现代科技给我们的生活带来了很多便利,但我们也应注意科技对我们的影响。在写总结时,我们可以运用一些修辞手法,如类比、对比和引用等,使文章更具吸引力。在这里,小编为大家推荐了一些值得一读的总结范文,希望能够激发大家的写作灵感。
大学数学建模论文篇一
计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。数学建模所解决的问题不止现实的,还包括对未来的一种预见。数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。
1.数学建模对教学过程的作用
1.1数学建模引进大学数学教学的必要。教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。1.2数学建模在大学数学教学中的运用。大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。
2.数学建模对当代大学生的作用
2.1数学建模对数学学科和其他学科学生的巨大影响力学习数学建模,能够使一个单独的数学家变成经济学家,物理学家还有金融学家,甚至是艺术家,只要正握数学建模就能指导学生通过掌握数学建模的思维和方法向其他领域学习和进步。数学建模成为连接数学和其他领域的纽带,是当今数学科学在其他领导应用的桥梁,是数学技术转化为其他技术的途径,数学建模在学生中越来越受到关注和欢迎,越来越多的学生开始学习数学建模,尤其是数学界和工程界的学生,这成为当今学生成为现代科技工作者必须掌握的只是能力之一。
2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。通过数学建模的学习和应用,激发大学生学习数学和应用数学的能力,运用数学的思维和方法,利用现代计算机科学,来解决数学及其他领域的问题。
3.数学建模对大学数学及其他学科教师的作用
数学建模引入大学数学教学,这是时代的进步,是时代对当代大学教师提出的新要求,尤其是大学数学教师,其不再停留在以往的单纯的数学知识讲授方向,而是将数学科学作为基础,引导当代大学生发散思维,发挥主观能动性,从而学习数学科学,并运用数学科学解决现实问题。在这个过程中大学教师的专业知识得到提高,其创新精神也得到了极大的丰富。大学数学教师不止完成数学教学,更重要的是培养了高科技的人才,这对大学数学教师的社会地位也有了相应的改变,在尊重人才,尊重科学的氛围中,大学数学教师及其他学科的教师得到了鼓舞,得到了进步,得到了认可。数学建模越来越重要,关于数学建模的各种国内国际大赛频频举办,这对大学数学教师在知识,体力和创新性上都提出新的要求,为了更好的参与数学建模比赛,大学数学教师投入更多的时间和经历在学生教育和数学建模中,他们成为真正的台前和幕后的指挥者。
随着现代大学学科的丰富,尤其是计算机科学的广泛应用,大学数学教学的跨时代发展,数学建模成为各个高校数学教学的重点内容,数学建模教学吸纳数学家,计算机学家等多个学科专家的意见,从而为培养出综合行的高科技人才做好充分的准备。可以说数学建模教学是当今大学数学教学的主旋律,是数学科学和其他科学进步发展的方向和原动力。
参考文献:
[1]李进华.教育教学改革与教育创新探索.安徽:安徽大学出版社,20xx.8.
[2]于骏.现代数学思想方法.山东:石油大学出版社,1997.
大学数学建模论文篇二
数学是一切科学与技术的基础,它的产生与发展都是为了推动社会的发展。因此,数学在社会生活中的地位是不可动摇的。然而,很多人都习惯把数学知识说成理论性的知识,觉得数学知识对社会的发展起不到促进作用,故从心底对数学产生了数学无用论的思想。20世纪70年代,数学建模进入了一些西方国家大学,它的出现带动了数学领域的发展,也驳斥了数学无用论的思想,使得数学理论很好地实践于生活当中的各个领域。20世纪80年代开始,随着改革开放,我国的数学建模教学和数学建模竞赛活动也日益蓬勃地发展起来。1982年复旦大学首先在应用数学专业学生中开设了数学模型课程,随后很多院校也相继开设。由于数学建模在各个高校中成功地引入,1994年教育部高教司决定每年在全国举行全国大学生数学数模竞赛。随着每年数学建模竞赛的发展,目前数学建模课程和竞赛在本科院校得到了普及,从而推动了数学教学的发展。
随着数学建模竞赛在本科院校的普及,开始增设了高校大专组的数学建模竞赛。数学建模竞赛的引入,提高了高职院校数学课程的重视度,改变了古板、简单地传授数学理论知识给学生的课程方式。另外,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,数学建模和与之相伴的科学计算正在成为众多领域中的关键工具。
一、数学建模的概念及竞赛模式
用数学方法解决科技生产领域的实际问题,关键第一步是建立相应的数学模型。也就是说,当需要从定量的角度分析或者探究一个实际问题时,就要在调查研究的基础上,充分了解对象信息,做出合理的假设,分析其内部规律等,运用数学的符号或者语言表示出来,这就是数学模型。通过计算得到的模型结果来解释实际问题,并接受实际的检验,这个建立数学模型的全过程就称为数学建模。
一般来说,数学建模过程按照以下步骤来进行:
为了激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识而,培养创造精神及合作意识,同时推动大学数学教学体系、教学内容和方法的改革,国家教育部高教司和中国工业与应用数学学会共同主办而向全国大学生的群众性科技活动,即全国大学生数学建模竞赛。数学建模竞赛遵循的模式:
1)参赛队由三名大学生和一名指导教师组成,指导教师负责学生的训练,竞赛时指导教师不得参与。
2)参赛者从所给的题目当中选择一道题目来进行竞赛,竞赛期间可以运用各种方式进行查阅自己所需要的资料,如:计算机网络,学校图书馆等等。
3)竞赛时间为三天,到时参赛者须提交一篇有关数学建模竞赛的论文,其中论文内容包括:摘要,问题的重述,问题的分析,模型的假设,符号说明,模型的建立,模型的求解,模型评价,参考文献等。
4)竞赛期间,时间由参赛者自由安排,但是不允许参赛者与其他组的参赛者进行讨论、交流。
二、高职院校进行数学建模教育存在不足
高职院校教育以培养实用型、技能型人才为目标,侧重于培养学生的应用能力。数学建模正是运用数学知识建立数学模型的方式,解决实际问题。因此,数学建模的目的与高职院校教育的目的不谋而合。在高职院校推广数学建模竞赛,不但可以提高高职院校的竞争力,而且符合它的办学理念。然而,在许多高职院校中,对学生进行数学建模能力培训重视的力度不够。
在学生方面,高职院校的学生认知水平低下,拥有的数学基础比较差、应用数学软件能力不强、解决实际问题的意识不强等种种因素,导致了学生害怕数学,学习数学只是为了应付考试,对数学产生了恐惧感,同时心里也产生了数学无用论的思想。
在教师方面,师资不足,数学教学方法单一,教学方式陈旧,只是采取填鸭式的教学方法。大部分数学教师对数学建模课程的研究不是很渗透,只是简单地了解数学建模课程的初等模型.对于较为深入的模型没有深入地进行研究,以致在教学方面,没有能够很好地带动学生去学习数学建模课程,使学生对数学建模课程产生学习的兴趣。
在学校方面,由于学生数学底子较差,有些学校不开设高等数学和数学建模课程。高职院校学生竞赛项目较多,很多竞赛都与本专业钩挂,导致学校较重视与相关专业竞赛的项目,而忽略了数学建模竞赛。学校对数学建模选修课给予课时不足,使得学生只能了解数学建模选修课的皮毛,且学校对全国大学生数学建模竞赛支持的力度不够。
三、数学建模对高职院校的影响
(一)对课程教改方面的影响
数学教育本质上是一种素质教育,传统的数学教学方法仅仅介绍数学的理论知识,对问题的应用背景等方面介绍较少,另外高职院校学生的数学底子相对薄弱,单纯地向他们灌输数学的理论知识,不但没有提升他们的数学理论水平,反而使他们对数学知识失去了学习的兴趣。然而,在数学教学课程中引入数学建模思想,将数学建模的思想和方法融入数学教学课程中,为数学与外部世界打开了一个通道,打造了一种以学生为中心的全新的、有效的数学教学模式,为学生提供将所学的知识应用于解决实际问题的机会,给学生以更大的思维空间,提高学生的思维能力和数学素质,也大大增加了学生学习数学理论知识的兴趣。
随着数学建模的`概念以及电子计算机的出现,数学知识的应用已经以空前的广度和深度向其他各个行业渗透。数学模型这个词越来越多地出现在现代人的生产、工作和社会活动中。例如:公司要根据产品的需求状况、生产成本等信息,建立一个投资方案模型,认真核准投资的收益率和风险损失率,在投资前较好地对投资进行预测和评估,确定投资方案,以取得最佳经济效益;气象工作者为了得到准确的天气预报,一刻也离不开根据气象卫星汇集的气压、雨量、风速等数据建立起来的数学模型等等。高职院校的各个专业都是以实践性为主要目标,在各个专业教学中输入数学建模的思想,不但能够增加学生学习数学理论知识的兴趣,而且还可以提高他们对专业知识的理解能力.同时提升他们分析以及解决问题的能力;另外,数学建模思想的引入,改变了原专业课程的授课方式,相当于向专业课程注入了一个新鲜的血液,其教学方式也达到了促进的作用。因此,引入数学建模思想,可以有效地扩大数学的实用性更好地为专业课程服务,达到双赢的目的。
例如:求汽车在公路上做匀速直线运动的路程。
相对于这道题来说,估计每个人都会求解,都知道答案应该为:路程等于速度乘以时间,即s=v*t。
然而,对于这样答案理解的人,也仅仅局限于初中阶段。对于大学阶段,我们还能单一地这样认为吗?汽车在做直线运动过程中,每时每刻的速度都会一样吗?显然,汽车在做直线运动过程中,每时每刻的速度肯定不会一样的,上述问题只是一种理想的状态,它忽略了空气阻力等其他因素,即在求解汽车在公路上做匀速直线运动的路程的模型中,首先假设空气阻力忽略不计,公路上的阻力都是一致的,这样我们才可以得出汽车在公路上做匀速直线运动的数学模型:s=v*t。通过学习数学建模课程,经过这样地处理,既向学生灌输了数学建模的概念,增加了他们学习数学的兴趣,又使得学生对问题的来龙去脉产生了清晰的认识。因此,在高职院校各个专业课中引入数学建模思想,不但使得学生对知识有了更清晰的认识,而且也可以促进专业课程的改革。
(二)对学生的影响
开展数学建模活动,能扩大学生的知识而。数学建模所涉及的内容广泛,用到的知识而宽广,运用涉及的领域在物理学、经济学、管理学等各方面。学生参加数学建模课程的培训,可以学习到多种类型的数学模型,比如:线性规划模型、人口预测模型、层次分析法模型等等。这些模型都是拥有实际的背景,使得学生不仅对问题的实际背景来源有了更深地认识,而且增加了他们课外知识的知识面。其次,建立和解决数学建模模型,一般都会运用到数学编辑器和数学软件;开展数学建模竞赛活动,使得学生对数学编辑器mathtype和数学软件 matlab、lingo产生了了解,熟悉它们基本的运用,扩展他们的模型解决能力。
开展数学建模活动,有利于培养学生的自主创新和实践能力。数学建模是一个富有创造性思维的活动,它不等同于简单的应用题目。对于给予一道数学建模应用题目,它没有绝对统一的答案,这给予了很大的思维空间。将数学建模的方法和思想融入教学课程中,有助于激发学生的原创性冲动,唤醒学生对工作的创造性意识。通过建立模型,学生要从错综复杂的实际问题中,抓住问题的本质,明确问题的要求,将问题与实际联系在一起,做出合理的假设,运用所给问题的条件寻求解决问题的最佳方案和途径,这一过程能充分发挥学生丰富的想象力和创新能力。另一方面,数学建模是科学运用到实践的过程,高职院校当中开展数学建模活动可以有效地培养高职学生的实践能力和动手能力以及分析问题和解决问题的能力,为学生今后从事技术性工作奠定良好的基础。
