2023年概率论总结心得范文(18篇)

格式:DOC 上传日期:2023-10-30 21:15:26
2023年概率论总结心得范文(18篇)
时间:2023-10-30 21:15:26     小编:FS文字使者

总结需要我们对所得结果进行评估和分析。总结需要明确目标和要点,并突出重点,不要纠缠于细枝末节。总结是对过去一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。那么我们该如何写一篇较为完美的总结呢?以下是小编为大家精选的总结范文,供大家参考和借鉴。

概率论总结心得篇一

概率论是一门研究随机事件的发生概率、规律和性质的学科,并且在各个领域都有广泛的应用。它的发展史可以追溯到古希腊时期的赌博问题,并经过了很多名家的贡献和努力。在学习了概率论的历史发展过程后,我深感学习的重要性和实用性。本文将对概率论发展史进行心得体会总结,以便于更好地理解和应用概率论的方法和理论。

第一段:古希腊时期的赌博问题

概率论的历史可以追溯到古希腊时期。在那个时候,赌博是人们生活中常见的娱乐活动。赌博问题给了古代数学家启发,引出了对于随机事件发生概率的思考。例如,从两个骰子中掷到某种组合的可能性是多少,这个问题正是概率论的起源。研究者们逐渐开始对赌博问题进行数学建模和分析,为后来的概率论的发展奠定了基础。

第二段:拉普拉斯的贡献与经典概率论的建立

拉普拉斯是概率论发展史上的重要人物。他在1774年发表了《概率论导论》,正式建立了概率论的理论基础。拉普拉斯提出了拉普拉斯方案,将概率定义为事件发生的次数在总次数中的比例,并提出了概率的加法和乘法原理。这些原理为后来的概率论研究奠定了基础,并使概率论逐渐成为一门独立的学科。

第三段:科尔莫哥罗夫的测度论与现代概率论的建立

科尔莫哥罗夫是现代概率论的奠基人之一。他提出了著名的科尔莫哥罗夫公理系统,将概率论建立在测度论的基础上,从而使概率论更加完备和一致。科尔莫哥罗夫还提出了条件概率和独立性的概念,为后来的概率论研究提供了新的视角和方法。他的成就使概率论从经典概率论逐渐发展为现代概率论。

第四段:贝叶斯统计学的兴起与概率论的应用拓展

贝叶斯统计学的兴起极大地拓展了概率论的应用领域。贝叶斯定理是贝叶斯统计学的重要基石,它通过考虑先验概率和后验概率之间的关系,使得我们能够根据观测值来更新对于事件发生概率的估计。贝叶斯统计学在医学诊断、金融风险评估等领域有广泛的应用,为概率论的发展和应用提供了新的思路和方法。

第五段:总结与展望

概率论是一门历史悠久、发展迅速的学科。从古希腊时期的赌博问题到现代的概率统计学,概率论的发展历程见证了人类对于随机事件的认识和探索。通过学习概率论的发展史,我们可以更好地理解概率论的基本理论和方法,并将其应用于实际问题中。未来,随着科学技术的不断进步,概率论必将在更多领域发挥出重要的作用,为我们提供更多科学决策的依据。作为学习者,我们应当不断学习和探索,将概率论应用于实际,为人类的发展做出更大的贡献。

概率论总结心得篇二

概率论是数学中的一个重要分支,研究的是事件发生的可能性及其规律。概率论在自然科学、社会科学、医学、工程学等领域有着广泛的应用。随着人类社会的不断发展,概率论也在不断完善和发展。本文将从概率论的起源和发展、概率论在现代科学中的应用等方面进行探讨,并总结出一些心得体会。

一、概率论的起源和发展

概率论的起源可以追溯到17世纪初,最早是由法国数学家帕斯卡尔和费马提出的。帕斯卡尔和费马提出了概率论的一些基本概念,如全概率公式、贝叶斯定理等,为概率论的发展奠定了基础。随后,拉普拉斯和伯努利等数学家对概率论进行了深入的研究和推广,使概率论得到了进一步的发展。

二、概率论在现代科学中的应用

概率论在现代科学中有着广泛而重要的应用。在自然科学中,概率论被广泛应用于天文学、物理学、化学等领域。例如,在天文学中,利用概率论的统计方法,可以对星体的运动轨迹、爆炸的概率等进行研究。在社会科学中,概率论也被广泛运用于心理学、经济学、社会学等领域。例如,在心理学中,可以利用概率论的方法,对人的行为和心理状态进行研究和分析。

三、对概率论的理解和认识

通过研究概率论的发展史,我深刻认识到概率论在人类社会发展中的重要性。概率论的发展和应用,为人类社会的进步和发展提供了有力的理论支持。同时,概率论的应用也促进了其他科学领域的发展和进步。我认为,概率论的研究和应用是一项具有深远影响的事业,我们应该更加重视和关注。

四、在学习概率论过程中的收获和体会

在学习概率论的过程中,我收获了很多。首先,我学会了如何利用概率论的方法进行问题的求解和分析。通过反复的练习和实践,我逐渐掌握了概率论的基本原理和推导方法。其次,我学会了如何运用概率论的知识来解决实际问题。概率论可以用于预测或优化某些事件的可能性,因此在实际生活中,我们可以运用概率论的知识来帮助我们做出更好的决策。

