学习是一种持续发展的过程,我们应该保持不断追求进步的态度。在总结中,可以引用相关数据和事实,增强论述的可信度和权威性。"以下是一些范文供参考,希望能对你的总结写作有所启发。"
分数与除法教学设计及反思篇一
《分数除法(三)》是北师大版小学数学五年级下册第三单元的内容。分数应用题的教学是小学数学教学中的一个重点,也是一个难点。教学中,首先给学生提供探究的平台,让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对 “分数除法问题”的算法有初步的感悟,对这类应用题数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。
1、从已有知识入手,激发学生求知欲。在这节课的教学组织中,教师从学生已有的基础知识入手,很自然的将复习铺垫中的乘法应用题过渡到分数除法应用题。将学生的整个学习活动围绕“操场上的活动”这一活动情境步步展开。这样既有一定的挑战性,又能激起学生学习的兴趣,增强学生的求知欲。
2、充分发挥了教师主导作用和学生的主体作用。本节课从新知的引入,到问题的提出、数量关系的分析、问题的解决,在整个学习活动中学生的学习空间是宽阔的。在教学中,教师通过学生同伴间相互说说或在组内讨论,然后集体交流,有效地引导学生,起到了组织者、指导者的作用。在给学生思考的空间、学习的时间和交流机会的同时,学生主体作用得到了发挥,极大地鼓舞了学生,使学生个人的成功感获得了极大的满足,有力的促进了学生的数学思维及能力发展,也更激发他们去主动学数学。
3、练习设计具有层次性。巩固练习是帮助学生进一步掌握所学新知的过程。教学中,教师同样应注意巩固练习设计的层次性,使不同的学生进行不同的练习,这样,即满足了吃不饱学生的需求,同时又能使中下学生获得成功感。
4、学生习惯养成较好,学习能力较强。在每一项活动中,学生都能积极的投入到学习中,且学生倾听、交流等习惯养成较好;此外小组合作组织有序、实效性强,学生语言表达完整、精炼,归纳、总结能力较强。
分数与除法教学设计及反思篇二
北师大版小学五年级数学下册第55~56页。
1、体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。
2、培养学生动手动脑能力,以及判断、推理能力。
3、培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。
体验分数除以整数的计算方法,并能正确的计算。
分数除以整数计算法则的推导过程。
长方形纸片、彩笔。
一、创设情景,教学分数除法的意义
1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!
(1)每人吃1/2块饼,4个人共吃多少块饼?
(2)把2块饼平均分给4个人,每人吃了多少块饼?
(3)有2块饼,分给每人1/2块,可分给几个人?
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。
师:讨论:分数除法的意义和整数除法的意义一样吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
二、探究分数除法的计算方法
(1)引导参与,探究新知
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/7。
师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2=
请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。
师:对这种做法大家有什么疑问吗?
生:这儿是除法怎么变成了乘法?
师:老师也有这个疑问,你能讲讲吗?
师:谁能结合图来讲一讲呢?
师:很好!把除法转化成乘法,问题迎刃而解,你真棒!
(2)质疑问难,理解新知
接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。
通过计算你们有什么发现?
生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21
能再讲讲这样做的道理吗?
师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?
展示学生的分法
师(指着涂色部分):你所表示的这一部分是4/7的多少?
通过直观图理解4/7的1/3是4/21
(3)比较归纳,发现规律。
师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!
小组活动,说算法。
师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。
出示:分数除以整数,等于分数乘这个整数的倒数。
还有需要注意的地方吗?
生:有,除数不能为0。
师:谁能把分数除以整数的计算法则用自己的话来说一说?
完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。
那象这样的分数除以整数的题目在计算时要注意些什么?
生:要约分!结果最简。除号要变成乘号!
三、巩固练习
学生独立完成
四、课堂小结
1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)
分数与除法教学设计及反思篇三
“已知一个数的几分之几是多少,求这个数”的应用题,是由分数乘法意义扩展到除法意义而产生的应用题,这类应用题历来是教学中的难点。这类应用题是求“一个数的几分之几是多少”应用题的逆解题。因此,紧扣已掌握的分数乘法应用来组织教学显得比较重要。此外,由于分数除法应用题和乘法应用题都存在着“单位‘1’的量×几分之几=对应数量”这样的数量关系,不同的仅是一个条件和问题不同,因此教材强化用列方程的方法解,这样做就能利用分数乘除法之间的内在联系,统一分数乘除法应用题的解题思路。因此,在教学中我注重已下几点:
一、重视新旧知识的内在联系。
分数除法应用题和乘法应用题都存在着“单位‘1’的量×几分之几=对应数量”这样的数量关系,因此在探索新知之前,精心设计复习练习。一是找单位“1”和写数量关系式练习;二是出示与例题有关的分数乘法应用题。复习与新知有密切联系的旧知,为新知的探究铺路搭桥,为学生更好地从旧知迁移到新知做准备,起到水到渠成的作用。
二、重视思路教学。
思路,是学生确定解题方法的分析、思考过程,这个过程应是有条有理的,有要有据的。本课分析、具体地设计了使学生形成思路的过程:首先,分步思考;接着,引导学生完整地复述思考过程;最后,通过个别、集体训练,使学生形成完整思路。
三、
重视训练学生讲题。应用题教学重在分析数量关系。学生只有理解了题目中的数量关系,才会进一步进行思考。若在学生不理解题目中的数量关系的情况下进行分析,则思无源,想无据。所以,讲清题目中的数量关系是分析的基础,必须给予足够的重视。
四、重视列方程解答。
本节课没有设计算术思路,因为用列方程解答分数应用题是有限的,能比较熟练地解答,但达不到熟练的程度,发现不了解答规律。
本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例(1)的2个问题,本是很清晰的一个教学思路,意在引导学生解决问题的同时教给他们此类问题的解决方法。但由于教学时,我对线段图环节的教学引导不足,没有充分发挥线段图的作用,有些流于形式,因此学生在等量关系的推导上就未能如教师预计般顺利。下次如果再有类似的教学,我将注重思索如何将题目、线段图和等量关系式三者更有机地结合起来。
分数与除法教学设计及反思篇四
教学目标:
1.帮助学生理解、掌握稍复杂的分数乘法应用题的数量关系,学会用两种方法解答求一个树比少几分之几的分数应用题。
2.学生能够理解稍复杂的分数乘法应用题的解题思路,提高分析、推理等思维能力。
3.经过小组合作,让学生发现和探讨问题,在合作和交流的过程中,获得良好的情感体验,激发学生学习的兴趣,体验到数学与生活的密切联系。
教学重点:理解分数应用题的数量关系,会用两种方法灵活解答。
教学过程:
一.巧设铺垫,激趣导入
1.创设情景:同学们,今天我们班来了一位特殊的嘉兵,谁呢?(请出小记者)现在我们来做个现场采访:在前面所的知识中,你感觉哪部分知识比较难理解?(学生自由发言,与小记者产生共鸣,从而引出“应用题”)
2.设疑:小记者请求大家来帮助他如何理解、掌握应用题?