开展数学建模活动,有助于激发学生学习的兴趣。数学建模的主要目的是把所学到的知识运用到实践中,数学建模的很多题目都与我们自身息息相关的。例如:的c题目,问题针对脑卒中(俗称脑中风)是目前威胁人类生命的严重疾病之一,为了进行疾病的风险评估,对脑卒中高危人群能够及时采取干预措施,也让尚未得病的健康人,或者亚健康人了解自己得脑卒中风险程度,进行自我保护。题目给出了中国某城市各家医院1月至12月的脑卒中发病病例信息以及相应期间当地的逐日气象资料,让我们建立数学模型研究脑中风的发病率与什么因素有关,我们如何预防脑中风的发生。因此,这样的题目贴近生活,很容易激发学生想去进一步研究的兴趣,想知道究竟何种原因产生这种疾病,这种疾病有何危害,如何去预防等等。
开展数学建模竞赛活动,有助于增强学生之间的团结合作精神。在当今世界上,团结合作是每个人应该具备的一种品质。在团结合作过程中,我们可以学会如何与人相处,如何尊重他人,如何宽容他人,如何培养我们的责任心。数学建模竞赛由三个人组成一个小组,在竞赛期间,我们要顺利、完整地完成一道题目,成员间必须拥有合作的意识,以及分工要合理。因此,学生参加数学建模竞赛,不仅可以培养同组队员之间的默契,而且也可以增强学生之间的团结合作精神。
四、结论
数学建模已是当今时代所需要的,数学建模竞赛是全国各个学科大竞赛当中参赛者人数最多的一项比赛。高职院校开设数学建模课程以及参加数学建模竞赛,不但可以提高课程的教学效果和质量,而且还可以有效地提升学生的基本素质,激发他们的潜能。
大学数学建模论文篇三
一、数学建模竞赛概述
竞赛形式组委会规定三名大学生组成一队,参赛学生根据题目要求可以自由地收集、查阅资料,调查研究,使用计算机、互联网和任何软件,在三天时间内分工合作完成一篇包括模型假设、模型建立和模型求解、计算方法的设计和计算机实现、结果的检验和评价、模型的改进等方面的论文(即答卷)。竞赛评奖的主要标准为假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度。
二、赛前学习内容
1.建模基础知识、常用工具软件的使用
(1)掌握数学建模必备的基础知识(如线性代数、高等数学、概率统计等),还有数学建模竞赛中常用的但尚未学过的方法,如灰色预测、回归分析、曲线拟合等常用预测方法,运筹学中若干优化算法。(2)针对数学建模特点,结合典型的问题,重点学习几种常用数学软件(matlab、lindo、lingo、spss)的使用,并且具备一般性开发能力,尤其应注意同一数学模型,有时可以使用多个软件进行求解。
2.常见数学建模的过程及方法
数学建模竞赛是一项非常具有挑战性和创造性的活动,不一定用一些条条框框规定各种实际问题的模型具体如何建立。但一般来说,数学建模主要涉及两个方面:一是将实际问题转化为理论数学模型;二是对理论数学模型进行分析和计算。简而言之,就是建立数学模型来解决各种实际问题的过程。这个过程可以用如图1来表示。
3.数学建模常用算法的设计
建模与计算是数学模型的两大核心。当数学模型建立后,完成相关数学模型的计算就成为解决问题的关键,而所采用算法的好坏将直接影响运算速度的快慢,以及答案的优劣。根据近年来竞赛题型特点及以前参赛获奖学生的心得体会,建议多用数学软件如matlab、lindo、lingo、spss等来设计求解的算法,本文列举了几种常用的算法。(1)参数估计、数据拟合、插值等常用数据处理算法。在数学建模比赛中,通常会遇到海量的数据需要处理,而处理数据的关键就在于正确使用这些算法,通常采用matlab作为运算工具。(2)线性规划、整数规划、多目标规划、二次规划等优化类问题。数学建模竞赛大多数问题是最优化问题,很多时候这些问题可以用数学规划模型进行描述,通常使用lindo、lingo软件求解。(3)图论算法主要包括最短路、网络流、二分图等算法,如果涉及到图论的问题可以用这些方法进行求解。(4)最优化理论的三大非经典算法:神经网络、模拟退火法、遗传算法。这些算法通常是用来解决一些较困难的最优化问题的,主要使用lingo、matlab、spss软件来实现。
三、数学建模竞赛中经常出现的问题
在国家数学建模竞赛中常见如下问题:数学模型最好明确、合理、简洁,但是有些论文不给出明确的模型,只是根据赛题的情况用“凑”的方法给出结果,虽然结果大致是对的,但是没有一般性,不是数学建模的正确思路;有的论文过于简单,该交代的内容省略了,难以看懂;有的队罗列一系列假设或模型,又不作比较、评价,希望碰上“参考答案”或“评阅思路”,反而弄巧成拙;有的论文参考文献不全,或引用他人成果不作交代。另外,吃透题意方面不足,没有抓住和解决主要问题;就事论事,形成数学模型的意识和能力欠缺;对所用方法一知半解,不管具体条件,套用现成的方法,导致错误;对结果的分析不够,怎样符合实际考虑不周;队员之间合作精神差,孤军奋战;依赖心理重,甚至违纪。以上情况都需要各参赛队引起注意,有则改之,无则加勉。
四、竞赛中应重视的问题
1.团队合作是能否获奖的关键
通常在数学建模竞赛时,三个队员的分工要明确,其中一个作为组长,也算是领军人物,主要是负责构建整个问题的框架,并提出有创意的想法,当然其他部分如论文写作、程序设计、计算等也要能参加;第二位是算手,主要进行算法设计及编程计算;最后一位是写手,主要工作在于论文的'写作和润色上。好的论文要让评委一眼就能明了其中的意思,因此写手的工作也需要一定的技巧。当然,要想竞赛时达到这样的标准,需要三个队员在平时训练时多加练习。
2.合理安排竞赛过程中的时间
数学建模竞赛中时间分配很重要,分配不好有可能完不成竞赛论文,有的队伍把问题解答完了,但是发现没有时间进行写作,或者写的很差劲而不能获奖,因此要大致做好安排。一般前两天不要熬的太狠,晚上10:00点前要休息,最后一夜必须熬通宵,否则体力肯定跟不上。之前有些队伍,前两天劲头很足,晚上做到很晚才休息,但是到了第三天晚上就没有精力了,这样一般很难获奖。
3.摘要的撰写很重要
论文的摘要是整篇论文的门面。摘要首先可以强调一下所做问题的重要性和意义,但不要写废话,也不要完全照抄题目的一些话,应该直奔主题,主要写明自己是怎样分析问题,用什么方法解决问题,最重要的结论是什么。在中国的竞赛中,结论很重要,评委肯定会去和标准答案进行比较。如果结论正确一般能得奖,如果不正确,评委可能会继续往下看,也可能会扔在一边,但不写结论的话就一定不会得奖了,这一点和美国竞赛不同,因此要认真把重要结论写在摘要上,如果结论的数据太多,也可只写几个代表性的数据,注明其他数据见论文中何处。
4.论文写作也要规范
数学建模竞赛的论文有一个比较固定的模式。论文大致按照如下形式来写:摘要、问题重述、模型假设和符号说明、问题分析(建立、分析、求解模型)、模型检验、模型的优缺点评价、参考文献、附录等等。另外,在正文中也可以加入一些图和表,附录也可以贴一些算法流程图或比较大的结果或图表等等,近年来为了防止舞弊,组委会要求把算法的源程序也必须放在附录中。
五、结论
全国大学生数学建模竞赛对于大学生而言,是一个富有挑战的竞赛。它不但能培养大学生解决实际问题的能力,同时能培养其创造力、团队合作的能力,而这些能力将会成为参赛学生以后成功就业的重要推动力。可以说,一次参赛,终身受益。
大学数学建模论文篇四
数学是一门应用性较强的学科,与实际生活具有紧密的联系,而数学建模主要是指将人们的现实问题演变为学生的数学学习问题的过程中,这种思想在教学过程中的有效应用,有助于培养学生的数学思维能力和创新能力,有效提升数学教学质量。所以对于数学建模思想在大学数学教学过程中应用的探索具有重要意义。
一、建模思想在大学数学教学中应用的重要性
(一)激发学生的学习兴趣
建模思想在大学数学教学中的应用,对于激发学生的数学学习兴趣具有重要作用。文中提到,数学建模主要是指将人们的现实问题演变为学生的数学学习问题的过程中,通过这种教学方式,能够将数学教学过程中的数学理论与学生的具体生活实践有机结合,有利于学生对于数学理论知识的理解和把握,激发了学习兴趣,增加了学习的主动性和积极性,提升了学生解决实际问题的能力。
(二)推进教学改革
在实际教学过程中,大学数学教学越来越注重理论性知识的教学,导致数学教学内容比较抽象,使得学生对数学知识的理解变得越来越困难。但是建模思想在数学教学中的应用,有效破解了这一问题,将抽象的知识融合到解决实际问题中,提升学生对于难点知识的理解,促进学生吸收知识和消化知识。这种教学模式是传统教学方法和教学手段的新突破。并且这种教学模式还打破了传统的大学数学教学模式,对于推进大学数学教学工作的改革具有重要作用。
(三)培养学生的数学能力
一方面利用建模思想进行大学数学教学时,通过将学生的实际生活问题引入到教学之中,可以搭建起学生与数学知识之间的情感共鸣,激发学生探究数学知识的兴趣,使学生主动地融入到课堂教学之中,从而培养学生的探索能力和创新精神。另一方面这种教学模式有利于学生吸收知识,消化知识,提升今后工作或学习中运用所学的数学知识解决实际问题的能力[1]。
二、建模思想在大学数学教学中的应用探索
(一)注重引导学生的自主学习
实际应用建模思想进行大学数学教学工作时,教师要注重引导学生进行自主学习,以提高学生的实际学习质量和效率,培养学生的探索精神和学习意识。当前我国的大学数学教学中主要有微积分、线性代数和概率论以及数理统计等三门主干课程。在实际教学中,教学框架和教学模式比较固定,数学教学概念比较抽象,数学公式的推导比较严谨。所以在应用建模思想进行大学数学教学时,就需要在总体教学框架下,对教学内容进行适当改进,注重对学生自主学习的引导。
(二)注重激发学生的学习兴趣
合理激发学生的学习效果对于促进建模思想在大学数学教学中的应用具有重要作用和意义。在实际教学过程中,教师可以针对学生感兴趣的话题或数学知识点,导入相关的数学知识,以激发学生的学习兴趣。例如:教师在进行大学数学的数学概率及其相关知识的实际教学工作时,可以引入学生比较感兴趣的缘分话题,引导学生进行择偶最佳法则的推导。通过这种教学模式,既能够满足学生的学习兴趣,同时又能够将学生的数学知识应用到实际的生活之中,可以起到事半功倍的教学效果,对于促进建模思想在大学数学教学中的应用具有重要作用。
(三)注重改进教学考核形式
在大学数学教学中应用数学建模思想,教师还应注重对教学考核形式的`改革。当前大学的数学教学考核形式大都采用传统的闭卷考试的考核形式,这种考核方式严重不利于教师对学生整体学习情况的了解,同时也没有突出对学生的实际数学应用能力和解决问题能力的考核。所以在应用建模思想进行大学数学教学时,要注重对教学考核形式的改进。例如:教师在实际教学时可以突出学生的平时成绩考核。教师可以对学生的课堂表现以及对数学问题的探索等进行记录,将其作为学生的考核依据,从而保障教学考核的有效性[2]。建模思想在大学数学教学中的引用,对于激发学生的学习兴趣,提高教学质量和效率具有重要作用。在大学数学教学大学未来发展中,要更加注重对建模思想的应用和探索,促进大学数学教学工作的未来发展。
参考文献:
[1]宋志广.对高校数学建模方法教学策略的研究[j].教育,(2):82.
