通过撰写心得体会,我们可以更好地认识自己,在成长的道路上不断提升。写心得体会时,要注意条理清晰,分段明确,以便读者能够更好地理解和吸收。想要写一篇出色的心得体会,不妨阅读以下样例,或许能给你提供一些灵感和借鉴。
数形结合思想心得体会篇一
数学作为一门科学,对于孩子的学习能力和思维发展起着重要的作用。在小学阶段,数学的学习不仅仅是掌握基本的计算技能,更重要的是培养学生的逻辑思维和问题解决的能力。而数形结合作为数学教学中的一种重要方法,能够帮助学生将抽象的数学概念与具体的几何图形相结合,使学习更加生动有趣,提高学生的学习兴趣和效果。
第二段:数学与几何的结合
数学与几何的结合是数形结合的核心内容之一。在小学数学教学中,我们经常会遇到一些抽象的概念,如平行线、垂直线、相似形等。这些概念对于小学生来说是比较难以理解和掌握的。而通过数学与几何的结合,可以将这些抽象的概念转化为具体的几何图形,让学生可以直观地看到、摸到,从而更好地理解和掌握。例如,在学习平行线的概念时,可以通过画两条平行线的几何图形来让学生直观地感受平行线的特征和关系,而不仅仅停留在书本的文字解释上。
第三段:数形结合在问题解决中的应用
数形结合不仅仅局限于数学与几何的结合,还可以应用到问题解决中。通过将问题转化为几何图形,可以帮助学生更好地分析和解决问题。例如,在解决面积和周长的问题时,可以通过将图形进行分解、合并和移动来寻找解决思路,从而更好地解答问题。这种从抽象到具体、从具体到抽象的过程,可以培养学生的逻辑思维和问题解决的能力,提高他们解决问题的效率和准确性。
第四段:数形结合的优势和意义
数形结合作为一种有效的教学方法,有着许多优势和意义。首先,数形结合可以帮助学生从感性到理性的过程中,建立起对数学的兴趣和信心。通过直观的几何图形,学生可以更好地理解和掌握数学的概念和知识,从而更加愿意去学习和探索。其次,数形结合可以培养学生的空间想象力和观察力。几何图形是空间的抽象表达,通过观察和分析图形,学生可以培养自己的空间想象能力,并运用到其他学科中。最后,数形结合可以提高学生的综合能力。数形结合不仅要求学生具备数学思维,还要求他们具备观察、分析和解决问题的能力,这对于培养学生的综合能力和创新能力非常重要。
第五段:总结
数形结合作为小学数学教学中的一种重要方法,对于提高学生的学习兴趣和效果起着重要的作用。通过数形结合,可以帮助学生更好地理解和掌握抽象的数学概念,培养学生的逻辑思维和问题解决的能力,提高他们的学习能力和综合素质。因此,我们应该在教学中充分运用数形结合的方法,让数学学习变得更加生动有趣,让学生在数学中享受到思维的乐趣和成就感。
数形结合思想心得体会篇二
做任何事情都要讲究方法.中学数学中掌握更多科学方法,是教师钻研教材的钥匙,县有积极的指导意义.数与形结合的思想,有助于学生思维的`开拓、创新,提高学生的学习效果,使问题的解决具有独特策略,把复杂问题简单化、抽象问题具体化,达到化难为易的目的.