3.小记者设问探讨:解答前面所学的分数应用题关键在哪?(学生自由探讨,发表意见,引出找关键句、找单位“1”及数量关系,也可画线段图理解关系)
4.小记者示题:说出下面各题的单位“1”及数量关系。
(1)一些奖状,发了3/5
(2)已经看了全书的1/8
(3)男生占全班人数的3/7
(学生自由口述,选择喜欢的题目解答)
引出“刚刚的3句话,在应用题中是作为什么部分?(关键句)
5.示问:除了刚刚的几句关键句,你能找出在生活中哪些地方也用过类似的话?又如何找出单位“1”及数量关系(学生自由探讨,根据学生回答选择适当的关键句写在黑板上,为后面服务)
二.探索交流,建构新知。
(一)自由构建新知。
1.设疑:一道完整的应用题除了关键句,还需要什么部分?(学生交流,引出“条件、问题“)
2.编题:那你能否选择自己喜欢的关键句,补充一道完整的应用题?并思考如何解决?我们分小组比赛,看哪小组合作的既快又有新意,可邀请我们的小记者和老师一并参与(分小组合作探讨、交流)
[设计意图:富有挑战性的问题犹如一枚枚石子投入蓄势已入的湖里,激起了层层涟漪,让学生在足够自主的空间、足够活动的机会中自主探究、积极合作、足以让学生获得积极的、深层次的体验。行云流水般的分数应用题教学全无例行公事、思路闭所,空间狭小之嫌。正所谓“灵感总青睐有准备的头脑”。学生结合自己的生活经验,自由提问,可以培养学生的发散性思维,并培养学生的问题意识。往往提出一个问题可能比解决问题更为有意义。这一环节,把学习的主动权真正交给了学生,让学生通过小组合作的方式操作,通过动脑编题——动手写题——自主探索、合作交流解题,放手让学生去探索,并通过小组合作比赛,这样不仅充分激发了学生的学习积极性,而且使学生体会了发现、掌握新知的方法。
(二)探讨交流新知。
1.交流展示成果:选一些小组向全班交流
根据小组的汇报,选出一些典型的题目(多媒体)适时展示,全班共同交流。
例如:一些奖状共15张,发了3/5,还剩几张?(发了几张?)(发了的的比剩下的少几张?发了的比剩下的少几分之几?)
示问:对刚刚那小组的成果(题目),你们会帮忙解答吗?(全班尝试解答,请部分学生板演)
2.交流:“还剩几张”你是怎么想的?
学生介绍方法:
(1)根据数量关系,总共的—发了的=剩下的,总共的×3/5=运走的
15—15×3/5
=15—9
=6(张)
(2)画线段图帮助理解。
分析:结合线段图理解“把什么看作单位“!”,运走了几分之几,还剩几分之几,各是哪部分?怎么表示的?)