[2]王洋.如何激发高职院校学生对大学数学的学习兴趣――以数学建模为突破口[j].时代教育,(7):249.
大学数学建模论文篇五
数学建模是指利用数学符号对数学实践问题以公式形式表述出来,再通过相关计算解决实际问题。数学建模可以为学生创设适宜的学习条件,让学生在假设、研究、分析、比对中形成学习结论。教师要借助教学内容展开渗透操作,利用实际问题为学生创设实践机会,根据教法改进渗透建模思想,从而促进建模思想的全面渗透,提升学生的数学核心素养。
一、借助教学内容渗透建模思想
在数学教学过程中,教师要对教材内容进行筛选和剖析,找到文本思维和生本思维的对接点,让学生顺利介入数理讨论学习之中。教师利用教学内容对学生渗透数学建模思想,利用教辅手段创设教学环境,可以有效唤醒学生的数学思维。利用多媒体创设教学情境,运用数学公式进行数学推演操作,都涉及数学建模思想的渗透。因此,教师要积极整合教学内容。借助教学内容渗透建模思想时,教师要结合多种教学调查情况展开相关操作。筛选教学内容时,教师需要观照不同群体学生的不同学力基础。如解读定积分概念时,教师可以通过推导曲边梯形的面积公式,鼓励学生对曲边梯形进行分割、归类、求和、取极限等实际操作,建立定积分数学模型,并让学生在实际操作中完成对物体体积和质量的具体计算。这些数学模型具有广泛性,学生在实践中再遇到类似情境时,也会运用相关模型进行实际操作。推演数学公式时,教师可引入建模思想,让学生参与问题的设计、推演、验证,并利用推演结果反过来解决实际问题,给学生带去全新的学习体验。教师根据教学内容渗透数学建模思想,能够为学生提供更清晰的学习渠道,能够促使学生运用现成的数学模型来解决数学问题,进而加深对知识的理解。
二、利用实际问题渗透建模思想
教师在数学建模教学实施过程中,需要有接轨生活的意识。数学来源于生活,教师结合生活实际问题渗透建模思想,可以有效提升学生的数学概念意识,并使学生在假设、推理、验证过程中形成数学能力。利用生活实际问题渗透数学建模思想,符合学生数学认知成长的`实际需要,教师要结合学生的数学知识掌握情况展开设计,让学生利用已知数学等量关系解决实际问题,这势必能促使学生形成数理认知基础。高职数学教学中,教师不妨鼓励学生展开质疑活动,让学生列举疑惑问题,对这些问题进行整合优化处理,并结合数理知识进行实践探索。这些也属于数学建模思想的渗透。如教学“假设检验”时,教师可让学生展开假设创设,并通过多重操作实践进行检验。另外,教师设计课外作业时,也可渗透数学建模思想,让学生运用建模思想解决实际问题,以提升学生的数学综合素质。数学建模思想不仅是一种数学认知理论,还是一种解决数学问题的方法和措施。学生结合生活实际和学习认知基础展开相关操作,自然能够促进数学基本技能的提升。高职数学具有较强的抽象性,教师要针对学生的学力基础,为学生布设适宜的学习任务。结合学生生活实际提出问题,利用建模思想解决问题,需要关涉很多专业理论,教师应该进行示范操作,让学生有学习的榜样,这样才能提升数学课堂教学效度。
三、借助教法改进渗透建模思想
教师要重视数学学法的传授,增加教学的灵活性、针对性和实践性。由于高职学生学力基础、学习悟性、学习习惯等存在差距,所以教师需要做好学情调查,降低数学学习难度,运用简单通俗的语言解读抽象的数学概念。这样,学生才能听得明白、学得好。渗透建模思想时,教师需要鼓励学生主动参与数理讨论互动,这不仅能引导学生展开质疑、释疑活动,还有利于学生树立数学建模理念,形成良性学习认知。教师打破传统教法束缚,采用先进的计算工具、数学软件、多媒体等教学辅助手段,或者利用网络搜集平台展开教学设计,都可以为学生提供难得的学习契机。高职学生通常拥有一定的信息技术应用能力,教师可借助信息媒体展开教学设计,与学生的生活认知接轨。如翻转课堂的适时介入,便属于数学建模典范设计。多数学生都有智能手机,可以随时随地参与网络信息共享活动,因此,教师应具备信息共享和网络互动意识,为学生布设相关学习任务,让学生在多元互动操作中逐渐达成学习共识,进而建立数理综合认知体系。将数学建模思想渗透到教学过程之中,每一个环节都有可能,教师要做好全面考量,针对学生实际进行科学设计。教师要加强对数学建模思想方法的研究,并将这些方法与学生学习实践相结合,从而调动学生的数理学习思维,提升学生的数学应用品质。总之,高职数学教学中渗透建模思想时,教师需要具备整合意识,对建模资源信息展开搜集整理,对学生学力基础进行全面判断,为建模思想的顺利渗透创造良好条件。数学教学设计应不断更新,教师教学水平也亟待提升,而建模思想的全面渗透,给教师的教学带来了全新契机。教师要根据教学实际展开创新设计,有效提升数学课堂教学效率。
参考文献:
[1]李建杰.数学建模思想与高职数学教学[j].河北师范大学学报,2013(06).
[2]刘学才.高职数学建模教学的现状及对策[j].湖北职业技术学院学报,(07).
大学数学建模论文篇六
长期以来,我国的数学教学中一直普遍存在着重结论而轻过程、重形式而轻内容、重解法而轻应用等弊端,不注重学生数学能力和素质的培养;过分强调对定义、定理、法则、公式等知识的灌输与讲授,不注重这些知识的应用,割断了理论与实际的联系,造成学与用的严重脱节,致使在我们的数学教育体制下培养出来的学生的能力结构都形成了一种严重的病态,主要表现在:数学理论知识掌握得还可以,但应用知识的能力很差,不能学以致用,缺乏创造力和解决实际问题的能力,这些问题使我们的学生在走向工作岗位时上手速度慢,面对新的数学问题时束手无策,不能将所学的知识灵活运用到实际中去。显然,这种教育体制和理念与现代教育理念是背道而驰的,是必须抛弃的。开展数学建模教学或数学建模竞赛,能够培养学生各方面的综合能力,提高学生的综合素质,对于当前数学教育教学改革有着极为重要的现实意义。
1数学建模能够丰富和优化学生的知识结构,开拓学生的视野
数学建模所涉及到的许多问题都超出了学生所学的专业,例如“基金的最佳适用”、“会议筹备”、“地震搜索”等许多建模问题,分别属于不同的学科与专业,为了解决这些问题,学生必须查阅和学习与该问题相关的专业书籍和科技资料,了解这些专业的相关知识,从而软化或削弱了目前教育中僵死的专业界限,使学生掌握宽广而扎实的基础知识,使他们不断拓宽分析问题、解决问题的思路,朝着复合型人才和具备全面综合素质人才的方向发展。
2数学建模可以培养学生利用数学知识解决实际问题的能力
数学建模要求建模者利用自己所掌握的数学知识及对实际问题的理解,通过积极主动的思维,提出适当的假设,并建立相应的数学模型,进而利用恰当的数学方法(现有的或新创造的)求解此模型,并对解做出评价,必要时对模型做出改进。这一过程包括了归纳、整理、推理、深化等活动,因此把数学建模引入课堂教学,必将改变目前数学教学只见定义、定理不见问题背景的局面,必将改变知识僵化、学而不用的局面,从而调动了学生学习的积极性,培养了学生解决实际问题的能力。
3数学建模能够培养学生的创造力、想象力、联想力和洞察力
数学模型来源于客观实际,错综复杂,没有现成的答案和固定的模式,因此学生在建立和求解这类模型时,必须积极动脑,而且常常需要另辟蹊径,在这里,常常会迸发出打破常规、突破传统的思维火花,通过这种实践活动,可以培养学生的创造能力,促使他们在头脑中树立推崇创新、追求创新和以创新为荣的意识。在从实际问题中抽象出数学模型的过程中,须把实际关系转化为数学关系,这要求他们敢于想象和联想,此外他们还要从貌似不同的问题中抓住其本质的和共性的东西,这将培养他们把握问题内在本质的能力,即洞察力,可以说,培养学生的这些能力始终贯穿在数学建模的整个过程。
4数学建模可以培养学生熟练地运用计算机的能力
5数学建模可以增强大学生的适应能力
通过数学建模的学习及竞赛训练,他们不仅受到了现代数学思维及方法的熏陶,更重要的是对不同的实际问题,如何进行分析、推理、概括以及如何利用数学方法与计算机知识,还有各方面的知识综合起来解决它。因此,他们具有较高的素质,无论以后到哪个行业工作,都能很快适应需要。不仅如此,由于建模决不是一件轻而易举的事,需要学生对实际问题进行反复多次的研究、分析、观察和对模型进行反复多次的计算、论证及修改等,整个过程是一个非常艰辛的探索过程,这可以培养学生高度的责任感、坚韧不拔的毅力、遭遇挫折后较强的心理承受能力以及孜孜不倦、精益求精的探索精神,使他们具有良好的心理素质与精神状态。同时数学建模一般都是由几个人组成的团队来完成的,其成功与否,完全取决于大家的密切合作,既要合理分工,又要密切配合,这样又可以培养学生的组织管理能力、协调能力和相互协作的团队精神,这些对他们今后走向工作岗位都是大有裨益的。
此外,数学建模从教育观念、内容、形式和手段都有一定的创新,对数学教学改革有积极的启示意义。首先,数学建模突出了教与学的双主体性关系。教师要根据学生的学习兴趣、能力及特点,不断修正自己的教育内容和方法。学生要对教师所给予的信息有批判性地、创造性地、发展性地能动反映,要在相互讨论、相互启发下寻求更多更好的解答方案。这种双主体的关系是对传统教学方式的根本突破。
其次,数学建模促进了课程体系和教学内容的改革。长期以来,我们的课程设置和教学内容都具有强烈的理科特点:重基础理论、轻实践应用;重传统的经典数学内容、轻离散的数值计算。然而,数学建模所要用到的主要数学方法和数学知识恰好正是被我们长期所忽视的那些内容。因此,这迫使我们调整课程体系和教学内容。比如可增加一些应用型、实践类课程等等;在其余各门课程的教学中,也要尽量注意到使数学理论与应用相结合,增加实际应用方面的内容和例题,从而使教学内容也得到了更新。
再次,数学建模增加了教师对新兴科技知识的传授,拓宽了学生的知识面。这些特点对于目前数学教材中存在的内容陈旧、知识面狭窄及形式呆板等问题,具有借鉴作用。数学建模的试题通常联系新兴的学科,在科学技术迅猛发展的今天,各种新兴学科、边缘学科、交叉学科不断涌现,广博的知识面和对新兴科学技术的追踪能力是获得成功的关键因素之一。
数学建模不仅有利于学生更好的掌握知识、运用知识,也有利于高校的科研和教学,使学生和教师能在平时的学习、工作中自动形成勤于思考的好习惯,数学建模竞赛与学生毕业以后工作时的条件非常相近,是对学生业务、能力和素质的全面培养,特别是开放性思维和创新意识,这项活动的开展有利于学生的全面素质的培养,既丰富、活跃了广大学生的课外生活,也为优秀学员脱颖而出创造了条件。
【参考文献】
[1]颜筱红,粱东颖。高职院校数学建模教学的研究[j].广西教育,2013(2):54,134.