五、对概率论未来发展的期望

概率论作为数学的一个分支,在未来的发展中有着广阔的前景。随着科技的不断进步和应用领域的不断扩大,概率论在各个领域的发展和应用也将更加广泛和深入。我期望未来的概率论能够更好地服务于人类社会的发展,为我们解决更多的实际问题提供更好的理论工具。

综上所述,概率论是数学中的一个重要分支,对人类社会的发展有着重要的影响。通过对概率论的起源和发展、概率论在现代科学中的应用等方面的研究,我们不仅可以更好地理解和认识概率论,还可以在学习和应用概率论的过程中获得更多的收获。未来,我相信概率论的发展会更加迅猛,为我们解决更多实际问题提供更好的理论支持。

概率论总结心得篇三

概率论是数学中的一门重要学科,它研究的是随机现象的规律性。在学习概率论的过程中,我深深感受到了它的重要性和普遍性。通过应用概率论的知识,我们可以更好地理解和解释世界上发生的各种随机事件。本文将从概率论的基本概念、概率计算与统计推断、概率模型的应用、概率论的思维方式以及概率论与现实生活的关系等方面,总结我在学习概率论过程中的体会和心得。

首先是对概率论的基本概念的理解。概率是指某个事件在某个试验中发生的可能性大小。在概率论中,我们通过概率的定义和性质来研究各种随机事件的概率计算和统计推断。通过学习概率论,我对概率的计算方法有了更深入的了解,掌握了各种概率计算的基本技巧和方法,能够用正确的思路和方法解决各种概率计算问题。

其次是对概率计算与统计推断的应用。概率论作为一门数学学科,它的应用不仅仅局限于学术研究领域,更广泛地应用于各个行业和领域。例如,在金融领域,我们可以利用概率论的知识进行风险评估和投资决策;在医学领域,我们可以利用概率论的理论和方法进行疾病的诊断和治疗方案的选择。通过学习概率论,我了解到概率论在现实生活中的广泛应用,深刻认识到数学学科对于人类社会的重要性和影响。

第三是对概率模型的应用的认识。在概率论中,我们通过建立概率模型来描述和分析各种随机事件。概率模型是一种数学工具,它可以帮助我们用简洁而准确的方式来表示和分析复杂的现实问题。通过学习概率模型的应用,我深深体会到概率模型对于解决实际问题的重要性。通过建立适当的概率模型,我们可以更好地理解和预测各种随机事件的发生概率,从而为决策和设计提供科学的依据。

第四是对概率论的思维方式的理解。概率论的思维方式是一种既抽象又具体的思维方式。它强调通过数学的形式化和抽象化来深入思考和理解随机现象的规律性。通过学习概率论,我了解到概率论的思维方式对于培养我们的逻辑推理能力和创新思维能力具有重要的意义。它要求我们具备准确的分析和归纳能力,能够运用具体的数学方法解决抽象的概率问题。

最后是概率论与现实生活的关系。概率论是一门与日常生活密切相关的学科,它可以帮助我们更好地理解和解释日常生活中的各种随机事件。通过学习概率论,我认识到我们所面临的很多问题和困惑都与概率有关。例如,我们每天面临的天气预报、抽奖活动、交通拥堵等都可以通过概率论的方法进行分析和解释。通过学习概率论,我们可以更加客观地对待这些问题,提高我们的判断和决策水平。

总之,学习概率论是一项有益而有趣的过程。通过学习概率论,我不仅对概率论的基本概念和计算方法有了更深入的了解,而且对概率论的应用和思维方式有了更加清晰的认识。概率论的学习使我受益匪浅,它培养了我对数学学科的兴趣和热爱,更重要的是,它培养了我用科学的方式思考和解决问题的能力。我相信,通过继续深入学习概率论,我将能够更好地应用数学知识来解决实际问题,为人类社会的进步和发展做出自己的贡献。

概率论总结心得篇四

概率论是数学学科中的一个重要分支,它研究随机现象的规律性。通过学习概率论,我们可以了解到事物发生的可能性与规律,对于我们生活中的决策、风险评估等方面都有重要意义。下面我将分享一些关于概率论的心得体会。

首先,概率论教会了我如何评估风险。在现实生活中,我们常常需要做出各种决策,而这些决策往往伴随着风险。通过概率论的学习,我了解到了如何通过概率的计算来评估风险的大小。我学会了通过计算事件发生的概率和事件发生后的预期价值来判断一个决策的合理性。例如,在投资理财方面,我们可以利用概率论的知识来评估不同投资方案的风险和预期收益,从而做出理性决策。

其次,概率论教会了我如何分析数据。在现代社会中,数据无处不在。概率论提供了一种可靠的方法来分析和解释数据背后的规律。通过学习概率论,我了解到了如何利用统计学方法来进行数据分析,从而得出准确的结论。掌握了概率论的分析工具,我能够更好地理解数据背后的规律,发现数据中的蛛丝马迹,并利用这些规律来做出正确的决策。