15×(1—3/5)
=15×2/5
=6(张)
整个方法介绍过程中,全班同学共同参与,群策群力,教师根据学生回答情况适时点拨。
3.小结:刚刚由于全班的共同努力,我们自己的问题自己想办法解决了,真是聪明!看来我们集体的智慧是无穷的。我们用了哪些方法来解答刚刚那一小组的题目的,说说你比较喜欢那种。(自由发言)
那对于刚刚的方法还有什么困惑的吗?提出来大家共同解答。
(三)灵活运用新知。
2.学生解答剩余的题目,拓展、巩固对新知的理解。(自由发言、交流)
4.小记者兴致昂然,想展示一下自己学到的本领,请其余同学出题来考他。(学生出题,视平台展示)
4.创设情景:小记者解答有困难(数量关系出错,对应分率出错)请同学们帮助解答。
突出强调解答应用题的方法(理清数量关系,理清对应分率)
[设计意图:结合学生表现颁发奖状,与我们的例题浑然一体,学生兴趣昂然激发了学生后面解决问题的积极性。同时设立小记者遇到困难,突出强调今天所学的知识的重点。这一活动,还是放手让学生自己去提问,再自己解决,充分相信学生,有助于扩展学生的思维空间,培养学生的创新意识和合作精神,增强了数学内容的趣味性、开放性。
三.巩固应用
小记者出题:看同学们表现那么棒,考官做的那么溜,也想当会考官,你们敢不敢应战?(多媒体演示出题)
[总体设想]:
我设计的“稍复杂的分数应用题”教学设计是为新授部分服务的,具体有以下几个特点:
1.从生活经验导入新课,使数学问题生活化。
课一开始,联系学生学习生活实际,说说学习方面比较困惑的知识话题导入新课,从“解答应用题关键所在”来切入主题。这样做使学生感到所学的内容不再是简单枯燥的数学,而是非常有趣、富有亲切感,他们被浓浓的生活气息所感动,兴致勃勃的投入到新课的学习之中。
2.让学生亲身体验知识的形成和发展。
小学生已经具有了一定的生活经验,因此教师设计了这样一个情节:小组自由选择喜欢的关键句编题并思考如何解答。学生通过合作探讨交流,得出解答的方法。从自己质疑——解疑问——汇报交流,整个教学过程环环相扣,双基训练扎实。教学中设置了许多开放性问题,拓宽了学生进行实践、创新学习的课程渠道,注重学生的情感体验和个性发展,增强数学内容的趣味性、开放性,强调学生数学学习的过程。
3.注重学习的开放性,学生的自主探究、合作交流。
整个学习过程,从问题导入,引出新知,到自由探讨新知,解决问题都是学生自主探究形成,真正主人教师只是参与其中,从而引导和辅助。学生是整节课引发的一环有一环,促使学生层层深入的思考,让学生自觉地、全身性的投入到学习活动中,用心发现、用心思考、真诚交流。
分数与除法教学设计及反思篇五
教学内容:
浙教版第十一册第103页例1例2,练习十七题。
教学目标:
1、掌握求一个数与它的几分之几的差(和)是多少的应用题的数量关系,并能正确解答。
2、通过分析、比较,培养学生善于思考问题提出问题的能力。
3、培养学生良好的审题习惯。
4、渗透环保观念和终身学习观念。
教学重点和难点和关键
教学重点:分析题中的数量关系和掌握解题思路,并能正确解答。
教学难点:1、寻求所求问题对应的几分之几。2、弄清两种不同的解题思路。
教学关键:1、确定单位“1”。2、找出所求问题占单位“1”的几分之几。
教学过程:
一、复习铺垫
1、找单位“1”
(1)一本书,已经看了1/4,还剩几分之几?
(2)实际投资是计划投资的4/5。
(3)男生25人,占全班人数的5/9。
2、口答:
(1)一堆煤,运走了3/5,还剩几分之几?
(2)女生人数比男生人数多1/3,女生比男生多的人数占()的1/3。
(3)白兔比黑兔少1/4,白兔是黑兔的几分之几?
二、创设情景、引入新知
1、你们喜欢鸟吗?鸟类种数减少了,就意味着许多美丽的鸟类从此就永远消失了。你们知道为什么吗?由于人类的这些行为,有的鸟类灭绝了,还有一些鸟类,尽管还存在,但数量已经很少了,如果再不加以保护,也将很快灭绝掉。丹顶鹤就是这样的一种鸟类。丹顶鹤是国家的一级保护动物,是我国特产鸟类,群居黑龙江省的扎龙,丹顶鹤生活特别有规律,它体姿优美文雅、风貌优秀、翩翩起舞可与孔雀开屏媲美,是长寿动物与龟并称,古人将它作为长寿和幸福的象征,所以特别受中国人的钟爱。
2、今天老师还给大家带来了几条有关丹顶鹤的信息。
出示信息1:国家一级保护动物野生丹顶鹤,2001年全世界约有2000只,我国占其中的1/4。
根据这些信息:你能算出2001年我国约有多少只丹顶鹤吗?怎样列式?你是怎么想的?
(2000×1/4=500(只),求2000只的1/4是多少?)
3、如果我们把我国约有多少只?这个问题去掉,你能提出哪些问题?(外国约有多少只?)
出示信息2(例4):
揭示课题:这就是我们今天共同探讨的问题“稍复杂的求一个数的几分之几的应用题”(板书课题)
三、引导探究,解决问题
1、请同学们把信息2表达的'意思用线段图表示出来。
展示并口述画的线段图。
2、是把什么看着单位“1”?平均分成几份?(1/4)表示谁占谁的几分之几呢?怎样解答这道题呢?请同学们根据线段图列出算式。(先独立解答,师巡视,再交流)
3、两名学生板演两种解法。
4、你怎样想的?能说出解题思路吗?(学生口述思路,教师在线段图上展示)
方法一:把全世界的丹顶鹤的只数看着单位“1”,先求出我国的只数,再用总只数减去我国的只数,剩下的就是其他国家的只数。
5、比较一下,这两种解法有什么区别?有什么联系?(学生小组交流、汇报。)
〈1〉相同点:单位“1”相同。
〈2〉不同点:第一种解法是用总只数减去我国的只数算出其它国家的。第二种解法是先求出其他国家的只数占总数的几分之几,再用总只数乘这个几分之几,就算出其他国家有多少只。
四、再次探索
1、教师引言:正如前面所说:丹顶鹤是“长寿和幸福”的象征,人们称它为仙鹤,因此我国在扎龙专门设立自然保护区又誉为“鹤的乐园”。在人们的得力保护下,近两年来,丹顶鹤的数量逐年增多,请看下面信息:
2、请同学们默读信息3,已知什么?要求什么?理解哪一句话对解题最有帮助?怎样理解2007年我国丹鹤的只数比2001年的只数多呢?(把2001年500只丹顶鹤看作单位“1”,2007年比2001年多的只数是2001年只数的4/5)
3、(师生齐画线段图)这道题有几个不同的数量相比,画几条线段图更好表示?(用两条线段表示)
教师引导学生画出2001年的线段,然后让学生独立完成余到此为下部分,一人板演。(巡视)
4、展示线段图并叙述。
指线段图引导分析:我们把什么看着单位“1”?平均分成几份?把2007年的只数分成了几部分?哪两部分?(一部分与2001年同样多,另一部分比2001年多2/5。)
5、请同学们根据线段图列出算式。(师巡视,指名板演两种代表性的解法)
6、你能说出解题思路吗?