[3]李大潜。中国大学生数学建模竞赛[m].2版。北京:高等教育出版社,2001.
[4]谢金星。2008高教社杯全国大学生数学建模竞赛[j].工程数学学报,2008(25):1-2.
大学数学建模论文篇七
1、海选和优选有机结合借助纸质宣传单、大型讲座等方式进行数学建模竞赛的宣传,对其作用以及影响进行充分的讲解,鼓励校园内的同学来积极的进行参加。倘若想要参与其中的同学人数过多时,毕竟参赛名额是有一定限制的,可以利用面试的方式对其进行筛选。为不打击学生的积极性,在条件允许的情况下,可以尽可能保留更多的参赛者,通过面试成绩把大家划分为正式参赛队和业余参赛队。
2、充分利用现有资源在进行数学建模竞赛组队时,应充分的全面考虑有效利用现有的资源。首先是要掌握不同队伍中不同人员属于什么年级,其次了解她们的每个人学习状况以及所学专业等等,通常来说,同一队伍中的每个人最理想的状态是学习不同专业的,如此一来大家可以做到取长补短,理论知识与实践动手两手抓,一个团队里需要出众的知识更需要过人的文笔。如此一来才能保证队伍的整体实力,力争在建模竞赛中取得好成绩。
3、重点培训在对学生进行赛前相关培训时,在培训的过程中,教师可根据自身的擅长专题,来进行相关内容的讲解,与此同时结合不同队伍的自身特点划设侧重点,同学之间的接受能力也是各不同的,能力强的可以开小灶,没有相关竞赛经验的要进行重点培训,这种因人而异的讲解模式确保不同能力的同学,在培训中的过程中都能够学有所获。
4、合理分工密切合作在参加数学建模竞赛的同学得到竞赛试题之后,老师应该及时帮助学生进行试题分析与指导,根据团队内不同人员的实际情况以及试题的具体内容难易,进行针对性的讲解从而对同学们进行合理分工,确保每个人所负责的部分都是自己相较于其他人而言是最擅长的。值得注意的是,虽然进行分工,但这并不是绝对的分割,而是有侧重的合理分工,彼此之间的密切合作才是核心,毕竟建模竞赛中需要的是团队协作,而不是英雄主义。
5、坚持可持续发展培训师资队伍必须要有新鲜血液不断注入,以老带新最佳的血液注入方式,面对朝气蓬勃的参赛学生,培训师资队伍既要有身经百战经验丰富的老师,也要有跟他们拥有更多共同话题的青年教师。在此期间通过不断的学习,青年教师跟同学们共同成长,从而保证师资队伍的可持续发展。
二、大学生数学建模竞赛组织和管理方式的探索
1、进行课程教学并给出有效的教学计划每个学生的知识储备都有着各自的特点,借助良好的教育对学生们的知识架构进行完善,实现培养出学生强大能力的目标,数学建模对学生来说裨益良多,被视作是大学校园中必备课程之一。但是进行课程开展的时候,要根据不同的培训对象大致分为以下两类:第一、以选修课形式开设数学建模竞赛课程,选修课程所面向的群体为整个学校的所有学生。第二、以必修课的方式开设数学建模竞赛课程,必修课就要有针对性,因为并不是所有的学生都需要学习数学,所以必修课针对的群体应该是数学专业的学生。不同性质的课程在教授上应该有所区分,内容的深浅也要有适当的调整。
2、利用建模教学实现知识与能力双培养有效的教学是获得数学建模竞赛好成绩的最佳途径,但是教学的过程中要注重数学知识与实践能力的均衡共同培养,不能过分的注重知识的灌输,而忽略了建模相关能力的培养,对二者的培养必须要并驾齐驱,如此才能真正的'掌握数学建模的精髓,从而在竞赛中取得良好的成绩。
3、数学建模竞赛队员的筛选数学建模所需要的人才是全方面的人才,除此之外还要对数学建模有足够的兴趣,并且还要有足够多的时间来参加培训。以上述条件为基础,报名之后通过面试的测试,然后再从中筛选出相对优秀的学生组成参赛队伍,在筛选的时候要充分的考虑到团队整体知识的涵盖面,不同人之间所擅长的专业不同为最佳。
4、培训培训工作通常被划分为不同的阶段:首先是初级阶段,这一阶段所注重的是对相关知识的培训。从初等模型、简单优化模型、常微分方程模型等建模的基础知识和方法入手由浅入深;其次是拔高阶段,主要以专家讲座为主,邀请建模专家进行系统的讲解,并结合精典范例进行深入剖析,在扩大学生的知识面和视野的同时提升学生的建模能力。
三、结语
通过以上的一系列论述,我们已经对大学数学建模竞赛的队伍组织及管理方式,有了更加清晰的了解和掌握。大学数学建模竞赛对于大学生来说好处颇多,一方面能够使学生们对学习的数学知识有更深的理解与更为灵活的应用,另一方面,通过竞赛中的组队让大家感受到合作的重要性,为以后步入社会的工作打下基础。希望这篇文章能够对针对数学建模的研究有一定的借鉴作用!
参考文献:
[1]韩成标,贾进涛、高职院校参加数学建模竞赛大有可为[j]、工程数学学报,(8)
[2]全国大学生数学建模竞赛赛题讲评与经验交流会在广西大学举行[j]、数学建模及其应用,(04)
[3]钱方红、基于数学模型解决数学建模竞赛队员选拔和组队问题[j]、信息与电脑:理论版,(3)
[4]肖帆,张兰、高职院校数学建模竞赛培训模式研究[j]、延安职业技术学院学报,2017(2)
大学数学建模论文篇八
大量的应用型技能型人才,有效满足了社会各行各业的用工需求。随着国家对高职教育的重视和不断投入,提高教育的教学质量势在必行[1]。数学建模的核心是以数学模型为基础的实际运用,鉴于数学建模的这种特点,国内高职数学教育逐步把数学建模理念融入到课题教学中,提高学生的应用能力。以数学建模理念的告知书明确教学改革要求学生结合计算机技术,灵活运用数学的思想和方法独立地分析和解决问题,不仅能培养学生的探索精神和创新意识,而且能培养学生团结协作、不怕困难、求实严谨的作风[2]。笔者结合自身的教学工作经验,对基于数学建模理念的高职数学教学改革进行了探索,对教学实践中出现的问题进行了分析梳理,以期为高职数学教学改革提供新思路,推动高职数学教学水平的不断提高,培养出具有良好数学素养和专业技能的新型高职人才。
近年来,随着国内产业结构的不断调整,对于高等职业技术人才需求不断增大,社会对高等职业技术教育寄予厚望。但是传统的高职教育由于专业设置不合理,使用教材落后,实训实践场地不足,培养出的学生动手能力差、专业能力不足,面对社会发展的新形势,高职教育必须进行教学改革,提高学生的职业能力和就业竞争力。高职教育不同于普通本科教育,它有以下几方面的特点。
1人才培养目标不同
高职教育和本科教育人才培养目标不同,高职教育是以技术应用型高技能人才为培养目标,所有的教学课程设计和人才培养体系设计都是基于此目标展开的,高职教育主要是为了向产业发展提供生产、服务、管理等一线工作的高级技术应用型人才,专业能力培养和目标职业匹配度高,所以高职教育教学成果最直接的评价就是毕业生的就业竞争力和上岗后的适应能力。
2两者的教学内容不同
高职教育的教学重点是学生要掌握与实践工作关系较为密切的业务处理能力、动手能力与交流能力,把学生的职业能力建设列为教学重点,课程设计专业性强,一旦就业能为企业创造明显的效益,高职教育各专业课程差别较大。
3生源情况不同
在当前的教育教学体系下,高职教育的生源普遍较差,大多是没有希望考上大学,转而进入高职学习,希望通过掌握一定的技术来实现就业,所以高职学生的基础知识普遍较差,学习兴趣不高。数学建模给高职数学教学改革开辟了新思路,数学建模为数学理论学习和工程实践应用搭建了桥梁,在工学结合的基本原则下,采取数学建模教学理念,培养学生的数学素养及动手应用能力是一个非常有效的手段[3]。
1数学建模的概念数学建模是将数学理论和现实问题相结合的一门科学,它将实际问题抽象、归纳成为相应的数学模型,在此基础上应用数学概念、数学定理、数学方法等手段研究处理实际问题,从定性或者定理的角度给出科学的结果[4]。数学建模的发展为数学知识的应用提供了途径,对于现实中的特点问题,可以用数学语言来描述其内在规律和问题,运用数学研究的成果,结合计算机专业软件,通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,转化成为数学问题,借助数学思想建立起数学模型,从而解决实际问题。2基于数学建模思想的教学理念基于数学建模的这种学科特点,可以把数学知识应用化,因此,基于数学建模思想的教学理念可以概括为三个层次:首先,确立提高学生数学应用能力为目标,以提高学生数学学习兴趣为手段,以学习数学建模为途径;其次,结合教学内容,开发相应的数学建模案例,因地制宜、因生制宜,根据专业不同编写相应的校本教材;最后,改进教学方法,创新课堂教学模式,建立课外数学建模学习兴趣小组,带领学生进行数学应用实践活动,鼓励学生参加各种数学建模竞赛[5]。
传统的数学教学模式以教师课堂讲授为中心,学生只能被动的接受,由于学生的基础知识水平不同,掌握新知识的能力也不同,这种没有区分的教学模式教学效果差,往往带来的结果是造成基础差的学生跟不上,对数学感兴趣的学生失去兴趣。基于数学建模理念的高职数学教学改革,是以学生数学应用能力提高为目标,以数学学习兴趣培养为出发点,以数学建模为途径,以教学方式改革为保障,打造高职数学教学改革新模式,全面提高高职教育应用型人才培养水平。
1结合专业特色,突出数学教育的应用性
数学作为高职教育的基础性学科,理论性强,体系性强,对于基础知识薄弱、学习兴趣差的高职生来说感觉难学、枯燥,这是因为高职数学教育没有教会学生如何在专业学习中和以后的工作中如何去用学到的数学知识,学生感觉知识无用自然也就不会主动去学,之所以引入数学建模的思想就是为了让学生利用学到的数学知识去解决实际问题,让学生认识到数学不只是纸面上的写写算算,数学可以把实际问题抽象化,变成数学问题,利用数学的研究方法给实际问题进行科学的指导,这样高职数学教育就不再是课堂上的照本宣科,课下的演算作业,将基础数学教育和学生的专业教育相结合,带来学生用数学解决专业问题是大幅度提高学生专业能力的有效途径。
2结合学生能力,因材施教、因地制宜
高职学校的生源不如普通高校,一般学习基础较差,对于专业实训课并不明显,但是在基础学科教学过程特别突出,很多基础知识掌握不牢,甚至一点印象都没有,教师在上课时要充分考虑到这种情况,在课堂授课时给予实时的补充,以助于知识的过渡。因材施教是我国传统的教育思想,在掌握学生知识水平的基础上,教师要根据不同学习层次学生的具体情况,安排教学内容和设置教学目标,对于基础知识水平不高、学习兴趣较差、学习能力较弱的学生要进行课外辅导。高职基础课教育是专业课学习的基础,授课教师要根据学生的专业学习情况和专业特点,把迁移知识运用能力在课堂上结合学生的专业背景进行辅导,高职数学教育不仅仅是为了学习数学,更多的是发挥数学知识在其专业能力培养中的作用。
3培养学生学习兴趣,促进整体教学质量提高
高职学校的学生学习兴趣普遍不高,尤其是对于学了十几年都感觉头痛的数学,要想提高数学的教学质量,首先必须要培养学生的学习兴趣,长期以来学生在数学学习上已经有了根深蒂固的认识,培养数学学习兴趣很难,但是如果学生没有学习兴趣,教师授课内容、授课方式改革都起不了太大的作用,学生对于数学学习兴趣低由于低年级学习时受到的挫败感,因此要让学生建立学习数学的自信心,让他们体验学会数学的成就感,这样才能逐步培养他们的学习兴趣。教师可以采取以点带面的方式,先选择有一定基础的学生,再从全部课程学习中发现表现优秀的个体,组织参加建模竞赛,进行单独赛前加强指导,用这些榜样的力量提高全体同学的学习积极性。数学建模作为提高高职数学教育教学水平的“点”,能够以其趣味性强,带动学生的学习兴趣,促进高职数学教育教学水平的全面提高。
4改革教学及评价方式,建立面向应用的数学教育体系
由于基于数学建模思想的高职数学教学改革打破了以往的课堂教学方式和考核方式,学生面对的不再是期末的一张试卷,而是一个个数学建模案例,需要学生运用本学期学到的数学知识解决实际问题,教师根据学生对案例的理解程度,数学模型运用能力,实际过程分析和解题技巧等多方面给出评价,同时积极评价、鼓励学生的创新思维,并将其纳入到考核体系当中。通过以上各个方面评价的加权作为最后的评价指标。这种以数学知识应用为基础,直接面向应用的高职数学教育模式能极大的激发学生的学习积极性和知识应用能力,符合高职应用型人才培养理念,对提高高职学生的专业能力也打下了坚实的基础。基于数学建模理念的高职数学教学改革是推动高职应用型人才培养体系建设的新举措,也是推动高职基础课教学水平的重要内容,能有效解决学生学习兴趣低,基础知识掌握不牢,数学知识应用能力低等问题,通过“案例驱动法+讨论法”,引导学生再次对课本知识进行思考和应用,有利于培养学生的创新思维和应用能力。引入数学建模理念教学,把课堂学习的主动权交回给学生,既保证了高等数学原有的知识体系的完整,也可以提高教学效率。通过教学方式和评价方式改革,学生的学习主动性增强,也改变了以往对于数学学习的学习态度。高等数学作为高职教育学生必修的基础课,在培养学生基本数学素养上具有重要作用,是理工类专业课程体系的重要组成部分,基于数学建模理念的高职数学教学改革也为同类基础理论课改革提供了新思路和范例。
[1]孙丽.在高职数学教学改革中应注重数学建模思想的渗透[j].科技资讯,20xx(22):188.
