)?根据这句话你能想到什么呢?教师追问:在替换的过程中什么变了,什么没有变?引导学生进一步理解“替换”的策略:杯子的数量发生了变化,但总容量没有发生变化。.3、小结策略。
虽然是两种不同的替换方法,但它们有什么共同的地方?(两种不同的物体根据它们之间的关系替换成一种物体。)
4、怎样检验结果是否正确?学生口头检验。
集体交流小结
指导学生做练习十七的第1题。
学生思考说说。学生说说数量关系后口答列式。学生读题,结合学生提出的已有经验,学生可能出现的情况是:a.把大杯换成小杯b.把小杯换成大杯学生自己操作(可以用画图等方法)学生独立完成,请两名学生板演,集体评讲每种方法的解题思路和方法。比较有什么不同和相同之处。学生检验结果,从两个方面进行,一是算一算总量是否是72毫升;二是算一算两个数量是否是1/3的关系。学生读题后,自己画图分析,解答。集体评讲不同方法的解题思路。比较有什么相同和不同之处。学生试着用替换的策略尝试着计算。集体交流学生明确:例题是倍比关系:替换时总量不变,数量会变;练一练是差比关系:替换时总量变了,数量不变。激活学生的生活经验,为学习新知作铺垫。学会用“替换”的策略通过理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤和方法。在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。通过解决生活中的一些实际问题,进一步巩固用“替换”策略来分析题意,理解数量关系,提高学生的分析、解题的能力。课题:解决问题的策略——假设第2课时教学目标:1、在解决实际问题的过程中,初步学会运用假设的策略分析数量关系,确定解题思路,并有效解决问题。
2、在对自己解决实际问题的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展学生分析、综合和简单推理的能力。
板块
教师活动
学生活动
教学目标及达成情况
一、 激趣导入。二、新知探究。三、巩固发展。四、课堂总结。
(1)组织学生思考:有没有巧妙的办法,能很快的找到答案?
(2)组织学生把找到的答案和方法与同桌同学进行交流。
(3)组织学生进行全班交流解决问题的方法。
2.感受问题解决的策略
(1)针对学生提出几种问题解决的不同的方法,如把10条船全部看作大(小)船,把一部分船看作大船,一部分看作小船等画图、列表方法,利用课件组织学生进一步观察讨论,交流和体会“假设——比较——调整” 替换策略思想方法。
(2)引导学生对所得结论进行检验。
(3)结合学生交流过程,整理小结例2的问题解决策略及推理过程。
1.组织学生完成练习第1题。
(1)组织学生用自己的方式“画一画,算一算”等进行问题解决。
(2)组织学生交流讨论问题解决的过程,进一步体会“替换”策略。
2.组织学生完成练习第2题(结合实际有所调整改编)。
3.组织学生完成练习第3题。
4.组织学生完成练习第4题。
5.感受数学文化
组织学生阅读我国古代的数学名题—— “鸡兔同笼”问题。 组织学生交流本课学习收获,进一步感受用“假设”解决问题策略。学生思考交流想法,说说判断结论。
学生观察,审理问题信息。
学生画图思考,可以把答案先与同桌进行交流,再集体交流。学生完成练习第1题。
可以用自己的方式“画一画,算一算”等进行问题解决。
完成练习第2题(结合实际有所调整改。学生独立完成后进行交流。学生独立完成后进行交流。学生独立完成后进行交流。在解决实际问题的过程中,初步学会运用假设的策略分析数量关系,确定解题思路,并有效解决问题。
2、在对自己解决实际问题的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展学生分析、综合和简单推理的能力。通过解决生活中的实际问题,巩固用假设的策略来分析题意,进一步发展学生分析、综合和简单推理的能力。课题:解决问题的策略(练习题)
第三课时
板块
教师活动
学生活动
教学目标及达成情况
解决问题的策略心得体会篇十
p63~64例题和试一试、p65“想想做做”
(1)让学生学习有画图和列表的方法收集、整理信息,并在画图和列表的过程中分析数量关系,寻找解决问题的有效方法。
(2)使学生在自主探索合作交流中体验成功的`愉悦,进一步树立学习数学的自信心,发展对数学学习的积极情感,提高主动学习和独立思考的积极性。
无
一、导入新课
(学生说出不同的方法)哪些方法可取,比较好?
遇到问题如何解决,就要找到解决问题的策略,今天这节课学习“解决问题的策略”(板书课题)
二、新授
1、出示场景
(1)说一说图中提供了哪些信息。
(2)根据提供信息,你能提出哪些问题?
2、出示问题:
(1)小华买5本需要多少元?
(2)小军用42元可以买多少本?