同时,概率论还培养了我理性思考和判断的能力。概率论要求我们从客观的角度来看待问题,摒弃主观的个人偏见和情感因素。通过学习概率论,我逐渐培养了理性思考和判断的能力,学会了从事物本质和规律性出发,进行客观、准确的分析和判断。这种思维方式在生活中非常重要,它使我能够客观地看待问题,做出正确的决策,从而更好地解决问题。

此外,概率论还教会了我如何进行论证和推断。概率论是通过建立概率模型和进行推断来研究随机现象的规律性。通过学习概率论,我掌握了一些论证和推断的方法。我能够根据已知条件,推导出未知结果的概率,从而得出合理的结论。这种推断思维培养了我的逻辑思维能力,使我更加善于发现问题背后的规律,运用逻辑推理进行思考和解决问题。

最后,概率论教会了我如何接受不确定性。现实生活充满了各种不确定性,很多时候我们无法预测结果。通过学习概率论,我明白了不确定性是不可避免的,我们只能通过概率的计算和分析,来尽可能减少不确定性带来的负面影响。概率论培养了我对不确定性的忍耐和接受能力,让我能够从容面对生活中的各种未知情况,并做出正确的决策。

总之,概率论是一门重要的数学学科,它不仅能帮助我们评估风险、分析数据,还能培养我们的理性思考能力、论证和推断能力,以及接受不确定性的能力。通过学习概率论,我认识到了生活中事物发生的可能性与规律,也更加深刻地认识到了数学在现实生活中的重要性。概率论的应用范围广泛,它为我们提供了一种看待问题、分析问题和解决问题的方法和思维方式。

概率论总结心得篇五

第一段:引言(150字)

概率论与数理统计作为数学的一个重要分支,深受学术界和产业界的重视。我在大学期间选修了这门课程,并通过阅读经典教材《线性概率论与数理统计》,从中获得了许多宝贵的知识与经验。在这篇文章中,我将分享我对于概率论与数理统计的一些心得体会,以及我在阅读这本教材过程中的感悟。

第二段:概率论的学习(250字)

概率论作为一门基础学科,它的概念和方法贯穿于各个研究领域。通过学习概率论,我深刻领会到概率的本质是对随机事件的度量,并且概率的计算方法既有几何直觉,又有严谨的数学推导。我特别被概率的加法与乘法规则所吸引,它们能够准确地描述多个随机事件之间的关系。此外,通过学习条件概率和贝叶斯定理,我对于如何利用已有的信息进行推断和预测有了更深的理解。

第三段:数理统计的应用(300字)

数理统计是概率论的重要应用领域,它主要研究如何基于抽样数据来对总体进行推断。通过学习数理统计,我了解到实际问题中的随机性和不确定性是不可避免的,但通过合理的抽样和推断方法,我们可以得到对总体的可靠估计。在读线《线性概率论与数理统计》的过程中,我深入了解了抽样分布、参数估计以及假设检验等重要概念和相关方法。其中,最引起我的兴趣的是最大似然估计法和贝叶斯估计法,它们能够利用样本信息来推断总体参数的最佳值。

第四段:统计模型与回归分析(300字)

在实际应用中,我们常常需要建立统计模型来描述和预测变量之间的关系。通过学习线性回归分析,在解决实际问题时,我能够利用样本数据来拟合一个线性模型,并通过对模型参数的估计来预测因变量的值。通过阅读教材中关于回归分析的章节,我进一步理解了回归分析的基本原理和假设,以及如何利用已有数据进行模型的拟合和预测。此外,我还了解到回归分析方法的扩展,如多元回归分析和非线性回归分析等,并且了解到如何通过模型检验和评价来判断拟合效果的好坏。

第五段:总结与展望(200字)

通过阅读《线性概率论与数理统计》,我深入了解了概率论与数理统计的基本概念和方法,以及它们在实际问题中的应用。我认识到概率论与数理统计是解决不确定性和随机性问题的重要工具,它们广泛应用于科学研究、金融投资、市场调研等领域。我相信通过进一步的学习和实践,我会在日后的科研和职业生涯中更加熟练地运用概率论与数理统计的知识和技巧。

概率论总结心得篇六

概率论,作为一门数学分支学科,是研究随机现象和概率规律的,是科学研究中不可缺少的一部分。在我接触概率论的学习中,我深刻领悟到了概率论的应用价值和思维方式。下面,我将从举例说明的角度出发,简要介绍我对概率论的心得体会。

一、设计游戏时需要考虑概率

在日常生活中,我们经常玩各种各样的游戏,如扑克、骰子、轮盘等。这些游戏的规则和赔率都是通过概率计算得出的。比如,在扑克中,不同的牌型出现概率是不同的,而包含不同牌型的牌组出现的概率也是不同的。因此,设计游戏时需要考虑概率,确定各种牌型出现的概率,保证游戏的公平性和刺激性。

二、资产配置需要考虑概率风险

投资是一个涉及概率估算的活动。在投资过程中,我们需要考虑各种不确定因素,如市场风险、利率变动、汇率波动等。通过概率的计算和分析,我们可以更好地掌握资产配置的风险,减少风险带来的损失。比如,在股票投资中,我们可以通过股票的历史表现和市场数据来预测未来的股价涨幅和跌幅,从而提高投资的成功率。