(第一种解法:先求多的只数+2001年的只数=2007的只数,第二种解法:先求出2007年占单位“1”的几分之几,或2007年是2001年的(1+4/5)倍,再求2007年的只数;也就是求500只的(1+4/5)倍是多少)
五、回顾小结
1、刚才同学们用自己的聪明才智解决了以上问题,现在我们一起研究信息2和信息3这两问题有什么共同特点。
(信息2把总数2000只分成两部分,一部分是我国的只数,另一部分是其它国家的只数。信息3是把2007年和2001年相比,把2007年的只数分成两部分,一部分是和2001年的只数同样多,另一部分比2001的只数多2/5。
2、相同点:
单位“1”的数量都是已知的。
3、没有直接告诉所求问题占单位“1”量的几分之几,解题时需要用单位“1”的量减去或加上它的几分之几,或者先算出要求的数量占单位“1”的几分之几,再用单位“1”的量乘这个几分之几。)
4、指导学生看书例题5,完成课本内容并质疑问难。
分数与除法教学设计及反思篇六
今天的教学与分数意义的学习在孩子们头脑中产生了强烈的矛盾冲突。前几天的分数都表示谁占谁的`几分之几(即分率),可今天求的却是具体数量。特别是例2,虽然运用学具让所有学生参与到知识的探索过程中,但仍旧感觉推进艰难。学生困惑点主要在以下两方面:
1、为什么把3块月饼看作单位“1”,平均分成4份,取其中1份不是1/4?
针对上述两个问题,我在教学中主要采取了以下一些策略:
1、复习环节巧铺垫。
在复习导入中增加一道用分数表示阴影部分的练习。其中一幅图是圆的3/4,另一幅图是圆的3/12。这样,当学生困惑于例题3/4块和3/12块结果时,就能通过直观图,前后呼应,使学生豁然开朗。
2、审题过程藏玄机。
在教学例2请学生读题后,首先请学生思考“3块月饼4人平均分,每人能得到一整块月饼吗?”然后用语言暗示“每人分不到一块月饼,那到底能分得一块月饼的几分之几呢?请同学们用圆形纸片代替月饼,实际动手分一分,看看分得多少块?”有了每人分不到一块月饼的提示,又有了“到底能分得一块月饼的几分之几”的暗示,学生探索的落脚点定位到了以一块月饼为单位“1”,且初步理解了问题是求数量“块”而非部分与整体之间的关系。
通过上述改进措施,学生理解3/4相对容易一些。
分数与除法教学设计及反思篇七
今天的教学与分数意义的学习在孩子们头脑中产生了强烈的矛盾冲突。前几天的分数都表示谁占谁的.几分之几(即分率),可今天求的却是具体数量。特别是例2,虽然运用学具让所有学生参与到知识的探索过程中,但仍旧感觉推进艰难。学生困惑点主要在以下两方面:
1、为什么把3块月饼看作单位“1”,平均分成4份,取其中1份不是1/4?
针对上述两个问题,我在教学中主要采取了以下一些策略:
1、复习环节巧铺垫。
在复习导入中增加一道用分数表示阴影部分的练习。其中一幅图是圆的3/4,另一幅图是圆的3/12。这样,当学生困惑于例题3/4块和3/12块结果时,就能通过直观图,前后呼应,使学生豁然开朗。
2、审题过程藏玄机。
在教学例2请学生读题后,首先请学生思考“3块月饼4人平均分,每人能得到一整块月饼吗?”然后用语言暗示“每人分不到一块月饼,那到底能分得一块月饼的几分之几呢?请同学们用圆形纸片代替月饼,实际动手分一分,看看分得多少块?”有了每人分不到一块月饼的提示,又有了“到底能分得一块月饼的几分之几”的暗示,学生探索的落脚点定位到了以一块月饼为单位“1”,且初步理解了问题是求数量“块”而非部分与整体之间的关系。
通过上述改进措施,学生理解3/4相对容易一些。
分数与除法教学设计及反思篇八
1、说出几个分数的倒数。
2、计算分数除以整数
其中一道是6/93,
(当学生使用分子除以整数的方法时,教师无须强调一定要使用一般方法:即用分数乘整数的倒数。)
问题:谁走得快些?该如何比较?
学生列出了算式1:22╱3(小红每小时走多少千米?)