解决问题的策略心得体会篇十一
经历四则混合运算、解决问题的策略知识系统复习与整理,基本技能巩固和提高的过程。
进一步认识和掌握四则混合运算、解决问题的策略的计算方法,能解决有关四则混合运算、解决问题的策略的简单实际问题。
培养自主复习与整理知识的良好习惯。发现学习中的问题,提高学习效果,增强学好数学的自信心。
1课时
进一步认识四则混合运算、解决问题的策略,掌握四则混合运算、解决问题的策略的方法,能解决有关四则混合运算、解决问题的策略的简单实际问题。
(一)知识梳理
1、在没有括号的算式里,有乘、除法和加减法,要先算()法,再算()法。
2、算式里有小括号的,要先算()里面的;如果括号里既有乘除法又有加减法,也要先算(),再算()。
3、在一个算式里,既有小括号,又有中括号的,要先算()里面的,再算()里面的。
4、中括号和小括号在算式的作用是()。
(二)题型、方法归纳与典例精讲
1、四则混合运算计算。
例:计算下面各题。
方法归纳:在没有括号的算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。
算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。
在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。
解决实际问题的计算。
方法归纳:先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。
3、解决问题的策略,根据已知条件提问题并解答。
方法归纳:弄清题意,理清题里的数量关系,根据数量关系提出问题并解答。
(三)归纳小结
在没有括号的'算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。
算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。
在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。
先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。
(四)随堂检测
1、计算下面各题。
赵阿姨从12只河蚌里剖出432颗珍珠。
如果每72颗珍珠穿成一条项链,那么赵阿姨剖出的珍珠能穿成多少条项链?
照这样计算,赵阿姨从26只河蚌里能剖出多少棵珍珠?
板书设计
四则混合运算、解决问题的策略
在没有括号的算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。
算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。
在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。
解决问题时,先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。
作业布置
1、甲、乙两列火车分别从东、西两地同时相对开出,5小时后相遇。甲车速度是110千米/时,乙车速度是100千米/时。求东、西两地间的路程。
预习102页有关内容。
解决问题的策略心得体会篇十二
【教材分析】例题用文字叙述,学生一般能读懂题意,但不会利用其中的数量关系思考。而通过课件利用“小杯的容量是大杯的1/3”这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。可见,在学生的经验结构里有替换,不过是潜在的、无意识的,教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。再引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。这是十分重要的教学环节,使例题的教学意义超越解答一道题目,得到一组答案,体会一种思想方法。
【教学目标】
1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤。
2、使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
【教学重点】
用等量替换的方法实现问题的简单化,并相应的解决问题。
【教学过程】
一、曹冲称象导入
师:同学们,你们听过“曹冲称象”这个故事吧?好,下面我们一起来看曹冲他是怎么称象的。(点击播放)
播放结束后提问:曹冲称象,为什么不直接称大象而要称石头?(生自由回答)
生:当时还没有这种技术。
了不起。其实,他就是运用了“替换”这种方法解决了问题。(板书“替换”)
二、教学例题1
师:大臣们的问题大致是(口述):把720毫升果汁倒入7个杯子,正好都倒满,杯子的容量各是多少毫升?你会列式吗?(课件没有出示杯子)
生自由说。
师:720÷7?真的这么简单?就能难倒聪明的曹冲?看看,大臣们给的到底是什么样的杯子。(出示杯子)。
师:看,这样的杯子,能用720÷7吗?生:不能
师:为什么?
生:(因为杯子的大小不一样)――可以多问几个学生
师:是的,杯子不一样,所以我们就不能直接用720÷7。那如果,装满的都是?
让生答:装满的都是小杯或者都是大杯,我们就可以直接算出每个杯子的容量了。
师:好,我们一起来看看大臣们出的问题具体是:(课件出示:把720毫升果汁倒入6个小杯和1个大杯,正好倒满。小杯的容量是大杯的1/3。大杯和小杯的容量是多少毫升?)。请同学们把题目读一读。
师:你从题目中获得到什么信息?
(720毫升果汁、6个小杯、1个大杯)(师板书)
理解关键句
师:你是怎么理解小杯的容量是大杯的1/3这句话的?(多问几个同学)
(预设之一:把大杯当做标准量,小杯是比较量;反过来那如果把小杯当作标准量(单位一)那大杯的容量是可以说一个大杯的容量相当于3个小杯的容量,也可以说3个小杯的总容量等于1个大杯的容量)
师:其实,也就是一个大杯的容量相当于3个小杯的容量。
独立思考,合作探究
1、师:那你想用什么策略解决这个问题?把你的想法和你的同桌说一说,然后把你的解题过程写出来。
同桌讨论,生列算式的过程中(师巡视指导,并请两位学生上台板演。)
2、师:好,同学们请看:(指着算式)做对了吗?你来解释一下你的解题过程!3、课件演示学生所回答的思路。
师:老师听明白了,你们呢?(演示):他是把1个大杯换成3个小杯,这时候就有??(生:9个小杯)现在就可以先求出??(小杯的容量),然后我们再根据大杯和小杯之间的关系,求出大杯的容量。
4、板书小结:
师:简单的说就是把1个大杯替换成3个小杯,再加上原来的6个小杯,一共就有9个小杯。
5、请学生说第二种方法的思路
师:诶?这组算式呢?对吗?谁知道他的想法?生回答
6、学生讲完第二种方法后,课件演示。(也要问到点子上,比如:你是根据)
师:真不错,是把每三个小杯换成一个大杯,这么一替换,得到的就是(大杯)。就可以求出??(大杯的容量),我们在根据大杯和小杯之间的关系求出小杯的容量。
7、完成板书:
师:是的,我们还可以把6个小杯替换成2个大杯,再加上原来的1个小杯,一共就有3个大杯。
师:你们也都像他们这样解决吗?