三、医学诊断绕不开概率

医学领域也离不开概率统计的应用。在医学诊断中,医生需要通过分析症状和检查结果来判断疾病的发病率和高危人群。比如,对于某种疾病,医生需要比较疾病发生的概率和某个检测结果的概率,进而确定该患者是否患上该病,从而为患者提供及时有效的治疗。

四、网络安全抗攻击需要通过概率计算

在当今数字化时代中,网络安全问题越来越重要。网络上的攻击事件经常发生,加强网络安全防御是一项迫切的任务。通过概率计算和分析,我们可以更好地抵御网络攻击。比如,在网络防御方面,我们可以通过对攻击行为的模式和规律进行概率分析,从而预测攻击威胁和风险等级,并采取相应的防范措施。

五、概率论帮助我们更好地认知世界

除了上述实际应用,概率论还能够帮助我们更好地认知世界。概率论是一种思维方式,它可以帮助我们更好地理解和解释身边的各种现象。比如,在一组撒有石块的桶中,我们可以通过概率的计算和分析来推断其中一颗特定的石头被选中的概率。在日常生活中,我们也会时常通过概率的方式来判断各种现象的发生概率,这种思维方式能够帮助我们更全面地认知世界。

以上只是从一些方面简略举例说明了概率论的应用和重要性。概率论是一门极为重要的领域,它贯穿于我们日常生活的方方面面,对提高我们生活和工作中的科学素养起到了至关重要的作用。在学习概率论的过程中,我们应该注重实践应用,掌握概率思维方式,从而更好地认知和把握世界的运行规律,为实现个人与社会的共同发展作出更多的贡献。

概率论总结心得篇七

第一段:引言(120字)

数理学科一向被认为是一门饱含智慧和挑战性的学科,而概率论则是数理学科中的一颗璀璨明珠。作为一名学习数理学科的学生,我对概率论产生了极大的兴趣,并选择了以读线概率论为主题的研究。通过深入研究和学习,我不仅加深了对概率论的理解,还发现了数理学科对于培养逻辑思维和解决实际问题的重要性。

第二段:基础知识的拓展(240字)

在学习概率论的过程中,我首先对基础知识进行了全面的拓展。我深入学习了概率的基本概念、概率分布、随机变量以及概率密度函数等重要内容。通过这些学习,我开始觉得概率论并没有想象中的那么抽象和困难,而是一门有趣而且实用的学科。我发现概率论不仅可以帮助人们预测未知的事件,还可以解释许多日常生活中的现象,如彩票、天气预报和股票市场等等。

第三段:应用案例的研究(240字)

为了使概率论更加具体和实践,我决定深入研究一些概率应用案例。我选择了研究骰子和扑克牌这两个常见的游戏中的概率问题。通过计算和模拟实验,我得出了很多有趣的结论。例如,在掷一个骰子的情况下,掷出不同点数的概率是相等的,每个点数的概率为1/6;在一个标准的52张扑克牌的牌组中,有4种花色,每种花色有13张牌,因此从牌组中随机抽取一张牌时,控制的概率为1/52。这些结论让我深刻认识到概率论在生活中的运用。

第四段:数理思维的培养(240字)

除了拓展基础知识和研究应用案例外,我还通过概率论的学习培养了数理思维。概率论要求学生不仅要掌握理论知识,还要具备良好的数学素养和思维能力。在解决概率问题时,我需要用到逻辑推理、数学计算和统计分析等多种思维方式。这培养了我的逻辑思维能力,使我能够更好地解决日常生活中的问题。数理思维的培养不仅对于数理学科的学习有益,还对其他学科和工作领域都具有重要的启发作用。

第五段:总结(360字)

通过读线概率论的学习和研究,我获得了许多心得和体会。概率论是一门充满智慧和挑战性的学科,通过学习概率论,我不仅深化了对基本概念的理解,还研究了一些概率应用案例,并通过培养数理思维提升了自己的逻辑思维能力。概率论对于培养逻辑思维、解决实际问题和发展科学精神具有重要作用。在未来的学习和工作中,我将继续努力探索数理学科的更多领域,为解决生活中的难题做出更多贡献。

概率论总结心得篇八

概率论作为一门重要的数学分支,其发展历程可以追溯到古希腊时期。随着人类社会和科学的进步,概率论的研究逐渐深入,其在自然科学、社会科学以及实际生活中的应用也越来越广泛。在学习概率论的过程中,我深刻体会到概率论的重要性和作用,同时也感受到了其发展历程中的不断完善和提升。本文将从概率论的起源、数学基础、应用领域、发展趋势等方面,总结心得体会,以期更好地理解和运用概率论这门学科。

第一段:概率论的起源和基础

概率论最早的起源可以追溯到古希腊的数学家泰勒斯和斯多葛派。他们首次提出了“偶然性”这一概念,并对其进行了初步的研究。然而,直到17世纪,概率论才正式成为独立的数学领域。布莱兹·帕斯卡和皮埃尔·德·费马是概率论的两位先驱者,他们通过研究赌博和随机实验等问题,打下了概率论的基础。后来,拉普拉斯进一步发展了概率论的数学理论,提出了法则和公式,奠定了概率论的基本框架,为后来的研究铺平了道路。