作者:黄珊作者单位:贵州省平塘县第二中学,贵州,平塘,558300刊名:考试周刊英文刊名:kaoshizhoukan年,卷(期):2009“”(23)分类号:g63关键词:数形结合思想心得体会篇三
初中数学学科是一门理论与实践相结合的学科,其中数形结合是数学教学的一种重要手段。通过数形结合的学习方式,学生能够更加直观地理解数学知识,提高解决问题的能力。在我初中学习的数形结合的过程中,我深刻体会到了它的重要性和优势,并不断提高自己的数学能力。以下是我在数形结合学习中的心得体会。
首先,在课堂上通过数形结合的学习方式,学生能够更加直观地理解数学知识。传统的数学教学往往是以纸上计算为主,对于抽象的数学概念很难让学生形象地理解。而数形结合能够将抽象的数学知识与具体的图形进行对应,使学生能够通过观察图形来理解数学问题,从而更加深入地掌握数学知识。比如在学习平面几何的时候,通过画出图形,我们可以直观地看到几何图形之间的关系,从而更加容易理解定理和推理的过程。这种直观的理解方式,能够从根本上提高学生对数学知识的掌握程度。
其次,数形结合能够帮助学生提高解决问题的能力。在数学中,解决问题是最基本的能力要求。传统的数学教学往往只停留在计算题的层面上,无法培养学生解决实际问题的能力。而数形结合能够通过将数学知识与实际问题相结合,使学生能够从实际问题中提取数学问题,并通过数学知识解决实际问题。这种解决问题的方式,既能够提高学生的实际应用能力,又能够培养学生的逻辑思维能力。在我的学习中,通过数形结合的学习方式,我能够更加有针对性地解决数学问题,从而提高了自己解决问题的能力。
此外,数形结合还能够增强学生的空间想象力。数学是一门与空间相关的学科,而空间想象力是学生进行空间思维的重要能力。数形结合能够通过图形的构建,帮助学生形成直观的空间形象,从而培养学生的空间想象力。在初中数学中,例如在学习三维几何的时候,通过构建立体图形,我们能够清晰地看到图形的特征和关系,从而加深对空间几何的理解。通过数形结合的学习方式,我逐渐发展出了一种较强的空间想象力,使我在进行空间运算和推理时更加得心应手。
值得一提的是,尽管数形结合的学习方式有着上述的优势,但在实际的学习过程中也需要注意一些问题。首先,数形结合是一种辅助手段,不能取而代之。学生在学习数学知识的时候,还是需要掌握纸上计算的方法和技巧。其次,数形结合只是一种辅助工具,学生需要在老师的指导下进行学习和思考。最后,数形结合需要学生具备观察和分析的能力,有时候可能需要较长的时间。因此,学生需要在学习中保持耐心和恒心,不急于求成。
总之,初中数形结合是一种重要的学习方式,通过它能够更加直观地理解数学知识,提高解决问题的能力,并培养学生的空间想象力。在实际的学习中,要充分发挥数形结合的优势,并注意解决问题的全面性。通过不断地实践和学习,相信数形结合能够帮助我在数学学科中取得更好的成绩。
数形结合思想心得体会篇四
近年来,随着数学教育的改革,初中数学教学中逐渐强调数形结合的教学理念。这种教学方式通过将数学与几何形状相结合,让学生在实际问题中学会数学思维的运用。在这种学习氛围中,我深受启发,不仅提高了数学思维的灵活性,也感悟到了数学对人们生活中的实际应用,进一步激发了我对数学的兴趣。
首先,初中数形结合使我更深入地理解和运用数学知识。过去,在学习数学时,很多知识点无法联系实际,让我感觉非常枯燥无味。但是,当数学结合几何形状的时候,我发现数学的抽象概念变得具体了,更容易理解和记忆。例如,在学习三角形的面积时,通过图形的形状和数值的对应关系,可以更加直观地理解面积的计算方法。同时,数形结合还能帮助我解决实际问题。比如,通过绘制平行四边形和三角形的图形,我们可以在一幅示意图上直观地计算房间的面积,为最终买地板的数量提供准确的依据。