2、探究22╱3如何计算:教师在学生的回答过程中画出线段图并进行讲解。
(除数是分数的除法的算理是教学的难点,但教师比较轻易地就滑过去了,没有好好地把握让学生探究的机会,而更在于让学生掌握计算方法这一结果。这个环节完全可以基于学生原有的知识进行迁移,放手让学生自己探究,猜想-----是否也是乘以除数的倒数呢?验证----用自己的策略或画几何图形、或用线段图、或利用乘除法之间的关系去推理、归纳、证实----建立模型,得出一般的方法。一定要让学生理解过程,能熟练地阐述算理。否则,就如某些学生的迷茫:我不知道为什么会是这样。)
3、解决小红的速度问题,列式、计算。学生列出算式后进行计算。5╱65╱12。
(能不能让学生述说过程是怎样的呢?为什么可以乘以除数的倒数?)
4、学生观察,并归纳计算方法。
5、对比,归一。比较分数除以整数和分数除以分数的方法,归纳为:除以一个不等于0的数,等于乘这个数的倒数。
(没有回应到要解决的问题。在新课程中解决问题都是与计算结合在一起的,要更多地关注学生思维的培养和解决问题的完整性。其实,解决这一个问题也不只是一种思路,教师没有意识到这一例题的资源的丰富性和开放性,对教材解读不到位。既可以通过单位时间的路程来比较,也可以通过单位路程所需要的时间来比较。作为比速度,当然是数值越大越快;作为比时间则数值越小越快。如果教师能意识到这一资源,能抓住这一出发点启发学生思考,那将是很有价值的。)
(学生可能还有疑惑,可以让学生相互质疑,让学生看书质疑。尤其不要将课本仅仅看成是练习册,要发挥课本的指引作用,利用课本培养学生阅读课本的习惯。)
1、书中的做一做
(要真正做到心中有学生,心中有学困生,心中有学生容易错误的类型,并及时采取干预措施,补救失误或漏洞。)
2、计算
3、解方程
(在学生群体练习的时候,要俯下身来看看学生整体掌握知识、运用技能的情况,看看学困生存在怎样的问题,在课堂上就寻求解决问题,变课后辅导为课内辅导。解方程这一练习形式大可不必。对于除数是分数的除法,学生很容易出现错误,教师应该基于自己的教学经验教训或者是他人的经验教训,对于学生出现的错误类型心中有数并就此设计一些辨析题让学生判断正误,及时提醒。或者就地取材,针对学生的错误即时提取错误资源并板书,让学生来判断。在练习过程中,发现学生对解方程本身就有问题,学生在两种技能都没有巩固的情况下进行综合练习,欲速不达。另外,可以增加一道解决问题的题目让学生完成。)
分数与除法教学设计及反思篇九
本节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,理解分数与除法的关系,会用分数来表示两数相除的商,能运 用分数与除法的关系解决一些简单的问题。
我首先让学生利用整除的方法来解决问题,从而复习了除法的意义,并且强调-------对于均分问题用除法算。接着,再引出几个用除法解决的问题(不能整 除),根据前边分饼的活动,结果可以用分数表示,从而把除法与分数联系了起来。
新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究、交流合作”特征的多样化的学习方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的、富有个性的过程,数学的教与学的方式, 应该是一个充满生命活动力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操 作,得出两种不同的分法,引申出两种含义,即1块饼的,3块饼的,通过这一过程,学生充分理解了3÷4=的算理。请同学们认真观察上面几个算式,有什么发现?同桌交流、讨论,然后找学生说 一说:被除数相当于分数的什么,除数相当于分数的什么,再找学生完整地说,我再补充,并强调分数与除法的关系且板书。
整节课,学生的思维能力和观察力都有充分的展现,学生们想出了各种方法或者道理来 证明,语言表达得十分流畅,分析能力路较强。通过最后练习题的巩固,学习效果不错,大大的增加了他们学习数学的信心,体验到了成功的快乐。
三角形的特性听后反思
怎样的小学数学课堂教学才是有效的?要想回答这个问题,首先要明确课堂教学的有效性是指什么。课堂 教学的有效性是指通过课堂教学使学生获得发展,促进学生知识与技能,过程与方法,情感、态度与价值观三者的协调发展。就是通过课堂教学活动,使学生在学业上有收获、有进步、有提高。具体而言也就是使学生在认知上,由不懂到懂,由不会到会,又知之甚少到知之较多;使学生在情感上,由不喜欢到喜欢,由不感兴趣 到感兴趣,由不热爱到热爱。总而言之,课堂教学的有效性的核心问题是:学生是否愿意学,会不会学,能否积极主动地学。
本节课中通过让学生说一说情境图中的三角形,再让学生联系生活实际思考,并说一说“生活中哪些物体上有三角形?”激发了学生学习三角形特性的兴趣,引起学生对三角形及其在生活中的作用的思考。为让学生进一步研究 三角形的特征,了解三角形的作用做好准备。
让学生在“画三角形”的操作活动中进一步感知三角形的属性,抽象出概念。这样有利于学生借助直接经验,把抽象的概念和具体的图形联系起来。这里教师充分考虑到学生已有的生活经验和知识基础,恰当把握教学要求。三角形是生活中常见的图形,学生已初步认识过。此处重点 是引导学生发现三角形的特征,概括出三角形的定义。为此,还出示了一组含正、反例的图形让学生辨析,帮助学生建立正确的三角形概念。此处是本节课的教学重 点,通过边画边想、组织交流、引导概括三角形的特征,从而有效地落实了本节课重点的教学。
由实例入手,让学生量出三角形的高度,引出底和高的概念进行教学。联系生活实例,引导学生解决日 常生活中遇到的实际问题,增加数学学习的趣味性。
这里采用的是“情境、问题— 实验、解释— 特性应用”的探究教学方法。教师在教育教学实践中,选 择合理的教学方法是保证教学有效性的关键。
学生通过对空间与图形内容的学习,对三角形已经有了直观的认识,能够从平面图 形中分辨出三角形。本节课教学是在上述内容基础上进行的,通过这一内容的教学进一步丰富学生对三角形的特性的认识和理解。