第二段:概率论的数学基础

概率论的数学基础主要包括概率空间、概率分布、事件和随机变量等概念。概率空间是指由样本空间、事件和概率分布构成的数学结构,它是概率论的基石。概率分布是指随机事件发生的可能性,可以用统计数据或数学模型描述。事件是指样本空间的子集,而随机变量是指在概率空间中取值不确定的变量。这些基本概念在概率论的研究和应用中起着至关重要的作用,深入理解这些概念对于掌握概率论的核心原理和方法至关重要。

第三段:概率论的应用领域

概率论在自然科学、社会科学和实际生活中有着广泛的应用。在自然科学中,概率论被广泛应用于物理学、化学和生物学等领域,如统计力学、量子力学和生物统计学等;在社会科学中,概率论被用于经济学、心理学和社会学等领域的研究,如风险管理、市场预测和调查研究等;在实际生活中,概率论被应用于天气预报、投资决策和健康风险评估等方面。可以说,概率论的应用范围广泛,且对各个领域的发展和进步起到了重要的推动作用。

第四段:概率论的发展趋势

随着科技的飞速发展和社会的日益复杂化,概率论面临着新的挑战和机遇。人工智能、大数据和统计学等新兴科技和学科,为概率论的发展提供了新的契机。利用大数据和机器学习的方法,可以对复杂系统进行建模和预测,从而更好地理解和应对不确定性。另外,随着信息时代的到来,我们需要关注概率论的伦理和道德问题,以确保概率论的应用能够符合社会和个体的利益。因此,概率论的发展趋势将是与其他学科的交叉融合和应用拓展。

第五段:总结与展望

概率论作为一门重要的数学分支,其发展历程充满了坎坷和挑战。从古希腊开始到现代,概率论经历了多位数学家和学者的努力和探索。我们既要致敬这些先驱者,又要继续努力探索概率论的发展和应用,以应对日益复杂化的世界。同时,我们也要注意概率论的应用范围和道德责任,确保概率论的发展与社会的进步相一致。只有这样,我们才能真正将概率论的力量发挥到最大,为人类的进步和发展做出更大的贡献。

综上所述,概率论的起源、数学基础、应用领域和发展趋势等方面都对该学科的发展起到了重要影响。通过学习和理解这门学科的发展历史,我们能更好地理解和应用概率论的原理和方法,从而在实际生活和各个领域中更好地应对不确定性和风险。概率论的发展虽然已有几百年的历史,但仍然有着广阔的发展空间,我们期待概率论在不断完善中为人类的科学和社会进步做出更多的贡献。

概率论总结心得篇九

1. 引言段:概率论作为数学学科的一部分,是研究随机事件发生或结果出现的可能性的一门学问。它在现实生活中的应用广泛,如统计分析、风险评估、金融风险管理等领域都离不开概率论的知识。在学习概率论的过程中,我深刻体会到了其重要性和实用性,并从中获得了不少心得体会。

2. 主体段一:在学习概率论中,我首先认识到概率的本质是对不确定性的度量。通过概率,我们可以对一个事件发生的可能性进行量化,进而对未知结果作出推断。概率论为我们提供了一种科学的方法来处理复杂、不确定的现实问题。对于我个人而言,这使我在面对一些不确定的情况时更加冷静和理性,能够更好地把握风险和做出决策。

3. 主体段二:概率论的学习还教会了我许多实用的技巧和方法。例如,计算复合事件的概率可以通过因式分解原事件,利用条件概率的知识求取各个步骤的概率,从而计算出整个复合事件的概率。此外,通过学习统计学和概率论的联合分布,我们能够根据样本来推断总体参数的估计值,为科学研究和决策提供支持。这些技巧和方法的掌握不仅提高了我在数学问题上的分析和解决能力,也为我今后的工作和学习带来了极大的帮助。

4. 主体段三:概率论还启发了我对世界的观察和思考方式。通过学习概率论,我认识到在自然界和人类社会中,许多事情都具有不确定性,并且往往是多因素共同作用的结果。概率论教会了我如何在复杂的现实环境中理解和分析问题,如何从数据中抽象出数学模型,如何运用概率论的方法和原理来研究问题。这种思考方式不仅在数学领域有用,也为我在其他学科的学习和研究提供了理论指导和方法支持。

5. 结论段:总体来说,学习概率论是一次收获颇丰的经历。通过学习概率论,我不仅掌握了一门重要的数学学科,还培养了严谨的思维方式和实用的解决问题的能力。未来,我将进一步应用和发展概率论的知识,为解决实际问题做出贡献。同时,我也希望更多的人能够了解和学习概率论,因为它不仅是数学学科中的一颗明珠,更是我们认识和理解世界的一扇窗户。

概率论总结心得篇十

本文就考研数学概率论与数理统计这门科目,给各位考生分析一下从09年到14年考研数学真题,各个章节历年都是怎么考查的,以便我们在一阶复习时,有重点的去复习,从而提高我们的复习效率。

随着复试的陆续结束,2014年考研渐渐落下帷幕。参加2015年考研的学子们,从现在开始也该准备奋战2015年考研了。考研数学几乎已经是我们必不可考的科目了,在一阶基础阶段,我们应该把基础打好,为我们以后的学习打下坚实的基础。所谓知己知彼,才能百战不殆。本文就概率论与数理统计这门科目,给各位考生分析一下从09年到14年,各个章节历年都是怎么考查的,以便我们在一阶复习时,有重点的去复习,从而提高我们的复习效率。