大学数学建模论文篇九
为了培养小学生良好的数学学习兴趣,激发他们的数学潜能,教师需要采取必要的措施注重数学建模思想的有效培养,促进学生的全面发展。在制定相关培养策略的过程中,教师应充分考虑小学生的性格特点,提高数学建模思想培养的有效性。基于此,文章将从不同的方面对小学生数学建模思想的培养策略进行初步的探讨。
作为小学数学教学中的重要组成部分,数学建模思想的渗透及相关教学活动的顺利开展,有利于提高复杂数学问题的处理效率,保持数学课堂教学的高效性。要实现这样的发展目标,增强小学生数学建模思想的实际培养效果,需要加强对学生动手实践能力的培养,激发学生的更高兴趣。建模的过程涉及问题表述、求解、必要解释及有效验证,在这四个环节中,可能会存在一定的问题,影响着数学教学计划的实施。因此,教师需要利用学生动手实践能力的作用,实现数学建模思想的有效培养,促使小学生能够在数学建模过程中享受到更多的快乐。比如,在讲解“认识角”知识的过程中,某些学生认为边越长角度也越大。为了使学生能够对其中的知识点有更加正确而全面的认识,教师可以通过在黑板上设置一些能够活动的三角板,让学生亲自动手操作,以此得出角与边长的正确关系,为后续教学计划的实施打下坚实的基础。通过这种教学方法的合理运用,可以激发出学生们在数学建模学习中的更高兴趣,丰富他们的想象力,从而使他们对数学建模思想有一定的了解,在未来学习过程中能够保持良好的`数学建模能力。
通过对小学阶段各种数学实践教学活动实际概况的深入分析,可知构建良好的数学模型有利于加深学生对各知识(福建省莆田市秀屿区东峤前江小学,福建莆田351164)点的深入理解,增强其主动参与数学建模教学活动的积极性。因此,为了使小学生数学建模思想培养能够达到预期的效果,教师需要结合实际的教学内容,建立必要的数学参考模型,提升学生对数学建模思想的整体认知水平。比如,在讲授“异分母分数加减法”这部分知识的过程中,可以设置“0.8千克+300克”“1.6千克-400克”等问题,向学生提问是否可以直接计算,并说出原因。当学生通过对问题的深入思考,总结出“单位不同不能直接计算”的结论后,继续向学生提问小数计算中为什么每一位都要对齐,实现“计数单位统一后才能计算”这一数学模型的构建。在这样的教学过程中,学生可以加深对知识点的理解,实现数学建模思想的有效培养。
加强小学生数学建模思想的有效培养,需要在具体的教学活动开展中注重对数学思想的灵活运用,增强相关模型构建的可靠性,促使学生在长期的数学学习中能够不断提高自身的数学能力,运用各种数学知识处理实际问题。比如,在“角的度量”这部分内容讲解的过程中,为了提高学生对角的分类及画角相关知识点的深入理解,教师可以将所有的学生分为不同的小组,让学生们通过小组讨论的方式,对角的正确分类及如何画角有一定的了解,并让每个小组代表在讲台上演示画角的过程。此时,教师可以通过对多媒体教学设备的合理运用,利用动态化的文字与图片对其中的知识要点进行展示,确保学生们能够在良好的教学模式中提升自身的认知水平,并在不断的思考过程中逐渐形成良好的创造性思维,强化自身的创新意识。比如,在讲解“图形变换”中的轴对称、旋转知识点的过程中,教师应通过对学生的正确引导,运用三角板、圆柱等教学辅助工具,让学生从不同的角度对各种轴对称图形、旋转后得到的图形进行深入思考,提高自身数学建模过程中的创新能力,从不同的角度深入理解图像变换过程,对这部分内容有更多的了解。因此,教师应注重小学生数学建模思想培养中多方位思考方式的针对性培养,提高学生的创新能力,优化学生的思维方式,全面提升小学数学建模教学水平。
总之,加强小学生数学建模思想培养策略的制定与实施,有利于满足素质教育的更高要求,实现对小学生数学能力的有效锻炼,确保相关的教学计划能够在规定的时间内顺利地完成。与此同时,结合当前小学数学教育教学的实际发展概况,可知灵活运用各种科学的数学建模思想培养策略,有利于满足学生数学建模学习中的多样化需求,为相关教学目标的顺利实现提供可靠的保障。
[1]童小艳.小学数学教学中培养学生建模思想的策略[j].学子(教育新理念),20xx(6).
[2]白宁.先学而后教——小学生数学建模思想培养的捷径[j].数学学习与研究,20xx(16).
大学数学建模论文篇十
随着社会的不断发展和科学技术的进步,数学在现实生活中的应用越来越广泛,尤其是计算机技术的发展及广泛应用,使数学建模思想在解决社会各个领域中的实际问题的应用越来越深入。本文笔者简要谈谈数学建模思想融入大学数学类课程的意义和方法。
所谓数学建模就是指构造数学模型的过程,也就是说用公式、符号和图表等数学语言来刻画和描述一个实际问题,再经过计算、迭代等数学处理得到定量的结果,从而供人们分析、预报、决策与控制。那么数学模型就是利用数学术语对一部分现实世界的描述。数学建模思想是指理论联系实际,将实际的事物抽象成数学模型,然后利用所学的理论来解决问题的一种思想。
在新形势下,传统的数学教学方法已经无法适应现在大学数学教育改革的需求,数学建模思想与大学数学类课程教育融合成为目前高等院校数学教学改革的突破口。
(1)数学知识在各个领域的应用越来越广泛。如今数学知识在各个领域的应用越来越广泛,尤其是在经济学中的应用最为显著。自从1969年创设诺贝尔经济学奖以来,就有不少理论成果来自利用数学工具分析经济问题。事实上,从1969年到20xx年这35年中,一共产生了53位获奖者,其中拥有数学学位的共有19人,所占比例为35.8%;其中拥有理工学位的有9人,所占比例为17%;二者共计占52.8%;其中共有29位诺贝尔经济学奖的获得者是以数学方法为主要的研究方法,约占总人数的63.1%。然而几乎所有的诺贝尔经济学奖获得者都运用了数学方法来研究经济学理论。除了在经济领域,数学建模思想也广泛应用于生物医学,包括超声波、电磁诊断等方面。同时数学建模还将数学与生物学融合进了基因科学,例如基因表达的定型、基因组测序、基因分类等等,在生物学领域需要建立大规模的模拟以及复杂的数学模型。可见数学建模思想的应用是非常广泛的,并对其他领域的发展起着重要的推动作用。
(2)有利于激发学生的学习热情,丰富大学数学课程。一般的数学课,通常只是重视理论知识的讲解和传授,对知识点的推理和思想方法的分析较少。而且多数学生为了应付考试,也只是以“类型题”的方式去复习知识点。这样的方式虽然能够让学生掌握一部分数学知识,可是却不能提高学生的数学素质,不能提高学生对大学数学的学习兴趣。而数学建模思想运用数学知识来解决生活中的实际问题,这样就使数学活了起来,而不是死的理论知识。运用数学建模思想能够让学生在数学中感悟生活,在生活中体会数学的价值,更容易吸引学生的学习兴趣。而兴趣是学习最有效的动力,让学生主动参与学习而非被动学习,取得的教学效果会更好。
(3)是加强数学教学改革,适应时代发展的需要。在大学数学教学活动中,许多学生常常陷入这样的困惑之中:花费了大量的精力,做了很多习题,但是却感受不到数学的作用和价值。而教师在教学中也总是告诉学生数学是一门很有用的课程,但是却举不出现实的例子。并且传统的教学方式也只是教会学生掌握简单的理论知识,并不能提高学生的数学素养和数学意识。而将数学建模思想融入到大学的数学类课程之中就能很好地解决这些问题。因为将数学建模思想运用到数学类课程中,就能够让学生在独立思考和探索中感受到数学在现实生活中的实用价值,提高学生运用数学的眼光去观察、分析以及表示各种事物的空间关系、数量关系和数学信息的能力,提高学生的创造能力和创新意识。
(1)教师在教学过程中较少渗入数学建模思想。目前在高校数学教学中数学建模的思想应用得仍然较少,重视程度不够。不少高校的教师在开展大学数学类课程时,仍然只是停留在数学知识的教学方面,并没有对学生进行研究性学习探索。据调查,大多数高校教师对日常的教学工作能够认真完成规定的教学任务,但能够真正创造性地把数学建模思想融入到数学教学任务中的教师较少。大多数高校数学老师都意识到探索式的数学建模教学很重要,但真正将数学建模思想与数学教学融合的尝试和探索却很少。可见多数高校教师虽然明白数学建模思想的重要性,但是由于缺乏足够的数学建模教学的相关知识及经验,在实际教学中数学建模思想仍未得到充分的运用。
(2)开设的有关数学建模的课程和活动较少。虽然数学建模思想得到了越来越广泛的应用,但是在高校中实际开设的有关数学建模的课程并不多,尤其是应用数学、数学实验以及计算机应用等一些需要渗入数学建模思想的课程在实际的教学过程中并没有创造性地运用数学建模思想。另一方面,校内自主开展的有关数学建模竞赛和活动并不多,宣传力度也不够,无法让更多的学生了解数学建模的意义和价值,更无法参与到数学建模活动中去。
(3)学生对数学的态度和观念还未改变,对数学建模缺乏深入的了解。大学数学是一门较为抽象的学科,其概念、定理和性质都不容易掌握,由于其具有一定的难度,所以不少学生对大学数学类课程以及数学建模没有兴趣。并且这些学生在初中和高中阶段也学习数学,但是不少学生是为了应付考试,并没有见识到数学的应用性,觉得数学是一门纯理论的课程,没有实用价值。同时很多学生对数学建模思想的运用并不够了解,不知道如何将数学知识和数学方法应用到实际的生活中去,觉得数学没有用,也没有深入学习的意义。
(1)提高课堂教学质量,创造性地运用数学建模思想。大学的数学类课程主要有“线性代数”、“高等数学”、“运筹学”、“数学建模”、“概率论与数理统计”等,这些课程的核心部分都跟高等数学有关,所以要注重提高数学类课程的教学质量关键就在于高等数学,而要提高高等数学的教学质量就必须在教学过程中创造性地应用数学建模思想。对于主修数学的学生,要加强对计算机软件和语言的学习,系统性地对数学原理进行剖解和分析,合理运用数学知识和数学方法解决社会实际问题。在教学中多引导、启发学生利用对生活问题和科学问题的深入研究,主动结合自己的课程理论知识和数学建模,使数学建模思想融入到学生的整个学习过程中去。对于非数学领域的问题,要启发学生运用计算机软件建模,从而解决不同领域中的数学建模问题。
(2)多开设跟数学建模有关的数学类课程。例如除了开设跟数学建模有关的必修课,还可以开设一些跟数学建模有关的选修课,为其他专业的学生提供接触和了解数学建模思想的机会,为学生拓展知识领域,为其解决该领域的问题提供有效的方法。例如,经济学有关专业的学生就可以通过选修跟数学建模有关的课程,解决其在经济学中遇到的问题,因为很多跟经济学有关的问题仅仅靠经济学的知识是无法解决的,像贷款计算这样的问题就要将数学与经济学联系起来才能解决实际问题。
