总结是写给人看的,条理不清,人们就看不下去,即使看了也不知其所以然,这样就达不到总结的目的。总结书写有哪些要求呢?我们怎样才能写好一篇总结呢?下面是小编带来的优秀总结范文,希望大家能够喜欢!
高考数学知识点归纳总结篇一
复数是高中代数的重要内容,在高考试题中约占8%-10%,一般的出一道基础题和一道中档题,经常与三角、解析几何、方程、不等式等知识综合.本章主要内容是复数的概念,复数的代数、几何、三角表示方法以及复数的运算.方程、方程组,数形结合,分域讨论,等价转化的数学思想与方法在本章中有突出的体现.而复数是代数,三角,解析几何知识,相互转化的枢纽,这对拓宽学生思路,提高学生解综合习题能力是有益的.数、式的运算和解方程,方程组,不等式是学好本章必须具有的基本技能.简化运算的意识也应进一步加强.
在本章学习结束时,应该明确对二次三项式的因式分解和解一元二次方程与二项方程可以画上圆满的句号了,对向量的运算、曲线的复数形式的方程、复数集中的数列等边缘性的知识还有待于进一步的研究.
(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.
(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.
(3)复数的辐角主值的求法.
(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.
高考数学知识点归纳总结篇二
当命题“若a则b”为真时,a称为b的充分条件,b称为a的必要条件。
2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。
3.集合法
在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为a、b,则:
若a?b,则p是q的充分条件。
若a?b,则p是q的必要条件。
若a=b,则p是q的充要条件。
若a?b,且b?a,则p是q的既不充分也不必要条件。
1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:
(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;
(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;
(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。
2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的.原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。
高考数学知识点归纳总结篇三
第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计。这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。
对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。
对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。
在临近高考的数学复习中,考生们更应该从三个层面上整体把握,同步推进。
1.知识层面
也就是对每个章节、每个知识点的再认识、再记忆、再应用。数学高考内容选修加必修,可归纳为12个章节,75个知识点细化为160个小知识点,而这些知识点又是纵横交错,互相关联,是“你中有我,我中有你”的。考生们在清理这些知识点时,首先是点点必记,不可遗漏。再是建立相关联的网络,做到取自一点,连成一线,使之横竖纵横都逐个、逐级并网连遍,从而牢固记忆、灵活运用。
2.能力层面
从知识点的掌握到解题能力的形成,是综合,更是飞跃,将知识点的内容转化为高强的数学能力,这要通过大量练习,通过大脑思维、再思维,从而沉淀而得到数学思想的精华,就是数学解题能力。我们通常说的解题能力、计算能力、转化问题的能力、阅读理解题意的能力等等,都来自于千锤百炼的解题之中。
3.创新层面
数学解题要创新,首先是思想创新,我们称之为“函数的思想”、“讨论的方法”。函数是高中数学的主线,我们可以用函数的思想去分析一切数学问题,从初等数学到高等数学、从图形问题到运算问题、从高散型到连续型、从指数与对数、从微分与积分等等,这一切都要突出函数的思想;另外,现在的高考题常常用增加题目中参数的方法来提高题目的难度,用于区别学生之间解题能力的差异。我们常常应对参数的策略点是消去参数,化未知为已知;或讨论参数,分类找出参数的含义;或分离参数,将参数问题化成函数问题,使问题迎刃而解。这些,我称之为解题创新之举。
4.代换层面
还有一类数学解题中的创新,是代换,构造新函数新图形等等,俗称代换法、构造法,这里有更大的思维跨越,在解题的某一阶段有时出现山穷水尽,无计可施时,用代换与构造,就会使思路豁然开朗、柳暗花明、思路顺畅、解答优美,体现数学之美。常见的代换有变量代换,三角代换,整体代换;常用的构造有构造函数、构造图形、构造数列、构造不等式、构造相关模型等等。
1.“方程”思想
数学是研究事物的空间形式和数量关系。初中阶段最重要的数量关系是平等关系,其次是不平等关系。最常见的等价关系是“方程”。例如,在等速运动中,距离、速度和时间之间存在等价关系,可以建立相关方程:速度时间=距离。在这样的方程中,通常会有已知的量和未知量。含有这种未知量的方程是“方程”,它可以从方程中已知的量导出。未知量的过程是求解方程的过程。我们在小学时接触过简单的方程,而在初中第一年,我们系统地学习解一变量的第一个方程,并总结出解一变量的第一个方程的五个步骤。如果我们学习并掌握这五个步骤,任何一个等式都能顺利地解决。在2年级和3年级,我们还将学习解决二次方程、二次方程和简单三角方程。在高中,我们还学习指数方程、对数方程、线性方程、参数方程、极坐标方程等。求解这些方程的思想几乎是相同的。通过一些方法,将它们转化为一元一阶方程或一元二次方程的形式,然后通过求解一元一阶方程或求一元二次方程根公式的常用五步法求解。物理中的能量守恒、化学中的化学平衡方程以及大量实际应用都需要建立方程和求解方程才能得到结果。因此,学生必须学会如何解一维一阶方程和一维二阶方程,然后才能学好其他形式的方程。
