专业解决问题的策略心得体会(通用14篇)

格式:DOC 上传日期:2023-10-30 22:10:11
专业解决问题的策略心得体会(通用14篇)
时间:2023-10-30 22:10:11     小编:MJ笔神

这次的经历给了我很多启示。在写心得体会时,可以参考一些相关的范文和经典案例。推荐大家阅读以下心得体会范文,或许能够给你带来一些启发。

解决问题的策略心得体会篇一

近日,我参加了一场关于问题解决策略的讲座。本次讲座给我留下了深刻的印象,使我对问题的解决能力有了全新的认识。在讲座中,演讲者分享了一些有效的解决问题的方法和策略,这些方法在现实生活中非常实用。在本文中,我将分享我对此次讲座的体验和感悟。

首先,讲座中演讲者强调了问题意识的重要性。解决问题的第一步是要意识到问题的存在。然而,我们经常会忽视问题,或者选择回避它们,这使得问题往往变得更加严重。演讲者提醒我们要敏锐地观察身边的事物,发现问题并及时解决。这种主动的问题意识可以帮助我们更好地应对困难和挑战。

其次,演讲者介绍了一种系统性的问题解决方法——PDCA循环。PDCA循环是指计划(Plan)、执行(Do)、检查(Check)和行动(Act)的过程。这个过程可以帮助我们有条不紊地解决问题,避免盲目行动或陷入无限循环。在实际操作中,我发现使用PDCA循环方法确实使我更加高效地解决问题。

此外,讲座还探讨了有效的沟通技巧对问题解决的重要性。沟通是人际关系中最重要的一环。在解决问题的过程中,与他人保持良好的沟通可以帮助我们更好地理解问题的本质,并找到合适的解决方案。演讲者强调了倾听的重要性,只有当我们真正倾听他人的观点和意见时,才能更好地解决问题。此外,有效的沟通还要注重语言表达的准确性和清晰度,避免产生误解。

讲座的最后一部分,演讲者分享了一些应对困难和挫折的策略。在现实生活中,我们难免会遇到挑战和困难,这时我们需要坚持和勇气来面对它们。演讲者提醒我们要保持积极的态度,相信自己的能力,并寻求外部的支持和帮助。此外,设置小目标、逐步攻克问题也是应对困难的有效策略。通过这些方法,我们能够更好地克服挫折,继续前进。

此次讲座让我受益匪浅。通过学习问题解决策略,我意识到解决问题并不是一件困难的事情,只要我们保持正确的态度和方法,问题总是可以得到解决的。更重要的是,在解决问题的过程中,我们还可以锻炼自己的思维能力和应对能力,提高自己的综合素质。

总之,问题解决策略的讲座为我打开了一扇思维的窗户。演讲者分享的方法和策略能够帮助我们更好地解决问题,提高工作和生活的效率。我深信,只要我能持续运用所学的策略,将思维转化为行动,问题将不再是困扰,而是催生成长的机遇。

解决问题的策略心得体会篇二

第一段:引言(100字)

问题是生活中不可避免的一部分,无论是个人生活还是工作环境中,我们都会遇到各种各样的问题。如何高效地解决问题成为了一个关键的能力。在解决问题的过程中,我积累了一些心得和策略。在这篇文章中,我将分享这些经验和体会,希望对解决问题有所帮助。

第二段:主题句-培养积极心态和技巧的重要性(250字)

要解决问题,首先要拥有积极的心态。遇到问题时,我们往往会感到沮丧和无助,但这种消极的情绪只会加大问题的复杂性。相反,保持积极的心态,相信自己有能力克服问题,是解决问题的第一步。除了心态,一些技巧和习惯也对问题解决有帮助。例如,要具备积极主动的行动能力,主动找到问题所在并提出解决方法。同时,要保持耐心和冷静,尽量避免冲动和急躁的情绪。通过培养积极的心态和技巧,我们可以更好地解决问题。

第三段:主题句-分析和理解问题的重要性(250字)

在解决问题之前,我们需要深入分析和理解问题的本质。分析问题可以帮助我们找到问题的根源,从而采取恰当的解决策略。首先,我们可以通过提问来进一步剖析问题。问自己“为什么”和“如何”的问题,有助于我们更好地理解问题的背后原因。其次,我们可以采用SWOT分析的方法来评估问题的优势、劣势、机遇和威胁,以便找到解决方案。最后,我们要学会明确问题的范围和目标,将问题分解为更小的部分,以便更好地处理和解决。

第四段:主题句-寻求帮助和合作的力量(250字)

解决问题时,不要害怕寻求帮助或与他人合作。有时候,一个人的力量有限,但与他人携手合作,可以共同攻克困难。在寻求帮助时,我们可以向专业人士咨询,从他们的经验中获得启示和建议。此外,与团队合作也是解决问题的有效策略。不同的人有不同的观点和技巧,通过互相交流和合作,我们可以汲取他人的智慧,提高问题解决的效率和质量。因此,寻求帮助和合作是解决问题不可或缺的力量。

第五段:主题句-总结和展望(350字)