其次,初中数形结合培养了我的数学思维能力。在以往的学习中,我更多地倾向于使用记忆而不是思考的方式去完成数学题目。然而,数形结合的学习方法,让我开始形成独立思考的能力。例如,在解决面积问题时,我们需要运用各种几何形状的知识和数学公式,将问题抽象化为数学问题,然后再通过计算得出答案。这个过程就是一次思维的转化,让我从简单的记忆逐渐转向了灵活的思考。
再次,初中数形结合让我感受到数学的应用价值。以前,我对于学习数学产生了一定的怀疑,因为我无法理解数学在生活中的实际用途。但是通过数形结合的学习方式,我开始从实际问题中发现数学的智慧。例如,在解决几何问题时,我们经常遇到一墙之隔两面相对的房间,我们可以借助数学知识和几何形状的对应关系,通过绘制图形计算出墙面的面积,再根据材料价格计算所需材料的花费。这种学习方式让我明白数学不仅仅是一种学科,它在日常生活中无处不在。掌握了数学,我们可以更好地解决实际问题,简化生活中的复杂计算。
最后,初中数形结合的学习方式激发了我对数学的兴趣。通过数学与几何形状结合的学习,我逐渐理解到数学不仅是一个抽象的概念,更是一个让我们理解世界和解决问题的工具。每次在解决问题的过程中,我都能感到满足和成就感,这种成就感进一步激励了我对数学的学习热情。我开始主动探索更多的数学知识和技巧,同时也愿意深入了解数学背后的原理和应用。
总之,初中数形结合的学习方式让我受益匪浅。通过数学与几何形状的结合,我更深入地理解了数学知识,培养了数学思维能力,感受到了数学的应用价值,也激发了我对数学的兴趣。数形结合的教学方法使得数学教学更加生动有趣,给我们带来了更多的启发和思考。我相信,只有通过不断地思考和学习,我们才能真正理解数学的魅力,并将其应用到生活的方方面面。
数形结合思想心得体会篇五
数学一直被认为是一门冷冰冰的科目,需要枯燥的计算和死记硬背。而在我小学的学习过程中,我却发现了一种别样的数学学习方法——数形结合,通过将数学与图形结合起来,让数学更加生动有趣。
首先,通过数形结合,我发现了数学世界的美妙。在学习数学的过程中,我们通常只注重数字和计算,很少注意到数学的几何性质。然而,当我学习了平面图形和立体图形的性质后,我才发现数学世界的奇妙之处。例如,在学习了关于三角形的知识后,我能够在生活中的一些事物中发现到三角形的存在,如房屋的屋顶、信封的角等。这不仅让我对数学产生兴趣,还让我对事物的形状有了更多的认识。
其次,数形结合的学习方法也提高了我的数学思维能力。在过去,我在解决数学问题时通常只会机械地使用公式和算法,缺乏对问题的整体把握和理解。而通过数形结合的学习方法,我开始注重从图形的角度去理解问题。例如,在解决一个几何问题时,我会先通过画图的方式将问题可视化,然后在图形中寻找规律和关系,最后再转化为数学表达式进行计算。这样的思维方式不仅让我解决问题更加快速和准确,还提高了我的逻辑思维能力。
此外,数形结合也让我在数学学习中体验到了更多的乐趣。通过数形结合,我不再把数学看作是一堆枯燥的数字,而是将其与图形相结合,使抽象的概念变得具体有形。例如,在学习平方数时,老师用小正方形拼接成大正方形的方式进行讲解,让我一下子就明白了平方数的意义和性质。这样的学习方式不仅让我对数学感到兴趣,而且激发了我继续探索数学的欲望。
最后,通过数形结合的学习方法,我发现数学与日常生活的联系更加紧密。在日常生活中,我们经常遇到各种测量、计算问题,而这些问题都可以通过数学和图形的知识得到解决。例如,在购物时,我们需要计算折扣后的价格;在做菜时,我们需要计算配料的比例;在旅游时,我们需要测量距离和角度等。通过数形结合,我学习到的数学知识不再是为了应付考试,而是为了更好地处理生活中的问题,这让我对数学的学习更加有动力。