分数与除法教学设计及反思篇十
学情分析:
五年级的学生已具有一定的操作、观察、归纳概括能力,有了以前学习分数乘法、倒数的基础,让学生通过涂一涂、算一算、想一想、填一填的活动来总结分数除以整数的计算方法,对于学生来说,难度不大。
教学内容分析:
《分数除法(一)》是第三单元第二课时的内容,是在学生学习了分数乘法、认识了倒数的基础上进行教学的,教材中呈现了两个问题,就是把4/7分别平均分成2份、3份,目的是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。
教学目标:
1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。
2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
3、能够运用分数除以整数的方法解决简单的实际问题。
教学重点:
引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
教学难点:
1、探索分数除以整数的计算方法。
2、能够运用分数除以整数的方法解决简单的实际问题。
教学方法:
导学教学法
创新理念:
“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。“学生是数学学习的主人,教师是数学学习的组织者、引导者、合作者”。基于以上理念,在教学过程中,我采用“导学教学法”,充分发挥了教师的引导作用,让学生在动手实践的过程中去探索新知,亲身经历知识形成的全过程。
教具准备:
长方形纸、课件。
教学流程:
一、创设情境提出问题
(1)把一张纸的4/7平均分成2份,每份是这张纸的几分之几?
(2)把一张纸的4/7平均分成3份,每份是这张纸的几分之几?
二、自主探究小组交流
(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)
自主学习提示
1.利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。
2.同桌之间说一说彼此的想法。
3.有困难的.同学,可以借助课本第25页的提示,完成这两个问题。
三交流释疑
1、初步感知分数除法
把一张纸的4/7平均分成2份,每份是这张纸的几分之几?
请同学们拿出图(一)来涂一涂。
交流:为什么要这样涂,每份是这张纸的几分之几呢?
还有不同的涂法吗?
能根据这个过程列出一个除法算式吗?
这个除法算式和以前学的除法有什么不同?
这就是这节课我们要学习的分数除法。(板书)
2、初探算法
把一张纸的4/7平均分成3份,每份是这张纸的几分之几?
请大家在图(二)的上面涂一涂。
交流:(展示学生不同的涂法)
同学们是把长方形纸的七分之四平均分成了三份,再把其中一份涂上颜色。谁能根据这一过程列出一个算式。
怎样才能算出得数呢?
(师提问:计算时为什么要用×1/3?)
观察3和1/3有什么关系,由除以3变成乘3的倒数,是不是除以一个整数就可以乘它的倒数呢?我们来验证一下。
(教师出示三组算式)
1/3÷54/5÷31/3÷5
指生口算。
让学生观察每一组算式,说一说发现了什么?
根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算?
(学生口述算法后)
四、实践应用
1、算一算
9/10÷3015/16÷/15÷218/9÷65/6÷15
2、填一填
师:学会了知识就要灵活的运用,这道题你们能填上吗?
学生独立在书上第26页填一填,想一想。
集体订正。
3、解决问题。
学生在练习本上列式解答。
指生汇报完成情况。
运用分数除法能解决生活中的很多问题呢,谁能像老师这样来说一说生活中的问题,让大家解决。
(指生口头编题,其他学生解决)
五、课堂总结
学生谈一谈本节课的收获。
同学们,这节课你们过的快乐吗?学习本来就是一件快乐的事,老师希望今后你们能快乐的学习,快乐的成长。
六、布置作业:
22页练一练
七.板书设计:
分数除法(一)
——分数除以整数
分数除以整数的计算方法:除以一个整数(零除外),等于乘这个整数的倒数。
(1)4/7÷2(2)4/7÷3
=4/7×1/2
=2/7
教学反思:
《分数除法(一)》是学生初次接触分数除法,本节课是学生今后学习分数除法的基础,让学生理解分数除法的意义以及对算法的探索就显得格外重要。本节课我力求体现以下几点:
一、充分利用学生最佳的学习状态
课堂上省去了旧知的复习,设计简单的知识情景,以最快的速度抓住学生有效学习时间,提高课堂有效性。
二、让学生在不同的活动中探索数学。
数学课不应只让学生单纯地模仿和记忆,应让学生在具体地操作、观察、实践中得出结论。因此,课堂上我让学生通过操作、观察,引导学生探索出分数除以整数的计算方法,让学生经历了知识形成的全过程。在这样的过程中,充分地发挥了教师的引导作用,注重的是学生能力的培养,注重的是教给学生学习的方法,而不是把知识单纯的传授给学生,做到既重结果,又重过程。
三、让学生在不同层次的练习中应用数学。
学数学的目的就是用数学。在新课结束后,我让学生在不同层次的练习中应用了所学知识,让学生充分感受到了数学源于生活,又寓于生活。
分数与除法教学设计及反思篇十一
在分数除法这一单元中,主要展示的是分数除以整数、整数除以分数、分数除以分数这三种类型的计算方法,其中,在分数除以整数的教学过程中,学生接受得比较快,学习效果也很好,但是在教学整数除以分数后,通过学生的练习反馈,发现学生在计算中出错比较多,主要表现在一下几方面:
1.在除号与除数的同步变化中,学生忘记将除号变成乘号。
2.在除数变成其倒数的时候,学生误将被除数也变成了倒数。
3.计算时约分的没有及时约分,导致答案不准确。
为什么会形成这些错误现象,通过对比分析,可能有一下原因:
1.教学方法上:例题讲解分量不够;教学语速较快;学困生板演机会不够多;讲得多、板书方面写得少。