所谓的“方程”思想是数学问题,特别是未知现实见面和已知数量的复杂关系,善于利用“方程”的观点建立相关方程,然后利用求解方程的方法来解决这个问题。
2.“数与形相结合”的思想
数字和形状在世界各地随处可见。任何东西,除去它的定性方面,都是留给数学研究的,只有形状和尺寸的属性。代数和几何是初中数学的两个分支。然而,代数的研究依赖于“形式”,而几何学则依赖于“数”,而“数与形的结合”则是一种趋势。我们学得越多,“数字”和“形状”就越不可分割,在高中时,“数字”和“形状”是密不可分的。有一门关于用代数方法研究几何问题的课程,叫做“分析几何”。第三年,平面笛卡尔坐标系建立后,函数的研究就离不开图像。通过图像的帮助,很容易找到问题的关键点,解决问题。在今后的数学学习中,应重视“数与形相结合”的思维训练。只要任何问题都与“形状”有关,就应该根据主题的含义起草一个草图来分析它。这样做不仅是直观的,而且是全面的。诚信强,容易找到切入点,对解决问题有很大的益处。品尝甜味的人会逐渐养成“数形结合”的好习惯。
1.按部就班
数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2.强调理解
概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3.基本训练
学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。
4.重视错误
订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。
数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。
高考数学知识点归纳总结篇四
“不但要会埋头拉车,还要会抬头看路”是我对高考数学复习的一贯见解。高考是一场成王败寇的残酷竞争,它是公平的也是不公平的,说高考公平是因为所有人都将面对同样的时间、知识、试卷;说高考不公平是因为对每个人来说信息并不对称——对高考分析透彻的人自然拥有更高的复习效率必然会取得更出色的成绩。
这里我强调的并不是高中的基础知识掌握程度而是复习的效率问题,谁的基础知识更牢固谁将取得更好的高考成绩这是一个铁的事实,但它是建立在“所有人的复习效率都是相同的”这个假设之下的,所以大家经常可以看到有些高考考生学的呕心沥血却永远只是中游水平,而另一些高考生拥有大量的休闲活动却仍然能名列前茅。
造成这种现象的原因很多人会归结为“智商”和“运气”,我也不否认这两方面的因素,但最主要的原因还是效率问题:两个高考生同样学了一个小时的数学,一个人领悟了一个高考非常容易考到的重点内容,而另一个人啃下了一个非常难于理解的但是高考从来没有考过的难点内容,那么这样日积月累下来第一个人对高考真题考点的掌握就会远高于后者。这就是我说的“不但要会埋头拉车,还要会抬头看路”的意思,“拉车”就是指认真的复习,而“看路”则是指认清高考考察的重点,把握住高考复习的方向。“拉车”基本上是每个高三学生都能够作到的,但是“看路”就不尽然了,起早贪黑却劳而无功的高考生都是没有解决好复习方向的问题,没有看好“路”。
现在这个阶段是高三文科刚开始复习而理科将近结课的阶段,属于高考复习的初期,这一阶段给大家的建议是:
第一:先看一下近三、五年的高考真题,并不要去做这些高考真题,而是要从中分析出那些是真正的高考考点,从而为整个一年的高考复习定下一个正确的基调。
无法分清考点的轻重是最常见的问题,比如高考中《函数》与《导数》两部分的关系就是一个非常容易使人混乱的地方。《函数》是高一的重点章节,学校会反复强调它的重要性,说它在高考中占多少多少比例等等,而《导数》则只是高三中的一个辅助章节尤其是文科,它的章节比重很小,学校强调的也不够。这就给大家一个错觉就是函数比导数重要,但是事实上在真正的高考中它们两者的位置恰恰相反,函数的考查只有3至4道小题而且都位于试卷前几道题十分简单,其它问题虽然大量使用函数思想但是对同学们解题没有实质上的影响。反观导数它在高考中直接占有一道大题特别是07年的文科试题,它取代了《数列》的地位成为了倒数第二位的14分难题,同时只要遇到“函数单调性”“极值”“最值”“值域相关问题”“切线问题”等都要使用导数知识进行解决。当然函数的单调、极值等可以用《函数》知识处理但比起导数来说这是十分烦琐的。
所以说导数的地位要远比函数来的重要,这一问题往往是影响大家高考复习效率的一个关键问题,发现它并不需要“智商”和“运气”,只要看一遍近几年高考真题即可,这就是我第一条建议的重点所在。
第二:分析自己的实力特征,果断对知识点进行取舍。高考是选拔性的考试,并不要求我们在某个单科中考出满分,只要高考总成绩能够胜出就可以,所以我们一定要根据自己的真实水平对整个高考复习作一个规划。07年天津市理科状元的数学成绩只有138分,并不是传奇的150,他其他的高考科目也都是很高但远没达到最高,这就说明了我们要合理分配自己的精力使自己的能力得以最大的发挥。这一点就是要告戒大家千万不能偏科,我们身边经常有一些高考考生他们某几门学科成绩十分优异(高于状元),但总成绩只能达到中游或中上的水平,他们最大的问题就是时间分配,如果他们节省出一部分花在强势学科上的时间转移到弱势学科上,他们必将取得更好的成绩。
第三:正确对待模拟考试与模拟题。如果已经看过高考真题的同学很容易发现高考真题与模拟题有着天壤之别,大多数模拟题尤其是出自低级别地方的,根本无法达到高考真题的水平,做它们是无法真实反映大家在高考中的表现的。所以大家在现阶段应该首先看“题”是否值得作再看作的是否好,这才是正确的方法。
高考数学知识点归纳总结篇五
32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)
33.反正弦、反余弦、反正切函数的取值范围分别是
34.你还记得某些特殊角的三角函数值吗?