解决问题是一个不断学习和成长的过程。通过积极心态、分析问题、寻求帮助和合作等策略,我深刻体会到解决问题的重要性和方式。我相信,只要我们保持乐观、勇于面对问题并不断尝试,必定能够找到有效的解决方案。未来,我将继续学习和实践这些策略,不断提高自己解决问题的能力。同时,我也希望通过与他人分享我的经验,能够为更多人解决问题提供一些启示和帮助。问题并非不能解决,只要我们用心去思考和行动,就能找到解决的关键。

解决问题的策略心得体会篇三

在生活中,我们时常遇到需要解决问题的情况。作为一种形象的表达方式,画图在我们解决问题时扮演着重要的角色。在我的学习和工作中,我深刻体会到画图解决问题的策略在解决问题中的重要性,大大提高了我的工作效率和解决问题能力。下面我将结合自身体会进行探讨分享。

第二段:画图解决问题的优势

画图是一种形象的表达方式,将抽象的事物转化为形象的可视化的物体,有着形象记忆的优势。因此,通过画图,我们可以更好地理解解决问题的思路和流程。同时,画图可以将信息更加简明化和直观化,让我们能够更好地把握问题的关键点,更迅速地找到解决问题的方案。

第三段:如何画图解决问题

首先,我们需要对问题有一个整体性的认识。其次,我们需要分析问题中的各个因素之间的联系和作用,可利用树形、思维导图,这些工具可以帮助我们捕捉问题的现象和本质。接着,我们需要对解决问题过程中的不同环节做出可视化的表达,比如状态转移图、UML图等。最后,我们需要对解决问题的过程进行总结和分析,得到最终的解决方案。

第四段:画图解决问题在工作中的应用

在工作中,我用画图方法解决了许多问题,比如组织架构变化、产品设计方案等。举例来说,当公司的人力资源布局调整时,我运用组织结构图的方式,将现有的人员情况,包括各个部门的职位和人员的数量和岗位职责清晰地表达了出来,经过调整和优化,现在公司的人员结构更合理和更高效。

第五段:结尾

总结来看,画图解决问题不仅可以让我们更好地认识问题和解决问题的思路,而且在实际应用中也会提高我们的工作效率和解决问题的能力,为我们的工作带来更多的好处。因此,在日常的工作和学习中,我们需要学会画图的策略,并且不断运用,才能更好地利用画图来解决问题,提高自己的生产力和竞争力。

解决问题的策略心得体会篇四

问题无处不在,而我们想要获得成功和进步,就必须学会解决问题。然而,在解决问题的过程中,我们经常会遇到困难和挫折。经过一段时间的实践和思考,我总结出了一些问题解决的策略心得体会,希望能够分享给大家。

第二段:积极态度和冷静思考

在面对问题时,一个积极的态度和冷静的思考是解决问题的关键。首先,要保持积极的态度,相信自己能够找到解决问题的方法,不要被问题所困扰。然后,需要冷静思考,分析问题的原因和可能的解决方法。有时候,我们会因为情绪激动或者焦虑而难以思考清楚,这时就需要停下来,冷静下来,才能找到正确的解决办法。

第三段:寻求他人的帮助和倾听

在解决问题的过程中,寻求他人的帮助和倾听是非常重要的。有时候,我们可能陷入思维定势,无法找到解决问题的方法,这时候他人的建议和观点就会给予我们新的思路。此外,倾听他人的意见也可以让我们更客观地看待问题,从而找到更好的解决办法。然而,在寻求他人的帮助和倾听时,我们要保持谦虚和开放的态度,尊重他人的意见和建议,有时候也需要权衡不同的观点和选择适合自己的解决方法。

第四段:勇于尝试和调整策略

解决问题的过程中,我们要勇于尝试和调整策略。有时候,我们找到了一种解决方法,但是在实践中发现不奏效。这时候,我们不能放弃,而是要继续尝试其他的方法。同时,我们也要灵活调整策略,并适时地做出改变。有时候,问题的解决方法可能并不是一成不变的,而是需要不断调整和改进的。只有勇于尝试和调整策略,我们才能最终找到最合适的解决方法。

第五段:总结和展望

通过实践和思考,我意识到解决问题需要积极态度和冷静思考,需要寻求他人的帮助和倾听,需要勇于尝试和调整策略。这些策略心得帮助我解决了许多问题,使我在工作和生活中取得了进步和成就。然而,我也清楚地意识到问题解决是一个持续的过程,我们应该不断地学习和提高自己的解决问题的能力。相信只要我们坚持不懈地努力,掌握好问题解决的策略心得,就一定能够在未来面对各种问题时应对自如,取得更好的成绩和成功。

解决问题的策略心得体会篇五

近日,我有幸参加了一场题为“问题解决策略”的讲座。这场讲座向我们介绍了一些应对问题的有效方法和策略,让我受益匪浅。下面,我将结合讲座内容,就此展开我的心得体会。

首先,讲座强调了问题解决的重要性。一直以来,我都是一个比较消极的人。遇到问题时,我常常选择逃避,而非面对。然而,这样的态度并不能解决问题,问题只会越积越多。这次讲座中,讲师强调了对问题的重视和积极的解决态度。我意识到,解决问题是每个人都必须面对的现实,而不是逃避。只有正视问题,才能找到解决之道。