检验
师:到底正不正确呢?我们还要对它进行?
生:检验。
师:怎么检验呢?试一试!(留给学生检验的时间)好,谁来说?生:用240+80=720ml所以正确。
师:哦,你是验证了一个大杯和6个小杯的容量等于720毫升这个条件,但是请你们好好思考思考,只符合这个条件就可以了吗?(240÷80=3)
师:所以,我们在检验时不能只考虑一个方面,要从整体去思考。总结:
师:刚才我们用什么策略帮助曹冲解决难题的?生:替换师:对,替换就是解决问题的一种策略。(板书课题:解决问题的策略)
师:那为什么要替换?
生:因为杯子不同,替换了就能变成同一种杯子,问题变得简单了。师:你替换的依据是?
生:小杯是大杯的三分之一。
师小结:是的,解这道题的时,我们先把两种不同的杯子替换成同一种杯子,也就是说把两种不同的量替换成同一种量来解决问题。这样,复杂的问题就简单化了!(板书:两种不同的量替换同一种量)
师:看来呀,替换真是一种有效的解决问题的策略。那咱们继续用“替换”这种策略来解决生活中的一些问题。请看:(出示练习)
三、巩固应用
师:你打算填几?跟你的同桌说一说。学生思考后,指名回答。
从题目中,我们知道小杯的容量是大杯的(),也可以理解为1个大杯的容量等于()个小杯的容量。
如果把小杯替换成大杯,那么8个小杯的容量+2个大杯的容量=()个大杯的容量。
如果把大杯替换成小杯,那么8个小杯的容量+2个大杯的容量=()个小杯的容量
2、有2个大箱和4个小箱,每个小箱的容量是大箱的1/2,1个大箱可以换成()个小箱,4个小箱可以换()个大箱,如果把大箱都换成小箱,则共有()个小箱。
3、买15支铅笔和4支钢笔共50元,5支铅笔可以换2支钢笔,每支铅笔和钢笔各是多少元?(留足够的时间给学生做题,展示学生作业时,要问:这个算式表示什么?算得的又是什么?每个数字各表示什么等。)
四、全课总结:
师:你觉得这种替换的策略神奇吗?你有什么样的感想说一说,和大家分享分享。
师:像这样的问题,我们也可以用替换的策略来解决。只要我们从不同的角度去分析和思考,我想:我们将会有许多不同的收获和发现,韦老师期待着,那我们下一节课再一起来探讨。
解决问题的策略心得体会篇十三
教学目标:
进一步积累解决问题的经验,增加解决问题的策略意识,获得解决问题的成功体验。
教学过程:
一、积累铺垫
4.从图中你能求出什么?
二、初步感知
2.审题激需:你能想个办法让大部分同学都能理解题意顺利闯关呢?(画图)
4.现在图有了,你能根据图来求出原来操场的面积吗?
(1)学生尝试,教师巡视。(2)讨论交流:
三、再次体验
四、深入体验
(一)第四关:
1.引入:应用画图的策略,我们来闯第四关。
2.分层出示:
到底增加了多少?学生解答后交流。(交流“整体”和“分块”两种思路)
3.反思小结:从用经验猜测,到画图验证,最后到解决问题,你有什么启发吗?
(二)第五关:
1.引入:第四关我们都闯过了,下面我们要挑战——第五关!
(1)审题后问:与第四关有什么区别?(一个是“同时”,一个是“或者”)
五、全课总结
今天学习了“解决问题的策略”,你有什么收获?
解决问题的策略心得体会篇十四
教学目标:
1.进一步学会用“替换”“假设”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2.在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3.进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
灵活运用多种解题策略解决稍复杂的实际问题。
教学过程:
一、揭示课题
谈话:前几节课,我们学习了新的解题策略,你能举例说明吗?(请几位学生交流。)今天这节课,老师准备了一些实际问题,请同学们灵活运用我们学过的解题策略来解决这些稍复杂的实际问题。(板书课题)
二、基本练习
学生独立思考后解决问题。
6.1元钱买4分一张和8分一张的邮票共20张,应买4分邮票多少张?
学生独立思考后解决问题。
小结:运用“替换”或“假设”的策略解决问题后都应该及时进行检验。
三、拓展练习
鼓励学生用自己理解的方法来解决这些问题,解答后给学生充分的时间进行交流,教师及时评价学生。
四、全课总结
谈话:今天我们综合运用一些策略来解决实际问题。你们又有什么新的收获吗?
五、布置作业:
【本文地址:http://www.xuefen.com.cn/zuowen/5657203.html】