总之,通过数形结合的学习方法,我在小学的数学学习中收获了很多。数学世界的美妙、数学思维能力的提高、乐趣的增加以及与日常生活的联系紧密,这些都让我对数学产生了浓厚的兴趣。希望将来能继续探索数学的奥秘,并将数学与生活更好地结合起来。
数形结合思想心得体会篇六
思想紧密相连于人类的生活和进步,是人类最重要、最复杂的思考方式。思想奠基是培养和提高思想意识的关键环节,而个人的心得体会对于巩固和拓展思想奠基的效果至关重要。在日复一日的思想奠基过程中,我逐渐领悟到了许多道理,进一步加深对思想奠基的理解。在这篇文章中,我将从理论的学习、实践的总结和与他人的交流三个方面,分享我对于结合思想奠基的心得体会。
首先,理论的学习是思想奠基的基石。没有扎实的理论基础,自然而然地就无法进行思想观念的整合和理性的思考。在我的学习中,我始终坚持将理论学习作为思想奠基的第一步。我通过阅读和聆听来自各种学术领域的专家学者的研究成果,系统地学习了哲学、心理学、社会学等相关理论的基本概念和方法论。这个过程不仅扩大了我的知识面,还让我对于思想奠基的意义和方法有了更深刻的理解。经过反复思考和总结,我明白了思想奠基的根本目标在于培养自己的思考能力和思维方式,而理论学习则是这一过程的基石和保障。
接下来,实践的总结是思想奠基的关键环节。真正的思想奠基需要建立在实践基础上,通过实际行动来检验理论知识的有效性和实用性。在我的思想奠基过程中,我充分认识到理论知识和实践应用的紧密联系。我会将学到的理论知识运用到实际场景中,根据实际问题进行分析和解决。通过不断地实践,我逐渐明确了思想奠基对于个人自我认知、道德观念和人际关系等方面的积极影响。在这个过程中,我也体会到了实践经验对于思想奠基的重要性,因为只有在实践中才能真正地认识到问题的本质和复杂性,才能更好地将理论转化为实践成果。
最后,与他人的交流是思想奠基的重要条件。在交流中,与他人分享自己的思考和体会,不仅可以得到更多的反馈和指导,还能够开阔自己的视野和理解。我会积极参与各种思想交流的场合,与他人进行思想碰撞和互动,并通过对话和讨论来拓展自己的思维边界。通过与他人的交流,我不仅加深了对于思想奠基的理解和体会,还学会了倾听、理解和尊重他人的观点。交流不仅是思想奠基的过程,更是思想奠基的结果。
综上所述,结合思想奠基是一个极其重要的环节,通过理论学习、实践的总结和与他人的交流,我在思想奠基上得到了很多的收获。我深刻理解到理论的学习是思想奠基的基石,它是培养思考能力和思维方式的前提;实践的总结是思想奠基的关键环节,只有通过实际行动来检验和应用理论知识,才能真正获得有效的思考和解决问题的能力;与他人的交流是思想奠基的重要条件,通过与他人的互动和对话,我开阔了视野、理解了社会和他人,也加深了对于思想奠基的理解和体会。只有不断地结合理论学习、实践总结和与他人的交流,才能不断提高自己的思想意识和思维水平。
数形结合思想心得体会篇七
教学目标:
在回顾整理的过程中,加深对数形结合思想方法的认识,使学生充分感受数形结合在小学数学学习中的应用。通过具体的观察,发展数形观念,培养数形结合思想,感受学习数学的乐趣。
教学重点:
通过一些数形结合的实例,使学生感受数形结合思想的优越性。
教学难点:
尝试运用数形结合解决问题。
教学过程:
一、谈话导入
课件出示:
师:你可以画画图帮助你解决这个问题。
让学生独立做:
师:哪位同学们到前面来给大家说一说你是怎样做的?
还有不同的做法吗?其他的同学也是这样做的吗?