其次,讲座为我们提供了一些可行的问题解决策略。讲师分别从认识问题、分析问题和解决问题三个方面进行了详细的阐述。首先,我们需要对问题进行全面的认识。只有对问题有一个全面、准确的了解,我们才能够找到解决问题的方向。而后,我们需要对问题进行深入的分析。通过分析问题的原因和影响,我们才能找到解决问题的具体途径和方法。最后,我们需要积极主动地解决问题。讲师提出了一些解决问题的常用策略,比如思维导图、头脑风暴、满足度矩阵等。这些策略可以帮助我们更加高效地解决问题,给出了明确的行动指南。

此外,讲座还强调了学习的重要性。讲师认为,唯一解决问题的办法就是学习。只有不断地学习才能够提高自己解决问题的能力。学习可以通过阅读书籍、听取讲座、参加培训等方式进行,我们需要时刻保持学习的心态。我深以为然。在工作和生活中,遇到的问题千差万别,学习是我们持续进步的动力。只有不断学习,才能够更好地应对问题,提高自己的综合素质。

另外,讲座中的一项重要观点是团队协作。讲师告诉我们,问题解决不是一个人的事情,而是所有人的事情。一个人的力量是有限的,而团队的力量是无穷的。在团队中,成员可以相互协作、共同努力,找到问题的最佳解决方法。通过团队协作,不仅可以解决问题,还可以培养团队精神、提高沟通能力和跨部门合作的能力。这给我很大启发。在今后的工作和学习中,我会更加重视团队协作,积极与他人合作,共同解决问题,创造更大的价值。

最后,讲座给我带来了一种积极乐观的心态。讲座告诉我,问题并不可怕,只要我们有正确的心态和有效的策略,所有的问题都是可以解决的。这个观点深深地触动了我。从此,我不再害怕问题,而是积极面对,寻找解决之道。问题是成长的催化剂,遇到问题并不可怕,关键是我们如何应对,如何解决。只有心怀乐观,才会在解决问题的过程中发现更多价值。生活中没有过不去的坎,只要心态正确,我们就能够迎难而上,解决难题。

通过这次问题解决策略讲座,我深刻认识到了问题解决的重要性,并且学到了一些实用的方法和策略。学会解决问题,不仅能够提高工作效率,还能够提升个人能力和素质。我将始终保持学习的心态,不断提升自己的问题解决能力,为自己的成长和发展铺就一条坚实的道路。

解决问题的策略心得体会篇六

英国大哲学家怀特海说:“尽管知识是智育的一个主要目标,但是知识的价值还有另一个更模糊、但更伟大、更居支配地位的成分,古人称它为‘智慧’,没有某些知识基础,你不可能聪明;但是你也许轻而易举地获得了知识,却仍然缺乏智慧。”

联想到现在苏教版教材设置的“解决问题策略”单元,也许正是出于这样的初衷吧。希望学生在获得知识的同时生长智慧。

在最新修改的小学数学第五册教材里,也多了这样一个单元《解决问题的策略》。这个单元,所讲的策略是——从条件想起。

卫老师对这一单元经过了慎重深入的思考,继承了过去教材“分析法”解题的精华,又巧妙渗透进新课程的理念。

她鼓励学生将“条件”进行“搭积木”,她意识到,“搭积木”活动时,孩子总是根据自己脑海里的“图像”将自己手中的积木进行灵活组合,于是,同样的一堆积木有时会组合成英式建筑,有时会变成美式庄园,有时是中国长城。而应用题中的“条件”何尝不是学生手中的“积木”?根据最终目标,将这些已有条件进行组合,就会一步步接近目标。而在这里,卫老师通过层次丰富的学习活动,让学生体验到两点:

2:怎样组合,不是随意的,一定是科学的,根据问题的需要来的。

这样才有例题里学生不同方法的产生,因为不同的方法背后,是对条件的“不同组合”。

其实,小学数学学习,显性的数学知识背后往往蕴含着隐性的数学方法与数学思想。很多的数学老师都是以学生作业的正确率来衡量学生知识的掌握度,却忽视了数学知识应带给学生的“数学智慧”。虽然,智慧不能被表述,但是,一个高度自觉的数学教师总能根据知识本身的特点及小学生心智发展水平,确定恰当的渗透要求和教学策略,使学生深切地感受到数学的精神和骨髓,从而生长出自己的数学智慧。卫老师的这节课,正体现了这样的智慧!

解决问题的策略心得体会篇七

教学目标:

1.进一步学会用“替换”“假设”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。

2.在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3.进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学重点:

灵活运用多种解题策略解决稍复杂的实际问题。

教学过程:

一、揭示课题

谈话:前几节课,我们学习了新的解题策略,你能举例说明吗?(请几位学生交流。)今天这节课,老师准备了一些实际问题,请同学们灵活运用我们学过的解题策略来解决这些稍复杂的实际问题。(板书课题)

二、基本练习

学生独立思考后解决问题。

6.1元钱买4分一张和8分一张的邮票共20张,应买4分邮票多少张?