(3)广泛宣传,让学生了解数学建模的意义和价值。学生是教学过程中的主体,目前,大学数学建模课程开设效果不佳,学生参与度低的主要原因就是学生缺乏对数学建模的深入了解。那么,要提高学生的参与性,促进数学建模思想与大学数学类课程的融合就必须加强宣传,让学生深入了解什么是数学建模。同时,在课堂上就是也要转变传统枯燥的教学方式,多使用启发式教学和探索式教学,吸引学生的学习兴趣,让他们发现数学对社会实际生活的重要作用,转变他们对数学的态度,并引导学生对数学建模和数学课程感兴趣。
(4)转变数学教育理念及教育方式。要转变传统的教育方式,将教学的重点放在数学知识在生活中的应用问题上,而不是将知识与实际生活割裂开来。同时在教学中要注重证明和推理,加强学生对数学方法的掌握注重培养学生对实际问题的逻辑分析、简化、抽象并运用数学语言表达的能力。也就是说教学的重点在于提高学生的数学学习能力和加强数学意识和数学方法的应用,这样才能够培养出具有创新能力和创新意识的人才。
(5)多开展数学建模活动和竞赛,提高学生参与性。在高校内部要多开展跟数学有关的活动和竞赛以及专家讲座等,一方面加强学生对数学建模的认识,另一方面也提高了学生的参与性。通过专家讲座,不仅可以让学生更深入地了解数学建模的价值,也加强了学术交流,提高学生的数学建模应用能力。通过数学建模竞赛,为学生提供展示自己智慧、充分发挥其能力的平台。同时,竞赛也可以让学生在竞赛中发现自己的不足,在交流中不断完善自己的缺陷,拓展学生的思维。而且,在数学建模比赛中,通过让学生探究跟生活实际有关的例子,提高学生对数学建模的兴趣,加强学生对模型应用的直观性认识,促进学校应用型人才的培养。
总之,数学建模思想和高校数学类课程的融合,对于高等数学教学改革具有非常重要的意义。把数学建模思想融入到高等数学教学中,可以更好地提高学生的数学学习能力,提高他们运用数学思想和数学方法分析问题、解决问题和抽象思维的能力。高校教师要加强数学建模思想的应用,让学生初步掌握从实际问题中总结数学内涵的方法,提高学生的数学学习兴趣,为高校学生专业课的学习奠定坚实的数学基础。
大学数学建模论文篇十一
摘要:运筹学与数学建模2门课程联系密切,在运筹学教学中,适当融入数学建模思想,能大幅度提高学生应用数学解决实际问题的能力.从运筹学教学中教学大纲的改革、教学环节的设计等方面进行了探索与实践.教学实践表明,将数学建模思想融入到运筹学教学中能提高课堂教学的效果,锻炼学生的动手实践能力.
关键词:数学建模;运筹学;教学实践
1运筹学教学中融入数学建模思想的必要性
2数学建模思想融入运筹学的教学改革
3运筹学教学中融入数学建模思想的教学改革成效
4结束语
大学数学建模论文篇十二
走美杯”是“走进美妙的数学花园”的简称。
“走进美妙的数学花园”中国青少年数学论坛是中国少年科学院创新素质教育的品牌活动。20xx年,由国际数学家大会组委会、中国数学会、中国教育学会、中国少年科学院成功举办了首届“走进美妙的数学花园”中国少年数学论坛,至今已连续举办七届,全国三十多个城市近三十万人参与了此项活动,在全国青少年中产生了巨大的影响。“走进美妙的数学花园”中国青少年数学论坛活动是一项面对小学三年级至初中二年级学生的综合性数学活动。通过“趣味数学解题技能展示”、“数学建模小论文答辩”、“数学益智游戏”、“团体对抗赛”等一系列内容丰富的活动提高广大中小学生的数学建模意识和数学应用能力,培养他们一种正确的思想方法。著名数学家陈省身先生两次为同学们亲笔题词“数学好玩”和“走进美妙的数学花园”,大大鼓舞了广大青少年攀登数学高峰的热情和信心,使同学们自觉地成为学习的主人,实现从“学数学”到“用数学”过程的转变,从而进一步推动我国数学文化的传播与普及。
“走美”活动已连续举办七届,近30万青少年踊跃参与,已取得良好社会效果,并被写入全国少工委《少先队辅导员工作纲要(试行)》,向全国少年儿童推广。
“走美”作为数学竞赛中的后起之秀,凭借其新颖的考试形式以及较高的竞赛难度取得了非常迅速的发展,近年来在重点中学选拔中引起了广泛的关注。客观地说“走美”一、二等奖对小升初作用非常大,三等奖作用不大。
1、活动对象
全国各地小学三年级至初中二年级学生
2、总成绩计算
总成绩=笔试成绩x70%+数学小论文x30%
笔试获奖率:
一等奖5%,二等奖10%,三等奖15%。
3、笔试时间
每年3月上、中旬。
报名截止时间:每年12月底。
走美杯比赛流程
1、全国组委会下发通知,各地组委会开始组织工作
2、学生到当地组委会报名,填写《报名表》
3、各地组委会将报名学生名单全部汇总至全国组委会
4、全国“走进美妙的数学花园”趣味数学解题技能展示初赛(全国统一笔试)
5、学生撰写数学建模小论文
6、全国组委会公布初赛获奖名单并颁发获奖证书
7、获得初赛一、二、三等奖选手有资格报名参加暑期赴英国剑桥大学数学交流活动。
8、各地按照组委会要求提交数学建模小论文
9、前各地组委会上报参加全国总论坛学生名单
10、全国总论坛和表彰活动
大学数学建模论文篇十三
数学是在实际应用的需求中产生的,要描述一个实际现象可以有很多种方式,为了实际问题描述的更具逻辑性、科学性、客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。数学建模则是架于数学理论和实际问题之间的桥梁,数学模型是对于现实生活中的特定对象,根据其内在的规律,做出一些必要的假设,为了一个特定目的,运用数学工具,得到的一个数学结构,用来解释现实现象,预测未来状况。因此,数学建模就是用数学语言描述实际现象的过程。
大部分的独立院校的数学建模工作纯在一定的问题,主要体现在以下几个方面:(一)学生方面的问题。独立院校的大部分学生的数学功底差,对数学的学习兴趣不大,普遍认为数学的学习对自身的专业的帮助不大。从而更不愿意接触与数学有关的数学建模,对数学建模竞赛的兴趣不大。在独立院校中,参加数学建模竞赛的大都是低年级的学生,而这些学生的数学知识结构还不完整,他们往往参加了一届数学竞赛并未获得奖项后就不愿意再次参加。而高年级的同学忙于其他的就业、考研等压力,无暇参加数学建模竞赛的培训。(二)教资方面的问题。首先。传统的教学是知识为中心、以教师的讲解为中心。数学建模的教学要求教师以学生为中心,培养学生学会学习的能力,发展学生的创新能力和创造能力。独立院校外聘的老师常常对独立院校的学生不够了解,这直接影响到教学成果。其次,数学建模涉及的知识面广,不但包括数学的各个分支,还包含了其他背景的专业知识。独立院校的教师一部分是才从大学毕业不久的研究生,他们对于数学建模教学和竞赛的培训经验不足,科研能力不是很强,对数学的各个分支的把控能力不强,对其他专业的了解不够全面。(三)教学实施方面的问题。大学生数学建模竞赛的目的决不仅仅是获奖,更重要的是通过参加大学生数学建模竞赛活动,促进高校数学教学改革,起到培养全体学生能力、提高全体学生素质的作用。独立院校数学建模教学存在很多的问题。首先,大学数学建模教育在独立院校中的普及性不够。数学建模的宣传力度不大,课程大多开在大一和大二的跨选课,这个时候学生的数学知识结构还不完整。其次就是教材的选取,数学建模的相关教材大都是为了数学建模竞赛而编写的,对于独立院校的学生来说,这些教材的难度系数大,涉及的知识面广,远远超过了学生的接受能力。
(一)让学生了解数学建模,培养学习数学建模的兴趣。数学建模课程的开设有利于培养学生运用数学具体解决实际问题的能力,让学生发现学习数学的用处,改变学生学习数学的态度,提高学习数学的能力,认识到数学的意义和价值。独立院校学生的数学基础虽然比较差,但是学生的动手能力强。学校可以在多开展数学建模的讲座和课程,让学生了解数学建模。同时多向学生宣传数学建模的成果。(二)在教学内容中渗透数学建模思想和方法。1.在日常数学教学中渗透数学建模的思想方法。传统的数学教学重视的是知识的培养和传输,而忽视的是实际应用能力。教师的教学目标是使学生掌握数学理论知识。一般的教学方法是:教师引入相关的的基本概念,证明定理,推导公式,列举例题,学生记住公式,套用公式,掌握解题方法与技巧。学生往往学习了不少的纯粹的数学理论知识,却不知道如何应用到实际问题中。数学建模课程与传统数学课程相比差别较大,学校开设的数学建模跨选课及数学建模培训班,对培养学生观察能力、分析能力、想象力、逻辑能力、解决实际问题的能力起到了很好的作用。由于学校开设的数学建模课程大多是选修课程,课时较少,参选的学生也有限,数学建模的作用不能很好的向学生传输。高等数学中的很多内容都与数学建模的思想有关,因此,在大学数学课程的教学过程中,教师应有意识地结合传统的数学课程的特点,将数学建模的思想和内容融入到数学课堂教学中。这样既可以激发学生的学习兴趣,又能很好的将突出数学建模的思想。2.数学建模与专业紧密联系,发挥数学对专业知识的服务作用。数学建模与专业知识的结合,不仅可以让学生认识到数学的重要作用,在专业知识学习中的地位,还可以培养学习数学知识的兴趣,增强数学学习的凝聚力,同时加深对专业知识的理解。通过专业知识作为背景,学生更愿意尝试问题的研究。在学习中遇到的专业问题也可以尝试用数学建模的思想进行解决。这有利于提高学生的综合能力的培养。3.分层次进行数学建模教育。大体说来独立院校的数学建模课程的开设应该分成两个阶段:(1)第一阶段:大学一年级,在这个阶段,大部分学生对数学建模没有了解,这时候适合开设一些数学建模的讲座和活动,让学生了解数学建模。同时,在日常的数学教学中选择简单的应用问题和改变后的数学建模题目,结合自身的专业知识进行讲解,让学生了解数学建模的一般含义。基本方法和步骤,让学生具备初步的建模能力。(2)中级层次:大学二、三年级。在这个阶段,学生基本具备了完整的数学结构,具有了基本的建模能力。这个时候应该开设数学建模专业课程,让学生处理比较复杂的数学建模问题,让学生自己去采集有用的信息,学会提出模型的假设,对数据和信息需进行整理、分析和判断,并模型进行分析和评价,最终完成科技论文。