师:刚才同学们在解决这个问题的时候都是通过画图来解决问题的,这样通过画示意图,来解决问题的'方法,在数学上叫做数形结合,数形结合就是指数和形之间一一对应的关系,数形结合是一种很重量的数学思想方法。
二、回顾整理
师:想一想,我们学习哪些知识的时候运用到了数形结合?
课前,老师已经让大家对这部分知识作了整理下面请把你整理的情况先在小组里交流一下,小组长对同学们整理的情况进行归纳整理并做好记录,比一比看哪个小组合作的好,整理的全面。
三、汇报交流
师:谁愿意代表你们小组把你们交流的结果展示给大家看。学生汇报:
师:你认为这个小组汇报的怎么样?
师小结并及时评价
数形结合思想心得体会篇八
数量关系与现实世界空间形式是数学学科不可分割的一个整体,数与形的结合是数学学科最为突出的特点之一.因此,在数学的学习过程中我们必须逐步树立数形结合的.思想,逐步学会用数形结合的方法来解决数学问题,逐步养成以形想数、以数思形的良好思维品质.可以这样说,没有树立起数形结合思想、不会髓时灵活运用数形结合的方法来解决数学问题的人,一定学不好高中数学.相反,当我们树立起了数形结合的思想,将函数、方程、不等式、复数、向量、解析几何等知识有机地联系起来,并能随时灵活地运用数形结合的方法来解答数学问题,那么必定会使许多数学问题得到最直观、最简捷的解答,有时甚至会得到意想不到的收获.下面举几例加以说明.
作者:杨屯云作者单位:余庆县敖溪中学,贵州,余庆,564403刊名:考试周刊英文刊名:kaoshizhoukan年,卷(期):“”(23)分类号:g63关键词:数形结合思想心得体会篇九
[1]赵景亮.数形结合在小学数学中的应用[j].学周刊,,15:150-151.[2]张晓明.浅谈数形结合思想在小学数学中的应用[j].学周刊,2014,33:208.[3]林颖.寓数于形,以形解数――论小学数学中的数形结合法[j].佳木斯教育学院学报,,06:248+259.[4]杨奇星.小学数学教学中“数形结合”探讨[j].当代教育论坛(教学研究),,02:68-70.[5]杜远堂.数形结合思想在初中数学教学中的应用[j].语数外学习:初中版下旬,2014(07).[6]沈凌云.初中数学教学中数形结合思想的培养[j].数学教学通讯,2014(31).
数形结合思想心得体会篇十
[1]于宏坤.浅谈数形结合思想方法在解题中的应用[j].佳木斯教育学院学报,2012(01).[2]黄刚.初中数形结合思想教学过程探讨[j].曲靖师专学报(z3).[3]肖鸣.浅谈初中数学中数形结合思想的教学[j].厦门教育学院学报,(02).[4]李延奎.数形结合思想在解题中的应用[j].山东教育(27).[5]钱建良,张菁.例说数形结合思想的`应用[j].中学生数学2014(09).[6]胡明星.等价转换一目了然数形结合思想复习指导与能力提升[j].中学理科,(01).
数形结合思想心得体会篇十一
数量关系与现实世界空间形式是数学学科不可分割的一个整体,数与形的结合是数学学科最为突出的特点之一.因此,在数学的学习过程中我们必须逐步树立数形结合的.思想,逐步学会用数形结合的方法来解决数学问题,逐步养成以形想数、以数思形的良好思维品质.可以这样说,没有树立起数形结合思想、不会髓时灵活运用数形结合的方法来解决数学问题的人,一定学不好高中数学.相反,当我们树立起了数形结合的思想,将函数、方程、不等式、复数、向量、解析几何等知识有机地联系起来,并能随时灵活地运用数形结合的方法来解答数学问题,那么必定会使许多数学问题得到最直观、最简捷的解答,有时甚至会得到意想不到的收获.下面举几例加以说明.