学生独立思考后解决问题。

小结:运用“替换”或“假设”的策略解决问题后都应该及时进行检验。

三、拓展练习

鼓励学生用自己理解的方法来解决这些问题,解答后给学生充分的时间进行交流,教师及时评价学生。

四、全课总结

谈话:今天我们综合运用一些策略来解决实际问题。你们又有什么新的收获吗?

五、布置作业:

解决问题的策略心得体会篇八

教学目标:

1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值。

2、在对解决实际问题过程的不断反思中,感觉“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。

教学重点:让学生体会替换策略的优越性。

教学难点:对替换前后数量关系的把握。

教学过程:

一、创设情景导入:

有谁带了钢笔吗?

老师真是健忘啊,今天忘了带钢笔,谁能借老师用一下?

要不这样吧,有谁愿意让老师用一枝铅笔来换你的钢笔?(学生困惑)

(严肃,让学生觉得真换)

怎么啦?(学生说说)

是啊!

那你倒是说说看希望老师拿几枝铅笔,你才肯和我交换?

为什么?(老师:成交!)

用铅笔换钢笔依据

板书:十枝铅笔---------换(黄色粉笔写)---------一支钢笔(价格相当)

那你说说看为什么非要老师用十支铅笔才肯换呢?

(引导学生说出价钱差不多)

紧接板书:价格相当

十枝铅笔和一支钢笔价格相当,这正是公平交换的前提和依据。

板书:依据

二、温故知新:

课件打开到曹冲称象图片。

(他用什么替换了什么?)

你能联系上面情节讲一讲它替换的依据是什么呢?

(鼓励性评价:真聪明)

石头和大象的重量相同作为替换的依据。

那曹冲是怎样来保证石头和大象的重量相同呢?

板书:一堆石头---------替换----------一头大象(重量相同)

曹冲称象的故事给了我们这样一个启示:替换确实是一种解决问题的行之有效的方法。今天我们就来继续学习解决问题的策略之。。。对,替换。

板书:添上----替换两字

三、协作创新

曹冲是三国时期的人物,谈到三国,大家一定都知道赤壁大战吧。这场著名的战斗主要是在水上进行的。

三国时期的水上兵器比较多,有走舸,艨艟,斗舰和楼船等等。

(简略介绍其中的走舸和楼船。)

题目看不清楚的话,可以拿出老师发给你们的纸,上面也有。

生一起读题

你知道了哪些信息?

这道题目能用“替换”的策略解决吗?

接下来请同学们按照题目下面的要求,来亲身体验一下替换。

同桌合作:

1用什么替换什么?(把题目中替换的双方圈一圈)

2替换的依据是什么?(在题目关键句的下面画一画)

3替换前后的数量关系各是什么?(分别把替换前后的数量关系写一写,也可以用图画或者线段图表示)

小组交流:

知道怎么替换了的同学请举手

你们在替换的时候,有没有想到替换有什么好处啊?

请你在四人小组里面和同学交流一下。看看同学们是不是想的都和你一样?

1替换有什么好处?

2你替换的.方法和其他同学完全一样吗?

结合课件画面讲解,板书

一艘楼船--替换--5艘走舸(每条走舸乘坐的士兵数量是楼船上士兵人数的1/5)

课件展示:

替换前

(10走舸与1楼船横排,出示数量关系:10艘走舸和1艘楼船上一共装了105名士兵)

替换后

(15走舸,出示数量关系:15艘走舸一共装了105名士兵)让学生计算。并讲一讲过程(数量关系)。

(注重:有什么不同的见解):还有其他的替换方法吗?(课件要可以在两种方法间自由切换)

两种方法都讲解完后,让学生说说替换的好处。

四、巩固立新:

俗话说得好:兵马未动,粮草先行。

这个问题还能用替换的策略解决吗?

请学生说说如何替换?

板书:一条运粮船----------替换----------(一辆马车+15袋)

让学生在自备本上用自己喜欢的方式画一画。

实物投影展示替换方法。(最好选文字和图画各一份)

数学是需要简洁和凝练的,看赵老师怎么来做。。。

强调计算的时候是个倒推的过程,是先减还是先除,不能忘记什么?

课件演示思考过程。

同桌之间互相说说:替换前后的数量关系分别是什么?

学生自己列算式解答。

请学生说说替换的好处。

五、博古通今:

学校阅览室为了让大家能阅读三国的故事,进了3套《四大名著》和8本《三国演义》,一共花费了410.4元。每本《三国演义》比每套《四大名著》便宜31.2元。分别求《三国演义》和《四大名著》的单价。

学生独立完成

让一学生上黑板进行板演(力求作出示意图)。

全班交流

引导学生把四大名著换成三国演义

并让学生体会把三国演义换成四大名著虽然也可以计算,但是比较繁琐。

六、自编自演:

大家家里都买过名著没有?小红她也想买些书来阅读,所以她就把平时的零花钱都放到储蓄罐里储存起来。

请大家开动脑筋,根据5角硬币1元硬币储蓄罐三个词语,抽象出一道可以用替换策略解决的应用题。(可适当加上数据条件)

七、课堂小结:

今天我们学习了什么?你准备以后经常使用这个策略吗?说说原因。对于这个策略,你有什么要提醒在座的各位同学的呢?经验也可以。

解决问题的策略心得体会篇九

周    次

9

课次

1

授课课题

解决问题的策略(1)

教    学基本内容

教学目的

和要求

1、让学生在解决问题的过程中体验列举的策略,会用这种策略解决一些相关的实际问题,能通过不遗漏、不重复的列举找到符合要求的所有答案。2、培养学生思考数学问题的条理性、有序性,体会解决数学问题方法的多样性、灵活性,发展学生的思维能力。3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,并获得解决问题的成功体验,提高学好数学的信心。

教学重点

教学方法及手段

有条理,有序的思考问题

学法指导

一一列举

板书设计

执行情况与教学思

周    次

9

课次

2

授课课题

解决问题的策略(2)

教    学基本内容

教科书65页例3及“练一练”练习十一4-5

教学目的

和要求1、让学生继续在解决问题的过程中体验并掌握列举的策略,会用这种策略解决一些稍复杂的实际问题。2、进一步培养学生思考数学问题的条理性、有序性,进一步体会解决数学问题方法的多样性、灵活性,发展学生的思维能力。3、进一步培养学生的探索意识、策略意识和合作意识,让学生进一步感受数学与现实生活的联系。

教学重点及难点

掌握列举的策略,会用这种策略解决一些稍复杂的实际问题。

教学方法及手段

列表整理

学法指导

有序列举

计一、导入新课提问:上节课我们学习了一种新的解决问题的策略,是什么?运用这种策略时要注意什么问题?谈话:这节课我们继续学习用列举的策略来解决数学问题。(板书课题:解决问题的策略)

二、创设情景,讲授新知1、谈话 2、教学例3。题目告诉我们哪些信息?括号里的话是什么意思?要我们解决什么问题?你打算用什么策略来解决这个问题? 3、这道题很适合用列举的策略来解决,我们知道列举要有条理、有顺序。想一想,按怎样的顺序列举会不重复不遗漏?在小组里讨论一下。4、大家都认为,可以按3人间由少到多的顺序来列举,也可以按2人间由少到多的顺序来列举。我们先按3人间由少到多的顺序来列举,为了方便记录和观察,我们可以先画个表格。(出示表格)从只住1个3人间想起,还需要多少个2人间?你是怎样想的?教师板书:板书算式:23-3=20(人),20/2=10(间),并在表里填写1和10。接下去,如果住2个3人间,还需要多少个2人间?请计算出来。教师板书:3*2=6(人),23-6=17(人),17/2=8(间)……1(人)提问:这样2人间怎样安排?符合题目要求吗?谈话:这种情况是不符合要求的,那么这次列举的内容要否定掉。可以在2人间里对应的格子里画“—“,表示否定。(板书:—)谈话:你们会这样列举了吗?接下去应该怎样想?在小组里讨论。注意:组内每个人至少要说一种。指名说答案,教师板书。

6、比较:两次列举有什么相同和不同的地方?你认为哪种列举比较简便?让学生把答句填写完整。

板书设计

执行情况与教学思

周    次

9

课次

3

授课课题

解决问题的策略(3)

教    学基本内容

教科书练习十一6-9

教学目的

和要求

教学重点及难点

具体情境中能用列举法解决实际问题

教学方法及手段

优化方法

学法指导

有序的列举

板书设计

执行

情况

与教学反思

解决问题的策略心得体会篇十

1、放学后,我们两个同时从学校出发,分别向东去新华书店,向西去文具店,

问:这道题和例题有什么不同?

你能根据题意自己独立画线段图整理。

展示学生的线段图,并让学生说说自己是怎样想的。

补充合适的问题后,学生独立解答。交流的时候分别说清楚自己是怎么想的。

2、比较两题,找联系。

说说两题有什么不同?(方向上的不同,一个是相向的,一个是相背的)做手势。

什么相同?(都是求两断之间的距离,可以先分别算出各自的距离再相加,也可以先算出合起来的`速度再算总的路程。……)

1、先画图整理,再解答。

2、读题后问:这道题和刚才的有什么不同?可以怎么想?把你的算式写在作业本上。

3、读题后问:这道题和例题有什么联系?你会解答吗?

解决问题的策略心得体会篇十一

【教材分析】例题用文字叙述,学生一般能读懂题意,但不会利用其中的数量关系思考。而通过课件利用“小杯的容量是大杯的1/3”这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。可见,在学生的经验结构里有替换,不过是潜在的、无意识的,教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。再引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。这是十分重要的教学环节,使例题的教学意义超越解答一道题目,得到一组答案,体会一种思想方法。

【教学目标】

1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤。

2、使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。

【教学重点】

用等量替换的方法实现问题的简单化,并相应的解决问题。

【教学过程】

一、曹冲称象导入

师:同学们,你们听过“曹冲称象”这个故事吧?好,下面我们一起来看曹冲他是怎么称象的。(点击播放)

播放结束后提问:曹冲称象,为什么不直接称大象而要称石头?(生自由回答)

生:当时还没有这种技术。

了不起。其实,他就是运用了“替换”这种方法解决了问题。(板书“替换”)

二、教学例题1

师:大臣们的问题大致是(口述):把720毫升果汁倒入7个杯子,正好都倒满,杯子的容量各是多少毫升?你会列式吗?(课件没有出示杯子)

生自由说。

师:720÷7?真的这么简单?就能难倒聪明的曹冲?看看,大臣们给的到底是什么样的杯子。(出示杯子)。

师:看,这样的杯子,能用720÷7吗?生:不能

师:为什么?