36.函数的图象的平移,方程的平移以及点的平移公式易混:
(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.
(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.
(3)点的平移公式:点按向量平移到点,则.
37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
38.形如的周期都是,但的周期为。
39.正弦定理时易忘比值还等于2r.
高考数学知识点归纳总结篇六
值域
名称定义
常用的求值域的方法
关于函数值域误区
定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。
“范围”与“值域”相同吗?
“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。
高考数学知识点归纳总结篇七
40.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。
41.数量积与两个实数乘积的区别:
在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.
已知实数,且,则a=c,但在向量的数量积中没有.
在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.
42.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。
高考数学知识点归纳总结篇八
复数是高中代数的重要内容,在高考试题中约占8%-10%,一般的出一道基础题和一道中档题,经常与三角、解析几何、方程、不等式等知识综合。本章主要内容是复数的概念,复数的代数、几何、三角表示方法以及复数的运算。方程、方程组,数形结合,分域讨论,等价转化的数学思想与方法在本章中有突出的体现。而复数是代数,三角,解析几何知识,相互转化的枢纽,这对拓宽学生思路,提高学生解综合习题能力是有益的。数、式的运算和解方程,方程组,不等式是学好本章必须具有的基本技能。简化运算的意识也应进一步加强。
在本章学习结束时,应该明确对二次三项式的因式分解和解一元二次方程与二项方程可以画上圆满的句号了,对向量的运算、曲线的复数形式的方程、复数集中的数列等边缘性的知识还有待于进一步的研究。
(1)复数的向量表示法的运算。对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难。对此应认真体会复数向量运算的几何意义,对其灵活地加以证明。
(2)复数三角形式的乘方和开方。有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练。
(3)复数的辐角主值的求法。
(4)利用复数的几何意义灵活地解决问题。复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会。
高考数学知识点归纳总结篇九
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
要建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
高考数学知识点归纳总结篇十
查漏补缺需要我们对自身的学习状况有一个清晰的了解,只有优先将我们的之前所学习的内容给填补完成,才能使我们后续的学习不会因知识点的缺漏而打乱学习进度,这就需要我们通过整理我们的学习笔记,梳理课本的知识点来进行一个覆盖式的扫荡,这样才能全面无死角的将所有的知识点都过一遍,确认自身的知识体系中没有出现盲点就是我们查漏补缺的最终目的。
二、错题本
错题本可以及时帮助我们将自身还未掌握,却没有意识到的知识点盲点,并加以及时的复习,从而避免了今后出现相似题型时,又因相同原因出现错误,多多的将我们日常学习中,做错或不理解题型归纳于我们的错题本中,再根据不同题型进行分类,这样才能有效的发现相同题型中,都在哪一方面出现了错误而导致整个解题过程出错,整理分析,并加以理解,就是我们有效利用错题本的最好方式。
三、适当休息
休息是为了让我们在之后的学习有更加充足的学习精力去进行学习,而我们每天最好是在10点之前就进入睡眠状态,并于第二天的6点起床进行学习,这不仅有效的保持了我们的学习精力,还以通过每天早起来学习更多的知识点,毕竟我们在得到充分休息之后,就是我们一天中学习效率最好的时刻,而中午1点之后可以进行半个小时的午休时间,这样可以有效的缓解一上午的学习疲惫,也避免下午的学习状态受损。每当学习一到连个小时,就需要进行一小段5-10分钟的中场休息,既是舒缓我们的大脑,也是为了让我们复习之前所学习的内容。
【本文地址:http://www.xuefen.com.cn/zuowen/5554073.html】