(一)提高数学教师自身水平。在数学建模教学过程中,教师扮演着重要的角色。教师水平的高低决定着数学建模教学能否达到预期的目的。数学建模的教学,不仅要求教师具备较高的专业水平,还要求教师具备解决实际问题的能力和丰富的数学建模实践经验。而独立院校的教师部分教师是才毕业不久的研究生,缺乏实践经验。这就对独立院校的的数学建模教学工作产生了很大的障碍。为了提高教师的水平,可以多派青年教师进行专业培训学习和学术交流,参加各种学术会议、到名校去做访问学者等等。同时可以多请著名的数学专家教授来到校园做建模学术报告,使师生拓宽视野,增长知识,了解建模的新趋势、新动态。青年教师还需要依据特定的教学内容、教学对象和教学环境对自己的教学工作作出计划、实施和调整以及反思和总结。青年数学教师还必须更新教育理念,改变传统的教学理念。只有不断创新,努力提高自身素质,才能适应新的形势,符合建模发展的要求。(二)选取合适的教材。数学建模教材使用也存在诸多不足之处。绝大部分高校教学建模课程采用的是理工类专业数学建模教材。这些教材主要涵盖的数学模型的难度系数大。而独立院校的学生的基础薄弱,无法接收这些模型。在教学过程中,教师可以将具体的案例或是历年的数学建模题目做为教学内容。通过具体的建模实例,讲解建模的思想和方法。一边讲解,一边让学生分组讨论,提出对问题的新的理解和对魔性的认识,尝试提出新的模型。(三)丰富建模活动。全面开展数学建模活动是数学建模思想的最重要的形式,它既使课内和课外知识相互结合,又可以普及建模知识与提高建模能力结合,可以培养学生利用数学知识分析和解决实际问题的能力,可以有效地提升了学生的数学综合素质。学校可以定期的开展数学建模宣传活动,扩大数学建模的知名度。学校还可以邀请有经验的专家和获奖学生开展建模讲座,提高对数学建模的重视,积极的组织建模活动。实践证明,只有根据独立院校的自身特点和培养目标,对数学建模课程的教学不断进行改革,才能解决独立院校数学建模课程教学的问题,才能真正的让学生喜欢上数学,喜欢上数学建模。
[1]李大潜.将数学建模思想融入数学主干课程[j].中国大学教育.20xx.
[2]贾晓峰等.大学生数学建模竞赛与高等学校数学改革[j].工科数学.20xx:162.
[3]融入数学建模思想的高等数学教学研究[j].科技创新导报.20xx:162.
作者:李双单位:湖北文理学院理工学院
大学数学建模论文篇十四
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型实际问题
一次函数成本、利润、销售收入等
二次函数优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数细胞分裂、生物繁殖等
三角函数测量、交流量、力学问题等
3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的`应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
大学数学建模论文篇十五
摘要:随着现代社会的发展,数学的广泛用途已经无需质疑,他深入到我们生活的方方面面。现阶段,数学建模已经成为应用数学知识解决日常问题的一个重要手段。本文通过简述数学建模的方法与过程,以及应用数学建模解决实际经济问题的应用,展现的了数学学习的重要意义,以及数学在经济问题解决中的重要作用。
关键词:数学;数学建模;经济;应用
经济现象具有多变性,随着经济社会的发展,国际间贸易往来的日趋紧密,日常经济形势受到的影响因素越来越复杂多变。而日常经济生活中所遇到的经济现象同样存在着诸多的变化的影响因素。如何应对这些难以把控的变量,做好风险的预估、成本的核算、进行最大成本的规划,所有这些都可以借助数学知识、应用数学建模为工具进行较为理性的计算,为经济决策、企业规划提供重要的帮助。
一、数学建模
数学建模,其实就是建立数学模型的简称,实际上数学建模可以称之为解决问题的一种思考方法,借助数学工具应用已知的定理定义进行合理的运算,推导出一种理性的结果的过程。数学建模是可以联系数学和外部世界的一个中介和桥梁,在工业设计、经济领域、工程建设等各个方面,运用数学的语言和方法进行问题的求解和推导,实际上,都是一种数学建模的过程。数学建模的主要过程可以总结为如下的框图形式:实际上,数学模型的最终建立是一个反复验证、修改、完善的动态过程,很少能够通过一次过程就建立起完美适合实际问题的数学模型。通过上述过程的多次循环执行:1.模型准备:分析问题,明确建模的目的,统计各种信息数据;2.模型假设:根据建模目的,结合实际对象的特性,对复杂问题进行简化,提取主要因素,提炼精确的数学语言;3.模型建立:根据提炼的主要因素,选择适当的数学工具,建立各个量(变量、常量)间的数学关系,化实际问题为数学语言;4.模型求解:对上述数学关系进行求解(包括解方程、图形分析、逻辑运算等);5.模型分析:将求解结果与实际问题结合,综合分析,找到模型的缺陷和不足,进行数学上的优化,建立稳定模型;6.模型检验:将模型得到的结果与实际情况相验证,检验模型的合理性和适用性。
二、经济问题数学模型的建立
经济类问题因为其特有的特点,可以按照变量的性质分为两类:概率型和确定型。概率型应用于处理具有随机性情况的模型,可以解决类似风险评估、最优产量计算、库存平衡等问题;确定型则可以基于一定的条件与假设,精确的对一种特定情况的结果做出判断,如成本核算、损失评估等。对经济问题的建模计算实际上是一个从经济世界进入数学世界再回到经济世界的过程。建立经济数学模型,需要首先对实际经济问题和情况有一个较为深入的认识,然后通过细致的观察梳理,抽出最为本质的特征性的东西。将原始的复杂的经济问题简化提炼为一个较为理想的自然模型,然后基于这个原始模型应用数学知识建立完整的数学经济模型。
三、建模举例
四、结语
综上所述,我们可以看到,数学建模在经济中的应用可以非常广泛,对很多的决策和工作都可以提供参考和指导,如提高利润、规避风险、降低成本、节省开支等各个方面。上文只提供了一个简单的例子,和初步的介绍,其深入的理念和概念更加值得我们去努力的学习和思考。
大学数学建模论文篇十六
摘要:数学作为很多学科的计算工具,可以说是现代科学的基础,要想利用数学来解决实际问题,首先要建立相应的数学模型,本文在数学建模思想概念和特点的基础上,从计算机软件、实际生活中的应用等方面,对其应用的发展进行了分析,最后从分析问题、建立模型、校验模型三个阶段,对数学建模的方法,进行了深入的研究。
关键词:数学建模;思想;应用;方法;分析
引言
随着自然科学的发展,利用数学等思想来解决实际问题,越来越受到人们的重视,数学作为一门历史悠久的自然科学,是在实际应用的基础上发展起来,但是随着理论研究的深入,现在数学理论已经非常先进,很多理论都无法付诸实践,在这种背景下,如何利用现有的数学理论来解决实际问题,成为了很多专家和学者研究的问题。通过实际的调查发现,要想利用数学来解决实际问题,首先要建立相应的数学模型,将实际的问题转化成数学符号的表达方式,这样才能够通过数学计算,来解决一些实际问题,从某种意义上来说,计算机就是由若干个数学模型组成的,计算机软件之所以能够解决实际问题,就是根据实际应用的需要,建立了一个相应的数学模型,这样才能够让计算机来解决。
1数学建模思想分析
1.1数学建模思想的概念
数学是一门历史悠久的自然科学,在古时候,由于实际应用的需要,人们就已经开始使用数学来解决实际问题,但是受到当时技术条件的限制,数学理论的水平比较低,只是利用数学来进行计数等,随着经济和科技水平的提高,尤其是在工业革命之后,自然科学得到了极大的发展,对于利用自然科学来解决实际问题,也成为了人们研究的重点,在市场经济的推动下,人们将这些理论知识转化成为产品。计算机就是在这种背景下产生的,在数学理论的基础上,将电路的通和不通两种状态,与数学的二进制相结合,这样就能够让计算机来处理实际问题,从本质上来说,这就是数学建模思想的范畴,但是在计算机出现的早期,数学建模的理论还没有形成,随着计算机软件技术的发展,人们逐渐的意识到数学建模的重要性,发现利用数学建模思想,可以解决很多实际的问题,而数学建模的概念,就是将遇到的实际问题,利用特定的数学符号进行描述,这样实际问题就转化为数学问题,可以利用数学的计算方法来解决。
1.2数学建模思想的特点
如何解决实际问题,从有人类文明开始,就成为了人们研究的重点,随着自然科学的发展,出现了很多具体的学科,利用这些不同的学科,可以解决不同的实际问题,而数学就是其中最重要的一门学科,而且是其他学科的基础,如物理学科中,数学就是一个计算的工具,由此可以看出数学的重要性,进入到信息时代后,计算机得到了普及应用,无论是日常生活中还是工作中,计算机都有非常重要的应用,而在信息时代,注重的是解决问题的效率。与其他解决问题的方式相比,数学建模显然更加科学,现在数学建模已经成为了一门独立的学科,很多高校中都开设了这门课程,为了培养学生们利用数学解决实际问题的能力,我国每年都会举办全国性的数学建模大赛,采用开放式的参赛方式,对学生们的数学建模能力进行考验,而大赛的题目,很多都是一些实际问题,对于比赛的结果,每个参赛队伍的建模方式都有一定的差异,其中选出一个最有效的方式成为冠军。由此可以看出,对于一个实际的问题,可以建立多个数学模型进行解决,但是执行的效率具有一定的差异,如有些计算的步骤较少,而有些计算的过程比较简单,而如何评价一个模型的效率,必须从各个方面进行综合的考虑。
2数学建模思想的应用
2.1计算机软件中数学建模思想的应用
通过深入的分析可以知道,计算机之所以能够解决实际问题,很大程度上依赖与计算机软件,而计算机软件自身就是一个或几个数学模型,在软件开发的过程中,首先要进行需求的分析,这其实就是数学建模的第一个环节,对问题进行分析,在了解到问题之后,就要通过计算机语言,对问题进行描述,而计算机语言是人与计算机进行沟通的语言,最终这些语言都要转化成0和1二进制的方式,这样计算机才能够进行具体的计算。由此可以看出,计算机就是依靠数学来解决实际问题,而每个计算机软件,都可以认为是一个数学模型,如在早期的计算机程序设计中,受到当时计算机技术水平的限制,采用的还是低级语言,由于低级语言人们很难理解,因此在程序编写之前,都会先建立一个数学模型,然后将这个模型转化成相应的计算机语言,这样计算机就可以解决实际的问题,由于计算机能够自行计算的特点,只要输入相应的参数后,就可以直接得到结果,不再需要人为的计算。
2.2数学建模思想直接解决实际问题