生:(因为杯子的大小不一样)――可以多问几个学生

师:是的,杯子不一样,所以我们就不能直接用720÷7。那如果,装满的都是?

让生答:装满的都是小杯或者都是大杯,我们就可以直接算出每个杯子的容量了。

师:好,我们一起来看看大臣们出的问题具体是:(课件出示:把720毫升果汁倒入6个小杯和1个大杯,正好倒满。小杯的容量是大杯的1/3。大杯和小杯的容量是多少毫升?)。请同学们把题目读一读。

师:你从题目中获得到什么信息?

(720毫升果汁、6个小杯、1个大杯)(师板书)

理解关键句

师:你是怎么理解小杯的容量是大杯的1/3这句话的?(多问几个同学)

(预设之一:把大杯当做标准量,小杯是比较量;反过来那如果把小杯当作标准量(单位一)那大杯的容量是可以说一个大杯的容量相当于3个小杯的容量,也可以说3个小杯的总容量等于1个大杯的容量)

师:其实,也就是一个大杯的容量相当于3个小杯的容量。

独立思考,合作探究

1、师:那你想用什么策略解决这个问题?把你的想法和你的同桌说一说,然后把你的解题过程写出来。

同桌讨论,生列算式的过程中(师巡视指导,并请两位学生上台板演。)

2、师:好,同学们请看:(指着算式)做对了吗?你来解释一下你的解题过程!3、课件演示学生所回答的思路。

师:老师听明白了,你们呢?(演示):他是把1个大杯换成3个小杯,这时候就有??(生:9个小杯)现在就可以先求出??(小杯的容量),然后我们再根据大杯和小杯之间的关系,求出大杯的容量。

4、板书小结:

师:简单的说就是把1个大杯替换成3个小杯,再加上原来的6个小杯,一共就有9个小杯。

5、请学生说第二种方法的思路

师:诶?这组算式呢?对吗?谁知道他的想法?生回答

6、学生讲完第二种方法后,课件演示。(也要问到点子上,比如:你是根据)

师:真不错,是把每三个小杯换成一个大杯,这么一替换,得到的就是(大杯)。就可以求出??(大杯的容量),我们在根据大杯和小杯之间的关系求出小杯的容量。

7、完成板书:

师:是的,我们还可以把6个小杯替换成2个大杯,再加上原来的1个小杯,一共就有3个大杯。

师:你们也都像他们这样解决吗?

检验

师:到底正不正确呢?我们还要对它进行?

生:检验。

师:怎么检验呢?试一试!(留给学生检验的时间)好,谁来说?生:用240+80=720ml所以正确。

师:哦,你是验证了一个大杯和6个小杯的容量等于720毫升这个条件,但是请你们好好思考思考,只符合这个条件就可以了吗?(240÷80=3)

师:所以,我们在检验时不能只考虑一个方面,要从整体去思考。总结:

师:刚才我们用什么策略帮助曹冲解决难题的?生:替换师:对,替换就是解决问题的一种策略。(板书课题:解决问题的策略)

师:那为什么要替换?

生:因为杯子不同,替换了就能变成同一种杯子,问题变得简单了。师:你替换的依据是?

生:小杯是大杯的三分之一。

师小结:是的,解这道题的时,我们先把两种不同的杯子替换成同一种杯子,也就是说把两种不同的量替换成同一种量来解决问题。这样,复杂的问题就简单化了!(板书:两种不同的量替换同一种量)

师:看来呀,替换真是一种有效的解决问题的策略。那咱们继续用“替换”这种策略来解决生活中的一些问题。请看:(出示练习)

三、巩固应用

师:你打算填几?跟你的同桌说一说。学生思考后,指名回答。

从题目中,我们知道小杯的容量是大杯的(),也可以理解为1个大杯的容量等于()个小杯的容量。

如果把小杯替换成大杯,那么8个小杯的容量+2个大杯的容量=()个大杯的容量。

如果把大杯替换成小杯,那么8个小杯的容量+2个大杯的容量=()个小杯的容量

2、有2个大箱和4个小箱,每个小箱的容量是大箱的1/2,1个大箱可以换成()个小箱,4个小箱可以换()个大箱,如果把大箱都换成小箱,则共有()个小箱。

3、买15支铅笔和4支钢笔共50元,5支铅笔可以换2支钢笔,每支铅笔和钢笔各是多少元?(留足够的时间给学生做题,展示学生作业时,要问:这个算式表示什么?算得的又是什么?每个数字各表示什么等。)

四、全课总结:

师:你觉得这种替换的策略神奇吗?你有什么样的感想说一说,和大家分享分享。

师:像这样的问题,我们也可以用替换的策略来解决。只要我们从不同的角度去分析和思考,我想:我们将会有许多不同的收获和发现,韦老师期待着,那我们下一节课再一起来探讨。