2.学生学法上:受分数除以整数的教学影响,形成了思维定势,以为每次都是分数要变成倒数,整数不变,从而导致同步变化出现错误;其次,学生听课过程中不善于抓重点,在分数除法中,被除数是不能变的,同步变化指的是除号和除数的变化;最后,学生的学习态度和学习习惯也直接影响了本科的教学效果。
1.增加学生板演的机会,
2.课堂上,对于关键性的词语,要求学生齐读,用以加深印象。
3.辅差工作要求学生以同位为单位,进行个别辅导。
分数与除法教学设计及反思篇十二
“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”。分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。从以上的角度分析,彭老师的这节课具有以下两大优点:
新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的学习方式,指导建立具有“主动参与,乐于探究、交流合作”特征的多样化的学习方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的、富有个性的过程,数学的教与学的方式,应该是一个充满生命活动力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的,3块饼的,通过这一过程,学生充分理解了3÷4=的算理。
探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,我让学生充分动手分圆片,让他们在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题,给学生留与了操作的空间,因此学生对分数与除法的关系理解得比较透彻。
总之,在整节课中我注重让学生主动参与学习过程,学生的主体地位得到了充分体现,在学习活动中,发展了个性,培养了能力。
1、在总结了分数与除法的关系后,最好让学生说清楚分数与除法是否完全相同,然后利用表格说清楚它们之间的相同与不同的地方。从而让学生体会分子、分母、分数线只相当于被除数、除数、除号,不是等于。
2、为了语言表达清楚,学生听得明白,建议把3块饼的“块”改为“个”,平均分成的每一份就说“块”。这样听起来比较清晰。
分数与除法教学设计及反思篇十三
分数除法是在学生学习了整数乘除法以及解简易方程,并且学习了分数乘法知识的基础上,学习分数除法和比的初步知识。这些知识为学生学习分数除法打下了基础,学习分数除法的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用。内容包括:分数除法、解决问题、比和比例的应用。这些知识都是学生进一步学习的重要基础,通过这些知识的学习,学生一方面基本完成任务了分数加、减、除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。
就学习分数除法而言,首先要明确分数除法的运算意义,在此基础上探究并掌握它的计算方法,然后学习分数混合运算。关于分数除法中的解决问题,主要有两种情况,一种是问题情境的数量关系与整数除法的实际问题相同,区别只是数据由整数变成了分数。另一种是问题情境的数量关系具有一定的特殊性,表现为已知一个数的几分之几是多少,要求这个数。这样的实际问题,与求一个数的几分之几是多少的实际问题具有紧密的内在联系,即数量关系相同,而区别在于已知数与未知数交换了位置。
教学目标
知识和技能:
1、使学生理解倒数的意义,会求一个数的倒数。
2、使学生理解分数除法的意义,掌握分数除法的计算法则,能熟练地进行计算。
3、使学生能够用方程或算术方法解答“已知一个数的几分之几是多少,求这个数”的应用题,进一步提高学生解答应用题的能力。
过程与方法:
动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
情感、态度和价值观:
使学生进一步受到事物是相互联系的辩证唯物主义观点的启蒙教育。教学重点、难点:
一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。
我们来看这样一道乘法应用题,妈妈在超市买了3盒糖果,每盒是100克,3盒糖果共重多少克?我们可以列式:100×3=300(克)
如果把这道乘法应用题改编成两道除法应用题,一起来看一下:a、3盒水果糖重300克,每盒有多重?300÷3=100(克)b、300克水果糖,每盒100克,可以装几盒?300÷100=3(盒)(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。1/10×3=3/10(千克)3/10÷3=1/10(千克)3/10÷1/10=3(盒)
通过与前三道题我们可以得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
分数应用题是小学数学应用题的重要组成部分,分数应用题的数量关系比较复杂,学生分析起来比较困难。下面介绍几种解答分数应用题的常用方法:
一、对应法
通过审题正确判断单位“1”的量后,把具体数量与分率对应起来,这是解答分数应用题的关键。
如“某筑路队筑一段路,第一天筑了全长的1/5多10米,第二天筑了全长的2/7,还剩62米未筑,这段路全长多少米?”
题目中总长度是单位“1”的量,(62+10)米与(1—1/5—2/7)相对应,因此,总长度为:(62+10)÷(1—1/5—2/7)=140(米)。
二、变率法
题目中几个分率的单位“1”不相同,可先统一单位“1”的量,然后变换分率,寻找已知数量的对应分率,最终解决问题。
该题中的“1/4”是把余下的本数看作单位“1”,而余下本数又是总本数的(1—2/5),因此,我们可以把中年级分得的本数理解为总本数的(1—2/5)×1/4,这样可求出总本数:180÷[1—2/5—(1—2/5)×1/4]=400(本)。
三、常量法
题目中几个数量前后都发生了变化,而有的数量不变,这就是常量,解题时可把常量看作单位“1”。
如“小华读一本书,已读页数占未读页数的1/5,如果再读30页,已读页数就占未读页数的3/5,这本书共有多少页?”