作者:杨屯云作者单位:余庆县敖溪中学,贵州,余庆,564403刊名:考试周刊英文刊名:kaoshizhoukan年,卷(期):2009“”(23)分类号:g63关键词:数形结合思想心得体会篇十二
随着教学改革的不断深入,针对数学中如何渗透数学思想方法,在教学界掀起了一个讨论、研究的热潮。数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理解认识,掌握这些思想可以为进一步学习高等数学打下良好的基础。关于数学思想归纳起来大致有如下几种:方程思想、分类思想、数形结合思想、整体思想、函数思想、化归思想等。在数学教学中数形结合思想是应用十分广泛的一种数学思想,在教学中注重数形结合思想的培养,是提高学生数学素质的一个重要途径。
数形结合是运用形和数的相互关系来解决数学问题的思想方法。“形”与“数”是数学中最基本的2个概念,是直观与抽象在数学中的体现,二者的有机结合,是数学魅力之所在。通过形数结合,可将抽象的数学语言与直观的图形相结合,把数量关系转化为图形的性质来研究,思路与方法便在图形中直观地显示出来。以形助教,可显现直观,简化解答,往往起到事半功倍的效果。数形结合的思想方法在中学数学中应用十分广泛。在数学中如何将数式的准确刻划同几何图形的直观描述有机地结合起来显得尤为重要,它对发展学生的创造性思维、完善学生的思维品质起着重要作用。
1数形结合思想的内涵及地位
由于数形结合思想通常是使复杂问题简单化,一般问题特殊化,抽象问题具体化,化复杂为简单,化新知为旧知,化未知为己知,最终使问题得以解决。而任何一个数学问题的提出都是待解决的,在解决的过程当中,经常要用到上述处理方法,这显示数形结合思想在众多数学思想中占据着十分重要的地位。数形结合作为一种常见的数学方法,沟通了代数、三角与几何的内在联系,借助图形直观地研究数学问题,不仅可以加深对数量关系的理解,而且还可以简化运算过程;借助数式关系,还可以简明地抽象出一些几何问题的证明思路。因此,数形结合,常常能为合理解决有关问题提供一条便于接受的思路,它有助于探求问题途径、避繁就简、巧妙地得出结论,是提高解决问题能力的一种重要手段。
在数学教学中,数形结合思想的确立,对培养学生的分析综合能力、空间观察能力、解决实际问题的能力都起着很重要的作用;数形结合思想的形成也是培养学生辩证唯物主义观点中“相互转化观点”的重要途径。因此,数形结合思想是在数学教学中要求学生确立的最基本的数学思想之一。
2数形结合思想在数学教学中的具体表现
2.1利用图形进行数形结合教学
在数学中有些不等式在求解时方法甚繁,而且有可能在转化时考虑不周反而会与题意不符,造成多解或失根。这就要求老师在教学时要注意树立数形结合的思想,要按照把复杂问题化简单的原则培养学生的视图观察能力,以培养其空间概念。
2.2结合几何解题进行数形结合教学
有些较难的几何证明题,学生看到后往往眼花缭乱,无从下手,此时若借助于代数的方法,可较快地寻求到解题途径。
2.3把握好数形结合的尺度
“数”与“形”是数学研究的两类基本对象,也是矛盾的双方,两者相互依存,既对立又统一。在运用数形结合的思想和方法时,如果片面夸大或抑制“数”或“形”中的一方,常常会使我们的'解题陷入困境或导致错误。
总之,正确理解“数”与“形”的相对性,使之有机地结合起来,掌握好度,对顺利解题很有好处。经验告诉我们,当寻找解题思路发生困难时,不妨用数形结合的观点去探索;当解题过程中的复杂运算使人望而生畏时,不妨用数形结合的观点去开辟新径。当然,要灵活运用数形结合的思想方法,就要熟悉某些问题的图形背景,熟悉有关数学式中各参数的几何意义,建立结合图形思考问题的习惯,在学习中不断摸索,积累经验,加深和加强对数形结合思想方法的理解和运用。