解决问题的策略心得体会篇十二

经历四则混合运算、解决问题的策略知识系统复习与整理,基本技能巩固和提高的过程。

进一步认识和掌握四则混合运算、解决问题的策略的计算方法,能解决有关四则混合运算、解决问题的策略的简单实际问题。

培养自主复习与整理知识的良好习惯。发现学习中的问题,提高学习效果,增强学好数学的自信心。

1课时

进一步认识四则混合运算、解决问题的策略,掌握四则混合运算、解决问题的策略的方法,能解决有关四则混合运算、解决问题的策略的简单实际问题。

(一)知识梳理

1、在没有括号的算式里,有乘、除法和加减法,要先算()法,再算()法。

2、算式里有小括号的,要先算()里面的;如果括号里既有乘除法又有加减法,也要先算(),再算()。

3、在一个算式里,既有小括号,又有中括号的,要先算()里面的,再算()里面的。

4、中括号和小括号在算式的作用是()。

(二)题型、方法归纳与典例精讲

1、四则混合运算计算。

例:计算下面各题。

方法归纳:在没有括号的算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。

算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。

在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。

解决实际问题的计算。

方法归纳:先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。

3、解决问题的策略,根据已知条件提问题并解答。

方法归纳:弄清题意,理清题里的数量关系,根据数量关系提出问题并解答。

(三)归纳小结

在没有括号的'算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。

算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。

在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。

先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。

(四)随堂检测

1、计算下面各题。

赵阿姨从12只河蚌里剖出432颗珍珠。

如果每72颗珍珠穿成一条项链,那么赵阿姨剖出的珍珠能穿成多少条项链?

照这样计算,赵阿姨从26只河蚌里能剖出多少棵珍珠?

板书设计

四则混合运算、解决问题的策略

在没有括号的算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。

算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。

在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。

解决问题时,先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。

作业布置

1、甲、乙两列火车分别从东、西两地同时相对开出,5小时后相遇。甲车速度是110千米/时,乙车速度是100千米/时。求东、西两地间的路程。

预习102页有关内容。

解决问题的策略心得体会篇十三

教学内容:课程标准实验教科书苏教版六年级上册教材第89~90页例一、练一练和练习十七第一题。

教学目标:

1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值。

2、在对解决实际问题过程的不断反思中,感觉“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。

教学重点:让学生体会替换策略的优越性。

教学难点:对替换前后数量关系的把握。

教学准备:

课前学生自学《曹冲称象》,并分组,准备大量铅笔约20支。

课前给学生合作要求纸。正面题目1和要求,反面自编题目。

事先写好课题:解决问题的策略

打开课件

教学过程:

一、创设情景导入:

有谁带了钢笔吗?(学生举手)

老师真是健忘啊,今天忘了带钢笔,谁能借老师用一下?

要不这样吧,有谁愿意让老师用一枝铅笔来换你的钢笔?(学生困惑)

(严肃,让学生觉得真换)

怎么啦?(学生说说)

是啊!

那你倒是说说看希望老师拿几枝铅笔,你才肯和我交换?

为什么?(老师:成交!)

用铅笔换钢笔依 据

那你说说看为什么非要老师用十支铅笔才肯换呢?

(引导学生说出价钱差不多)

紧接板书:价格相当

十枝铅笔和一支钢笔价格相当,这正是公平交换的前提和依据。

板书:依据

二、温故知新:

课件打开到曹冲称象图片。

(他用什么替换了什么?)

你能联系上面情节讲一讲它替换的依据是什么呢?

(鼓励性评价:真聪明)

石头和大象的重量相同作为替换的依据。

那曹冲是怎样来保证石头和大象的重量相同呢?

板书:添上----替换两字

三、协作创新

曹冲是三国时期的人物,谈到三国,大家一定都知道赤壁大战吧。这场著名的战斗主要是在水上进行的。

三国时期的水上兵器比较多,有走舸,艨艟,斗舰和楼船等等。

(简略介绍其中的走舸和楼船。)

题目看不清楚的话,可以拿出老师发给你们的纸,上面也有。

生一起读题

你知道了哪些信息?

这道题目能用“替换”的策略解决吗?

接下来请同学们按照题目下面的要求,来亲身体验一下替换。

同桌合作:

1 用什么替换什么? (把题目中替换的双方圈一圈)

2 替换的依据是什么?(在题目关键句的下面画一画)

3 替换前后的数量关系各是什么?(分别把替换前后的数量关系写一写,也可以用图画或者线段图表示)

小组交流:

知道怎么替换了的同学请举手

你们在替换的时候,有没有想到替换有什么好处啊?

请你在四人小组里面和同学交流一下。看看同学们是不是想的都和你一样?

1 替换有什么好处?

2 你替换的方法和其他同学完全一样吗?