第一章随机事件以及概率,公式较多,是整个概率论的基础,贯穿全书始末。一般以小题的形式进行考查,可直接考,也可以它们为载体结合后面章节中其他知识点进行考查。如09年数三第7题,考查了随机事件的关系和运算、概率的基本性质;第22题,第二问以条件概率为载体,考查二维随机变量的概率。13年数一第14题求条件概率。14年数一和数三第7题均考查随机事件的独立性及概率的基本性质。

第二章一维随机变量及其分布,随机变量是概率论的研究对象,是随机事件的量化产物。这章是二维随机变量的基础,每年必考,有单独直接考查,也经常与二维随机变量相结合去考查。如09年数一和数三第8题考查分布函数的特殊性质,第22题考到了一维离散型随机变量的常见分布。10年数一、数三第7题考查一维随机变量分布函数的性质(一点处概率),第8题考查一维连续型随机变量的常见分布及概率密度的充要条件。数一第14题考查利用离散型随机变量的分布律的性质求未知参数,第23题考了常见分布如二项分布。11年数一和数三第7题考查概率密度的充要条件。12年数一第23题求概率密度,数三第7题考了一维随机变量均匀分布的概率密度。13年数一和数三第7题考查一维常见分布中的正态分布,(考查正态分布的.标准化和对称性)。数一第14题考了指数分布,22题考查随机变量的分布函数(得分率较低)。14年数三第22题求随机变量的分布函数。

第三章二维随机变量及其分布,本章不管是大题还是小题,也是每年必考知识点,其重要性不言而喻。09年数一和数三第8题考查二维随机变量(一个连续一个离散)的分布函数。数一第22题,考查二维离散型随机变量的分布律,数三第22题考查二维连续性随机变量的概率密度的性质(哪求概率哪积分)。10年数一和数三第22题,考查利用二维连续型随机变量的概率密度的性质求概率密度函数中的未知参数,条件概率密度。数三第23题,考查二维离散型随机变量的联合分布律。11年数一第8题考查随机变量的独立性,数一和数三第14题考查随机变量独立性及二维正态分布的性质,数一和数三第22题离散型随机变量的联合分布律、边缘分布与联合分布的关系,二维离散型随机变量分布函数。数三第23题二维均与分布的边缘分布、条件概率密度。12年数一第7题,考查二维连续性随机变量的概率密度的性质及独立性,第22题求联合分布律。数三第7题二维随机变量的概率密度的性质(哪求概率哪积分),第22题求联合分布律,第23题考查最大值最小值函数的概率密度。13年数三第22题考查已知条件概率密度和边缘概率密度求联合概率密度,边缘概率密度,概率密度的性质。14年数三第23题考查联合分布律。

第四章数字特征,是描述随机变量或是随机变量之间的统计规律性的特征,是研究随机的重要工具。10年数一第14题期望的性质,第23题常见分布的期望和方差。数三第14题考查期望的性质及常见统计量的期望,第23题离散型随机变量的协方差。11年数一第22题第三问求相关系数,第23题第二问考查期望,方差的计算。数三8题考查常见统计量的期望和方差,第22题同数一。12年第8题考相关系数,第22题第二问考查相关系数和协方差。数三第23题常见随机变量的期望性质。13年数三第14题求分布已知的随机变量函数期望。14年数一第8题考查随机变量期望和方差的定义和性质,第22题求期望,第23题考查分布已知的随机变量的期望和方差。数三第22题求期望。

第五章大数定律和中心极限定理,本章在考研中属于不常考知识点,分值一般占4分。从历年考题上看,09年至14年,只有14年数一第23题第三问考了大数定律。想这些小的知识点,以前不常考的知识点也要引起我们的注意。

第六章数理统计的基本概念,本章在考研中经常以小题的形式出现,分值维4分左右。09年数一、数三打开、第14题考查常见统计量的性质。10年数三第14题考查常见统计量的期望,常见统计量常常会结合数字特征一起考查。11年数三第8题常见统计量的数字特征。12年数三第8题考查三大抽样分布。13年数一第8题考查t分布与f分布的关系。14年数三第8题考查三大抽样分布。

第七章参数估计,这章是每年必考的题目,常常在第23题进行考查,分值在11分左右。09年数一和数三考查矩估计和极大似然估计。10年数一第23题以无偏估计为载体考查数字特征。11年数一第23题考查极大似然估计。12年数一第23题考查矩估计和极大似然估计。13年数一、数三第23题考查矩估计和极大似然估计。14年数一第23题考查极大似然估计。

以上是从09年考研数学改革以来,概率论与数理统计这个科目每一章节所考过的题目及知识点。希望对大家在复习的时候有所帮助,祝各位考生在一阶基础阶段复习顺利!