3数形结合思想的培养和发展
通过一些例题的讲解使学生首先对数形结合这一重要数学思想方法有一个初步认识,让学生们体会到其实质是将抽象的数学语言与直观图形结合起来,使抽象思维和形象思维结合起来,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观。通过一些刻意准备和具有代表意义的练习使学生们深刻认识到数形结合的妙处。使之看到有的代数问题,通过把数量关系转化为图形性质问题讨论,或者有的几何问题把图形的性质问题转化为数量关系问题来研究,相应问题就会化抽象为直观,化难为易,一些原来看似很难的问题就会迎刃而解,使问题简捷地得以解决。这样学生学习兴趣上来了,积极性也提高了,这时老师可再准备一些习题让学生们有意识地训练,并在日后的教学当中教师要尽量发掘数与形的本质联系,促使学生善于运用数形结合的思想方法去分析问题,解决问题,并要及时地启发学生注意数形结合与转换,让其对数形结合思想达到能够自觉运用的程度,从而提高学生的数学能力。
通过以上几个方面的探讨,我们己领略到数形结合在解题中的美妙所在了。数形结合思想在数学解题中运用很广泛,它蕴含在课本的字里行间之中,渗透在学习新知识和运用知识解决问题的过程之中。这就要求教师平常应加强数形结合的教学,强化化数为形,以形表数的意识,这样不但在解题时,可化难为易,简捷地得出结论,还可以发挥学生的想象力,将原有认识结构进一步提高,是深化思维的一种有效训练,使学生既学到了知识,又提高了能力,同时也増添了学习兴趣,使学习变得轻松愉快。
数形结合思想心得体会篇十三
数形结合是运用数与形的相互关系来解决问题的思想方法。其中“数”在初中阶段,主要包括实数和代数对象及其关系,它们是比较抽象的。而其中的“形”主要是指几何图形,它们是比较形象的。通过数形结合,利用数和形的各自优点,将抽象的数学语言与直观的图形相结合,使问题简单化、特殊化、具体化,从而使问题轻松得到解决。
一、数形结合思想的渗透过程
(一)有效导入数形结合思维
在初中数学课程教学的过程中,如何充分运用数形结合思维,将数形结合的作用有效发挥出来,最主要的就是在教学过程中巧妙导入数形结合思维。许多学生对数形结合的概念不够了解,因此教师在教学时,要自然巧妙导入数形结合思维.如在对正负数加以讲解时,教师可以先画出数轴,举出相应的数字让学生在数轴上进行寻找,从而使学生对数轴上正负数以及零有一个清晰的认知。另外,教师还可以利用数轴,让学生对正负数变化、象限以及绝对值有具体的了解,从而使学生拥有较为扎实的数学基础。
(二)有效展开数形结合思维
一般统计的数学概念是初中数学学习中的重点和难点,学生在学习的过程中往往会存在一些问题。因此教师在对此进行讲解时,可以有效引入数形结合思维,从而来简化求解过程.如在讲解统计的相关知识时,教师可以先画出相应的坐标,一般坐标上的数字即是离散的点,为了有效算出这些离散点的中位数、平均数以及众数,对数据波动的大小产生的方差以及标准差,教师可以充分利用数形结合,让学生对相关知识有一个清楚的认知。
(三)有效升华数形结合思维
一般初中数学教学过程中,函数是教学难点,教师在对函数课程进行讲解时,可以巧妙运用数形结合思维,从而提高教学效率。一般函数与函数图像联系较为紧密,两者相辅相成,因此教师在对函数的相关题型进行讲解时,可以让学生有效分离数与形,对函数图像进行直观观察,使学生有效掌握函数的特点以及主要参数,从而对变量与变量之间的'关系加以把握,从而学会知识的融会贯通。如教师在对三角函数进行讲解时,教师可以引申到解析三角形的应用上面来,从而有效体现出数形结合的优势。同时在对直角三角形进行求解时,教师可以借助多媒体设备来展现出三角函数的图像,从而将三角形函数的求解方法展示给学生,引导学生解决直角三角形的问题。