结合课件画面讲解,板书

一艘楼船--替换--5艘走舸(每条走舸乘坐的士兵数量是楼船上士兵人数的1/5)

课件展示:

替换前

(10走舸与1楼船横排,出示数量关系:10艘走舸和1艘楼船上一共装了105名士兵)

替换后

(15走舸,出示数量关系:15艘走舸一共装了105名士兵)

让学生计算。并讲一讲过程(数量关系)。

(注重:有什么不同的见解):还有其他的替换方法吗?(课件要可以在两种方法间自由切换)

两种方法都讲解完后,让学生说说替换的好处。

四、巩固立新:

俗话说得好:兵马未动,粮草先行。

这个问题还能用替换的策略解决吗?

请学生说说如何替换?

板书:一条运粮船----------替换----------(一辆马车+15袋)

让学生在自备本上用自己喜欢的方式画一画。

实物投影展示替换方法。(最好选文字和图画各一份)

数学是需要简洁和凝练的,看赵老师怎么来做。。。

强调计算的时候是个倒推的过程,是先减还是先除,不能忘记什么?

课件演示思考过程。

同桌之间互相说说:替换前后的数量关系分别是什么?

学生自己列算式解答。

请学生说说替换的好处。

五、博古通今:

学校阅览室为了让大家能阅读三国的故事,进了3套《四大名著》和8本《三国演义》,一共花费了410.4元。每本《三国演义》比每套《四大名著》便宜31.2元。分别求《三国演义》和《四大名著》的单价。

学生独立完成

让一学生上黑板进行板演(力求作出示意图)。

全班交流

引导学生把四大名著换成三国演义

并让学生体会把三国演义换成四大名著虽然也可以计算,但是比较繁琐。

六、自编自演:

大家家里都买过名著没有?小红她也想买些书来阅读,所以她就把平时的零花钱都放到储蓄罐里储存起来。

请大家开动脑筋,根据 5角硬币 1元硬币 储蓄罐 三个词语,抽象出一道可以用替换策略解决的应用题。(可适当加上数据条件)

七、课堂小结:

今天我们学习了什么?你准备以后经常使用这个策略吗?说说原因。对于这个策略,你有什么要提醒在座的各位同学的呢?经验也可以。

解决问题的策略心得体会篇十四

虽然这是苏教版数学教材五年级下册第七单元所安排的内容,但是孩子在之前的学习过程中早有接触,对于转化这一策略在孩子的认知上不是一张白纸,其实他们已经积累了丰富的用转化策略解决问题的经验,本课与其说是教策略,不如说是对过去学习中形成的认识和经验进行总结和提炼,并上升到策略的高度。为此,在教学过程中我对教材进行了重组与二度开,发促使孩子们在解决问题的过程中整理经验、提升认识,感受策略的价值,增强策略意识。

一、教学例题,感知“转化”

仔细研读教材,我们可以看出解决问题的策略的教学设计了两条线索,一是关于关于解决问题方法的线索,通过“创生方法——使用方法——用好方法——用活方法”,掌握解决问题的策略;二是关于解决问题策略的线索,通过“初步感知——再次感悟——反复体验”,逐渐形成策略。两条线索一明一暗,方法是明线,策略是暗线,两条线平行同步推进且相互交融。因此,在教学新知时我分成了这样三个版块:

第一版块:分数中的转化。我把练习十六第2题的前面两个小题前置,因为这样的题型孩子们并不陌生,他们能很快找到方法,从而解决问题,今天课上再次出现,我的意图是让孩子们认识到策略是在总结方法时提炼出来的,解题策略与解题方法同时存在。

第二版块:面积中的转化。在这个版块的教学中,我是依据例题1的思路按部就班进行活动,学生先是自主探究,找到比较方法与结果,然后再把自己的学习经验在小组中分享交流,使得学生间的思维发生碰撞,从而提升孩子们对于转化这一策略的认识,最后在我的组织下进行交流、梳理、总结。这一过程中,他们领悟的是转化策略的精髓,获得的是勇于创新的品质。

第三版块:周长中的转化。在这个板块中,我既安排了转化后周长不变的习题,又安排了转化后周长不相等的练习,这部分内容是我对教材的二度开发,意在让学生体会到在运用策略时也要仔细观察,用心思考,需要对具体问题具体分析、灵活运用。

二、回顾举例,体验“转化”

为了进一步丰富学生对转化策略的认识,帮助学生从策略的角度进一步体会知识之间的联系,在这里我播放微课,调动孩子们的多种感官,全面感知转化这一策略的奇妙之处。这一环节的设计,有效地建立新旧知识之间联系,大量的学习材料,让学生感受到了转化的应用价值。

三、重组练习,运用“转化”

在练习时,我除了应用教材中的常规题型外,我还设计了这样一条题:2/9×4结果会是多少呢?这条题放在这儿,大多数老师肯定会有疑问:这题放在这里教学有意思吗?后面不是会重点教学吗?其实我是这样想的,一旦我们的孩子走出校园,若干年后他会遗忘大部分的知识与习题,但是你所交给他的学习方法是不会遗忘的,而转化就是我们学习数学的重要方法之一,纵观数学教学,我们总是不停的把新知转化成旧知,帮助孩子理解,便于孩子掌握。我想,这题安排在这儿会给孩子们的认知一个比较大的冲击,会把转化这一策略深深烙在心里。其实这也是国家课程校本化实施的一次小尝试。

【本文地址:http://www.xuefen.com.cn/zuowen/5467558.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档