概率论总结心得篇十一

概率论是一门看似抽象却又实用的学科,它能用数字和统计来捕捉我们日常生活中的偶然性。在学习概率论的过程中,我深刻体会到了概率论对科学和技术领域的重要性,也明白了如何运用概率论来解决现实世界中的问题。本文将分享我在学习概率论过程中的体会与感悟,以下为具体的内容。

第一段:对概率论的印象和学习初体验

对于一个数学化的世界而言,概率论是一门富有想象力的学科,其为我们提供了一种理论框架来研究随机事件的概率。刚开始接触概率论时,我并没有完全掌握这门学科的核心思想,但我相信只要善于思考和努力实践,我就能够理解这门学科并应用于实际中。在学习过程中,我带着探究的心态去看待和理解概率论,也不断地寻找学习方法,最终实现了自我拓展。

第二段:概率论对科学和技术的重要性

概率论在科学和技术领域中具有非常重要的地位。通过对大量数据的分析,我们可以学习到更多关于自然规律与事件的规律性,这也有助于我们在技术的创新方面做出更好的决策。当然,这种学问不仅仅会被应用于现实生活中,也会被用于金融、工程、社会学、心理学等领域,因为我们日常生活中无处不在的随机性,我们都需要学习并运用概率论技能。

第三段:了解概率的种类、计算方法和概率分布

概率学都有两大基础:一是经典概率,即是指在事前能够确定实验结果及其概率的情形。二是条件概率,是指在知道部分结果后,对未知最终结果的总体加以推断的概率形态。在学习经典概率和条件概率时,需要掌握一些基本的计算方法,如全概率公式、贝叶斯公式等。此外,概率学还涉及到几种不同的概率分布,如正态分布、二项分布等,这些分布特征和计算方法都需要掌握。

第四段:对概率的研究及应用

在习得概率后,我们还可以在更高层次上通过复杂的概率模型对统计数据进行分析。如在工业生产过程中,我们可使用贝叶斯网络对生产过程进行监测和控制,从而使生产过程更加高效和精准。另外,在金融领域中,我们可基于随机性对股票价格进行预测,在投资决策逐步上升时也可以做出更好的决策。总的来说,概率理论不仅是理论学问,而且适用于到现实生活,并在各个领域作出了贡献。

第五段:对概率论的个人体会

在学习过程中,我体验到了深入了解概率论,然后提高了对事件概率分析的了解,这给我解决问题和未来生涯方向及拓展了思路和认知。在一些理论概念晦涩难懂的时候,我也会感到些许烦躁,但是这种压力也促使我付出更多的精力来深广理解非常重要的专业学问。

结论:

总之,学习概率论是一项非常值得努力的任务,它让我可以更好地理解自己、自然、社会与大数据等相关问题,赋予我了对复杂系统的理解。而且,随着数字化对现代的影响越来越大、数据的重要性不断增加,概率论将会越来越重要,并给予我们许多机会对未知的人生启航。

概率论总结心得篇十二

一、多边形

1、多边形:由一些线段首尾顺次连结组成的图形,叫做多边形。

2、多边形的边:组成多边形的各条线段叫做多边形的边。

3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。

4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。

5、多边形的周长:多边形各边的长度和叫做多边形的周长。

6、凸多边形:把多边形的任何一条边向两方延长,如果多边形的其他各边都在延长线所得直线的问旁,这样的多边形叫凸多边形。

说明:一个多边形至少要有三条边,有三条边的叫做三角形;有四条边的叫做四边形;有几条边的叫做几边形。今后所说的多边形,如果不特别声明,都是指凸多边形。

7、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。

8、多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做多边形的外角。

注意:多边形的外角也就是与它有公共顶点的.内角的邻补角。

二、平行四边形

1、平行四边形:两组对边分别平行的四边形叫做平行四边形。

2、平行四边形性质定理1:平行四边形的对角相等。

3、平行四边形性质定理2:平行四边形的对边相等。

4、平行四边形性质定理2推论:夹在平行线间的平行线段相等。

5、平行四边形性质定理3:平行四边形的对角线互相平分。

6、平行四边形判定定理1:一组对边平行且相等的四边形是平行四边形。

7、平行四边形判定定理2:两组对边分别相等的四边形是平行四边形。

8、平行四边形判定定理3:对角线互相平分的四边形是平行四边形。

9、平行四边形判定定理4:两组对角分别相等的四边形是平行四边形。

说明:(1)平行四边形的定义、性质和判定是研究特殊平行四边形的基础。同时又是证明线段相等,角相等或两条直线互相平行的重要方法。

(2)平行四边形的定义即是平行四边形的一个性质,又是平行四边形的一个判定方法。

三、矩形

矩形是特殊的平行四边形,从运动变化的观点来看,当平行四边形的一个内角变为90°时,其它的边、角位置也都随之变化。因此矩形的性质是在平行四边形的基础上扩充的。

1、矩形:有一个角是直角的平行四边形叫做短形(通常也叫做长方形)

2、矩形性质定理1:矩形的四个角都是直角。

3.矩形性质定理2:矩形的对角线相等。

4、矩形判定定理1:有三个角是直角的四边形是矩形。

说明:因为四边形的内角和等于360度,已知有三个角都是直角,那么第四个角必定是直角。

5、矩形判定定理2:对角线相等的平行四边形是矩形。

说明:要判定四边形是矩形的方法是:

法一:先证明出是平行四边形,再证出有一个直角(这是用定义证明)