经过了多年的发展,现在数学建模自身已经非常完善,为了培养我国的数学建模人才,从1992年开始,每年我国都会举办一届全国数学建模大赛,所有的高校学生都可以参加,大赛采用了开放性的参赛方式,通常情况下,对于题目设置的也比较灵活,会有多个题目提供给队员选择,学生可以根据自己的实际情况,来选择一个最适合自己的问题。而数学建模大赛举办的主要目的,就是让学生们掌握如何利用数学理论,来解决实际问题,在学习数学知识的过程中,很多学生会认为,数学与实践的距离很远,学习的都是纯理论的知识,学习的兴趣很低,与一些实践密切相关的学科相比,选择数学专业的学生很少,而数学建模的出现,在很大程度上改善了这种情况,让人们真正的了解数学,并利用数学来解决复杂的问题。受到特殊的历史因素影响,我国自然科学发展的起步较晚,在建国后经历了很长一段时间封,闭发展,与西方发达国家之间的交流比较少,因此对于数学建模等现代科学,研究的时间比较短,导致目前我国很少会利用数学建模来解决实际问题,相比之下,发达国家在很多领域中,经常会用到数学建模的知识,如在企业日常运营中,需要进行市场调研等工作,而对于这些调研工作的处理,在进行之前都会建立一个数学模型,然后按照这个建立的模型来处理。
2.3数学建模思想应用的发展
从本质上来说,数学是在实际应用的基础上,逐渐形成的一门学科,但是受到当时技术水平的限制,虽然人们已经懂得去计算,却并知道自己使用的是数学知识,随着自然科学的发展,对数学的应用越来越多,而数学自身理论的发展速度很快,远远超过了实际应用的范围,同时随着其他学科的发展,数学变成了一种计算的工具,因此数学应用的第一个阶段中,主要是作为一种工具。随着电子计算机的出现,对数学的应用达到了一个极限,人们在数学和物理的基础上,制作出了能够自动计算的机器,在计算机出现的早期,受到性能和体积上的限制,只能进行一些简单的数学计算,还不能解决实际的问题,但是计算机语言和软件技术的.发展,使其在很多领域得到了应用,在计算的基础上,能够解决很多问题,而软件程序的开发,其实就是建立数学模型的过程,由此可以看出,数学建模思想应用的第二阶段中,主要是以现代计算机等电子设备的方式,来解决实际的问题。
3数学建模思想应用的方法
3.1分析问题
数学模型的应用都是为了解决实际问题,虽然很多问题都可以通过建模的方式来解决,但是并不是所有的问题,因此在遇到实际问题时,首先要对问题进行具体的分析,首先就是看是否能够转化成数学符号,如果能够直接用数学语言来进行描述,那么就可以容易的建立相应的数学模型,但是通过实际的调查发现,随着经济和科技的发展,遇到的问题越来越复杂,其中很多都无法直接用数学语言来描述,这就增加了数学建模的难度。由此可以看出,分析问题作为数学建模的第一个环节,也是最重要的一个环节,如果问题分析的不够具体,那么将无法建立出数学模型,同时对数学模型的建立也具有非常重要的影响,通过实际的调查发现,能够建立高效率的数学模型,都是对问题分析的比较彻底,甚至有些独特的理解,只有这样才能够采用建立一个最简单的模型,而随着数学建模自身的发展,现在建立模型的过程中,对于一个实际的问题,经常需要建立多个模型,这样通过多个数学模型协同来解决一个问题。
3.2数学模型的建立
在分析实际问题后,就要用数学符号来描述要解决的问题,这是建立数学模型的准备环节,要想利用数学来解决实际问题,无论采用哪种方式,都要转化成数学语言,然后才能够通过计算的方式解决,而数学模型的过程,就是在描述完成后,建立相应的数学表达式,通常情况下,在分析问题时,都能够发现某种内在的规律,这个规律是数学建模的基础。如果无法找到这个规律,显然就不能利用现有的一些数学定律,从而建立相应的表达式,最后解决相应的问题,由此可以看出,分析问题的内在规律,是影响数学建模的重要因素,而这个规律的发现,除了在现有的数学知识外,也可以结合其他学科的知识,尤其是现在遇到的问题越来越复杂,对于以往简单的问题,只需要建立一个简单的模型即可解决,而现在复杂的问题,经常需要建立多个模型。因此现在数学建模的难度越来越大,从近些年全国数学建模大赛的题目就可以看出,对于问题的描述越来越模糊,甚至出现了一些历史上的难题,而不同学生根据自己的理解,建立的模型也具有很大的差异,其中一些模型非常新颖,为实际问题的解决提供了良好的参考,目前我国对数学建模的研究有限,尤其是与西方发达国家相比,实践的机会还比较少。
3.3数学模型的校验
在数学模型建立之后,对于这个模型是否能够解决实际问题,具体的执行效率如何,都需要进行校验,因此检验是数学模型建立最后的一个环节,也是非常重要的一个步骤,通常情况下,经过校验都能够发现模型中存在的一些问题,从而进行完善,这样才能够保证严谨性,在实际校验的过程中,要对数学模型的每个部分进行验证,通过输入特定的数据,看得到的结果是否符合理论值,如果没有问题,就说明该模型可以解决实际问题。除了检验模型的准确外,校验还有另外一个作用,就是优化模型,在选定数据后,能够看到数学模型计算的整个过程,这时就可以对具体的细节进行优化,如哪部分可以减少计算的步骤,或者简化计算的方式等,这样可以使整个模型更加科学、合理,由此可以看出,校验工作对于数学模型的建立,具有非常重要的意义。
4结语
通过全文的分析可以知道,对于数学理论的应用,从很久之前就已经开始了,但是数学建模思想的出现,却是随着计算机技术的发展,逐渐形成的一门学科,电子计算机的出现,在很大程度上改变了处理事情的方式,利用计算机软件,只要输入相应的参数,就可以直接得到结果,这正是数学模型完成的任务,只是计算机的出现,省略了中间的计算过程,因此计算机软件的方式,是数学建模思想最好的应用方法,要想解决不同的问题,只要建立不同的模型,然后编写相应的程序。
大学数学建模论文篇十七
信息化时代,数学科学与其他学科交叉融合,使得数学技术变成了一种普适性的关键技术。大学加强数学课程的应用功能,不但可以为学生提供解决问题的思想和方法,而且更为重要的是可以培养学生应用数学科学进行定量化、精确化思维的意识,学会创造性地解决问题的应用能力。数学建模课程将数学的基本原理、现代优化算法以及程序设计知识很好地融合在一起,有助于培养学生综合应用数学知识将现实问题化为数学问题,并进行求解运算的能力,激发学生对解决现实问题的探索欲望,强化数学课程本身的应用功能,凸显数学课程的教育价值,适应大学数学课程以培养学生创新意识为宗旨的教育改革需要。
大学传统的数学主干课程,如高等数学、线性代数、概率论与数理统计在奠定学生的数学基础、培养自学能力以及为后续课程的学习在基础方面发挥奠基作用。但是,这种原有的教学模式重在突出培养学生严格的逻辑思维能力,而对数学的应用重视不够,这使得学生即使掌握了较为高深的数学理论,却并不能将其灵活应用于现实生活解决实际问题,更是缺乏将数学应用于专业研究和军事工程的能力,与创新教育的基本要求差距甚远。教育转型要求数学教学模式从传统的传授知识为主向以培养能力素质为主转变,特别是将数学建模的思想方法融入到数学主干课程之中,在教学过程中引导学生将数学知识内化为学生的应用能力,充分发挥数学建模思想在数学教学过程中的引领作用。数学课程教学改革要适应这一教学模式转型需要,深入探究融入式教学模式的理论与方式,是推进数学教育改革的重要举措。
2.1理清数学建模思想方法与数学主干课程的关系。数学主干课程提供了大学数学的基础理论与基本原理,将数学建模的思想方法有机地融入到数学主干课程中,不但可以有效地提升数学课程的应用功能,而且有利于深化学生对数学本原知识的理解,培养学生的综合应用能力。深入研究数学主干课程的功能定位,主要从课程目标上的一致性、课程内容上的互补性、学习形式上的互促性、功能上的整体优化性等方面,研究数学建模本身所承载的思想、方法与数学主干课程的内容与逻辑关系,阐述数学建模思想方法对提高学生创新能力和对数学教育改革的重要意义,探索开展融入式教学及创新数学课程教学模式的有效途径。
2.2探索融入式教学模式提升数学主干课程应用功能的方式。融入式教学主要有轻度融入、中度融入和完全融入三种方式。根据主干课程的基本特点,对课程体系进行调整,在问题解决过程中安排需要融入的知识体系,按照三种方式融入数学建模的思想与方法。以学生能力训练为主导,在培养深厚的数学基础和严格的逻辑思维能力的基础上,充分发挥数学建模思想方法对学生思维方式的培养功能和引导作用,培养学生敏锐的分析能力、深刻的'归纳演绎能力以及将数学知识应用于工程问题的创新能力。
2.3建立数学建模思想方法融入数学主干课程的评价方式。融入式教学是处于探索中的教学模式,教学成效有待于实践检验。选取开展融入式教学的实验班级,对数学建模思想方法融入主干课程进行教学效果实践验证。设计相应的考察量表,从运用直觉思维深入理解背景知识、符号翻译开展逻辑思维、依托图表理顺数量关系、大胆尝试进行建模求解等多方面对实验课程的教学效果进行检验,深入分析融入式教学模式的成效与不足,为探索有效的教学模式提出改进的对策。
3.1改革课程教学内容,渗透数学建模的思想方法。传统的数学主干课程教学内容,将数学看作严谨的演绎体系,教学过程中着力于对学生传授大学数学的基础知识,而对应用能力的培养却重视不够。使得本应能够发挥应用功能的数学知识则沦为僵死的教条性数学原理,这失去了教学的活力。学生即使掌握了再高深的数学知识,仍难以学会用数学的基本方法解决现实问题。现行的大学数学课程教学内容中,适当地渗透一些应用性比较广泛的数学方法,如微元法、迭代法及最佳逼近等方法,有利于促进学生对数学基础知识的掌握,同时理解数学原理所蕴涵的思想与方法。
这样,在解决实际问题的时候,学生就会有意识地从数学的角度进行思考,尝试建立相应的数学模型并进行求解,拓展了数学知识的深度与广度,提升了学生的数学应用能力四、结语数学建模是数学科学在科技、经济、军事等领域广泛应用的接口,是数学科学转化成科学技术的重要途径。在数学主干课程中融入数学建模的思想与方法,可以推动大学数学教育改革的深入发展,加深学生对相关知识的理解和掌握,有助于从思维方式上培养学生的创新意识与创新能力。
此外,数学建模思想方法融入教学主干课程还涉及到许多问题,比如数学建模与计算技术如何有效结合以进行模拟仿真、融入式教学模式的基本理论、构建新的课程体系等问题,仍将有待于更深入的研究。
【本文地址:http://www.xuefen.com.cn/zuowen/5528394.html】