二、数学结合思想在初中数学知识中的具体展示
(一)有理数中的数学结合思想
数轴的引入是有理数内容体现数形结合思想的力量源泉。对于每一个有理数,数轴上都有唯一确定的点与它对应。因此,两个有理数大小的比较,是通过这两个有理数在数轴上的对应点的位置关系进行的(实数的大小比较也是如此)。相反数、绝对值概念则是通过数轴上的点与原点的位置关系来刻画的。尽管我们学习的是有理数,但要时刻牢记它的形(数轴上的点),通过数形结合的思想方法的运用,帮助初一学生正确理解有理数的性质及其运算法则,相关内容的中考试题,应用数形结合的思想也可顺利得以解决。
例如:有理数的加法与减法教学时,安排下列数学活动:
1.把笔尖放在数轴的原点处,先向正方向移動3个单位长度,在向负方向移动2个单位长度,这时笔尖停在表示“1”的位置上。用数轴和算式可以将以上过程及结果表示。
2.把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?请用数轴和算式表示以上过程及结果。
这样设计教学让学生从“形”上感受有理数的加法运算法则,采用人人都可以动手操作的笔尖在数轴上两次移动的方法,直观感受两次连续运动中,点的运动方向与移动的距离对实际移动效果产生的影响,通过“形与数”的转换,加深学生对有理数加法运算法则的理解。在学生充分自由活动的基础上,用“数形结合”的观点审视在数轴上的连续两次运动,探寻有理数加法的几何解释。由表示两次连续运动结果的点与原点的位置关系,确定两数和的符号;由表示两次连续运动结果的点到原点的距离,确定两数和的绝对值。
(二)方程中隐含的数形结合思想
列方程解应用题的难点是如何根据题意寻找等量关系列出方程,要突破这一难点,往往就要根据题意画出相应的示意图。这里隐含着数形结合的思想方法,例如:行程问题教学中,老师应渗透数形结合的思想方法,依据题意画出相应的示意图,才能帮助学生迅速找出等量关系列出方程,从而突破难点。
(三)不等式中蕴藏着数形结合思想
教材在安排“解一元一次不等式组”的内容时,创设了这样的问题情境“杜鹃花种植问题”,意图是想让学生理解解一元一次不等式与二元一次方程组一样,需同时满足两个约束条件,让学生经历从问题到不等式组的建模过程。为了加深学生对不等式解集的理解,老师要适时地把不等式的解集在数轴上直观地表示出来,使学生形象地看到,不等式有无数多个解,这里蕴藏着数形结合的思想方法。在数轴上表示数是数形结合思想的具体体现,而在数轴上表示数集,则比在数轴上表示数又前进了一步,确定一元一次不等式组的解集时,利用数轴更为有效。
(四)函数及其图像内容凸显了数形结合思想
因为在直角坐标系中,有序实数对(x,y)与点p的一对应,使函数与其图像的数形结合成为必然。一个函数可以用图形来表示,而借助这个图形又可以直观地分析出函数的一些性质和特点,这为数学的研究与应用提供了很大的帮助。
总之,数形结合的思想逐渐深入初中数学教学中去,并且作为一种有效的数学教学方法,可以将抽象问题具体化,将复杂问题简单化,从而在具体数学教学过程中,解决了许多很难理解的、抽象的、复杂的问题,从而激发了学生对数学的学习兴趣,降低了数学学习的难度,提高了学生的分析和解决问题的能力,同时,也提高了初中数学的教学质量,增强了初中数学课堂的教学效果。
参考文献
[1]石丽娟.谈新课标下的初中数学“数形结合”思想[j].试题与研究:教学论坛,(34)
[2]王自英.试析初中数学数形结合思想的运用[j].新课程学习:下旬,2013(09)
【本文地址:http://www.xuefen.com.cn/zuowen/5497913.html】