该题中再读30页后,已读页数与未读页数都在变化,唯独总页数没有变,把总页数看作单位“1”,则总页数为:30÷(3/3+5-1/1+5)=144(页)。
四、联系法
某些题目中几个数量都与一个数量有联系,把这个数量作为桥梁,解题思路就顺畅了。如“某小学四、五、六年级学生共种树576棵,五年级种树棵数是六年级种树棵数的4/5,四年级种树棵数是五年级种树棵数的3/4,五年级种数多少棵?”
题目中五年级种树棵数与六年级种树棵数有关,又与四年级种树棵数有关,所以,五年级种树棵数是个桥梁,把它看作单位“1”,把“五年级种树棵数是六年级种树棵数的4/5”改变为“六年级种树棵数是五年级种树棵数的5/4倍”,所以,五年级种树棵数为:576÷(1+3/4+5/4)=192(棵)。
五、转化法
将复杂问题中的某些条件进行转化,结合改变成简单的问题,从而化繁为简。
把“第一车间人数是其余两个车间人数的1/2”转化为“第一车间人数占三个车间总人数的1/1+2”,“第二车间人数占其余两个车间人数的1/3”转化为“第二车间人数占三个车间总人数的1/1+3”,这样,就能求出三个车间的总人数:500÷(1-1/1+2-1/1+3)=1200(人)。
六、假设法
对题目的某些数量作出假设,导致运算结果与题目不相符合,然后找出产生差异的原因,最终解决所求问题。
如“一项工程,甲、乙两队合做12天完成,现在先由甲队独做18天,余下的再由乙队接着做了8天正好完成,如果全工程由甲队独做,要多少天才能完成?”
假设甲、乙两队都做8天,则共做1/12×8=2/3,比工作总量“1”少1/3,这1/3就是甲队(18-8)天所做的工作量,所以甲队独做的时间为:1÷[1/3÷(18-8)]=30(天)。
七、倒推法
题目中几个分率的单位“1”不相同,而且单位“1”难以统一,可以先求部分量,再一步一步地逆推出总数。如“一捆电线,第一次用去全长的1/6多2米,第二次用去余下的3/4少4米,还剩16米,这捆电线有多少米?”
这题中两个分率的单位“1”均为未知量,我们可以从较小的单位“1”求起:(16-4)÷(1-3/4)=48(米),(48+2)÷(1-1/6)=60(米)。
八、方程法
一些复杂的分数应用题用算术方法难以解答,不便于理解,如用方程可顺向求解,容易掌握。如“一项工程,甲、乙两人合做8小时完成,甲独做14小时完成。现在甲做若干小时后,剩下的由乙接着做,前后共用18小时完成。求甲、乙各做多少小时?设甲x小时,则乙做(18-x)小时,根据两个人的工作量之和为1,可列方程:1/14x+(1/8—1/14)×(18-x)=1,解得×=2,18-2=16(小时)。
分数与除法教学设计及反思篇十四
教学时,我没有采用书上的情境,而是从学生的生活实际引入。例如:我们班有多少女生?有多少男生?女生占全班人数的几分之几?现在知道“全班人数”和“女生占全班人数的几分之几”求女生有多少人,怎样求?学生很快就知道列出乘法算式解决。反过来,知道“女生人数”和“女生占全班人数的几分之几”求全班人数呢?这样引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。
让学生理解题中的数量关系是解决分数除法应用题的关键。教学中,我通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律,从而让学生体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。本课重点是要让学生学会用方程的方法解决有关的分数问题,体会用方程解决实际问题的重要模型。为了帮助学生理解,我借助线段图的直观功能,引导孩子们理清解题思路,找出数量间的相等关系。
在学生学会分析数量关系后,我把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。
在学生掌握了用方程解决问题的方法后,我又鼓励他们对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。教学中,给学生提供探究的平台,先让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟,对这类应用题数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。
分数与除法教学设计及反思篇十五
1.在理解分数除法算理的基础上,正确熟练地进行分数除法的计算。
2.运用所学的分数除法的知识,解决相应的实际问题。
教学重点:正确熟练地进行分数除法的`计算。
教学难点:解决相应的实际问题.。
设计意图教学过程特色设计
正确熟练地进行分数除法的计算。
一、基础知识练习:
(一)计算:
2/13÷28/9÷43/10÷35/11÷522/23÷2
3/10÷223/24÷2617/21÷518/9÷713/15÷4
学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的
(二)教材p36第13题,学生独立计算。
二、深入练习
教材p36第14题,学生板演,集体订正。
三、解决问题
第7题学生独立解答。
第8题学生解答时提示学生需要先统一单位。
小结共同特点:都是求一个量里包含多少个另一个量,都用除法计算。
四、作业练习:
教材p36第12,15,16题。
学生先读题,说一说解题思路,然后学生列式计算。
分数与除法教学设计及反思篇十六
《分数除法三》教学反思。
要让学生经历自主探究的过程。探究是感悟的基础,没有探究就没有深刻的感悟。教学中,先让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟。
三、不足之处
1、对单位“1”的理解在课堂上渗透还得加深理解。
2、巩固练习不够趣味性,缺少层次性。在巩固练习的教学过程中,为了增加练习的趣味性,应多安排一些数学游戏,以此来调动学生学习的积极性,使得学生在娱乐中巩固和深化所学知识,达到了寓教于乐的目的。
3.多交流。给学生一定的时间去画一画线段图。
4、给学生独立思维的空间。
【本文地址:http://www.xuefen.com.cn/zuowen/5461296.html】