法二:先证明出是平行四边形,再证出对角线相等(这是判定定理1)

法三:只需证出三个角都是直角。(这是判定定理2)

四、菱形

菱形也是特殊的平行四边形,当平行四边形的两个邻边发生变化时,即当两个邻边相等时,平行四边形变成了菱形。

1、菱形:有一组邻边相等的平行四边形叫做菱形。

2、菱形的性质1:菱形的四条边相等。

3、菱形的性质2:菱形的对角线互相垂直,并且每一条对角线平分一组对角。

4、菱形判定定理1:四边都相等的四边形是菱形。

5、菱形判定定理2:对角线互相垂直的平行四边形是菱形。

说明:要判定四边形是菱形的方法是:

法一:先证出四边形是平行四边形,再证出有一组邻边相等。(这就是定义证明)。

法二:先证出四边形是平行四边形,再证出对角线互相垂直。(这是判定定理2)

法三:只需证出四边都相等。(这是判定定理1)

五、正方形

正方形是特殊的平行四边形,当邻边和内角同时运动时,又能使平行四边形的一个内角为直角且邻边相等,这样就形成了正方形。

1、正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形性质定理1:正方形的四个角都是直角,四条边都相等。

3、正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。

4、正方形判定定理互:两条对角线互相垂直的矩形是正方形。

5、正方形判定定理2:两条对角线相等的菱形是正方形。

注意:要判定四边形是正方形的方法有

方法一:第一步证出有一组邻边相等;第二步证出有一个角是直角;第三步证出是平行四边形。(这是用定义证明)

方法二:第一步证出对角线互相垂直;第二步证出是矩形。(这是判定定理1)

方法三:第一步证出对角线相等;第二步证出是菱形。(这是判定定理2)

六、梯形

1、梯形:一组对边平行而另一组对边不平行的四边形叫做梯形。

2、梯形的底:梯形中平行的两边叫做梯形的底(通常把较短的底叫做上底,较长的边叫做下底)

3、梯形的腰:梯形中不平行的两边叫做梯形的腰。

4、梯形的高:梯形有两底的距离叫做梯形的高。

5、直角梯形:一腰垂直于底的梯形叫做直角梯形。

6、等腰梯形:两腰相等的梯形叫做等腰梯形。

7、等腰梯形性质定理1:等腰梯形在同一底上的两个角相等。

8、等腰梯形性质定理2:等腰梯形的两条对角线相等。

9、等腰梯形的判定定理l。:在同一个底上钩两个角相等的梯形是等腰梯形。

10、等腰梯形的判定定理2:对角线相等的梯形是等腰梯形。

研究等腰梯形常用的方法有:化为一个等腰三角形和一个平行四边形;或两个全等的直角三角形和一矩形;或作对角线的平行线交下底的延长线于一点;或延长两腰交于一点。

七、中位线

1、三角形的中位线连结三角形两边中点的线段叫做三角形的中位线。

说明:三角形的中位线与三角形的中线不同。

2、梯形的中位线:连结梯形两腰中点的线段叫做梯形中位线。

3、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。

4、梯形中位线定理:梯形中位线平行于两底,并且等于两底和的一半。

八、多边形的面积

说明:多边形的面积常用的求法有:

(1)将任意一个平面图形划分为若干部分再通过求部分的面积的和,求出原来图形的面积这种方法叫做分割法。如图3-l,作六边形的最长的一条对角线,从其它各顶点向这条对角线引垂线,把六边形分成四个直角三角形和两个直角梯形,计算它们的面积再相加。

(2)将一个平面图形的某一部分割下来移放在另一个适当的位置上,从而改变原来图形的形状。利用计算变形后的图形的面积来求原图形的面积的这种方法。叫做割补法。

(3)将一个平面图形通过拼补某一图形,使它变为另一个图形,利用新的图形减去所补充图形的面积,来求出原来图形面积的这种方法叫做拼凑法。

注意:两个图形全等,它们的面积相等。等底等高的三角面积相等。一个图形的面积等于它的各部分面积的和。

概率论总结心得篇十三

第一部分:随机事件和概率

(1)样本空间与随机事件

(2)概率的定义与性质(含古典概型、几何概型、加法公式)

(3)条件概率与概率的乘法公式

(4)事件之间的关系与运算(含事件的独立性)

(5)全概公式与贝叶斯公式

(6)伯努利概型

第二部分:随机变量及其概率分布

(1)随机变量的概念及分类

(2)离散型随机变量概率分布及其性质

(3)连续型随机变量概率密度及其性质

(4)随机变量分布函数及其性质

(5)常见分布

(6)随机变量函数的.分布

第三部分:二维随机变量及其概率分布

(1)多维随机变量的概念及分类

(2)二维离散型随机变量联合概率分布及其性质

(3)二维连续型随机变量联合概率密度及其性质

(4)二维随机变量联合分布函数及其性质

(5)二维随机变量的边缘分布和条件分布

(6)随机变量的独立性

(7)两个随机变量的简单函数的分布

第四部分:随机变量的数字特征

(1)随机变量的数字期望的概念与性质

(2)随机变量的方差的概念与性质

(3)常见分布的数字期望与方差

(4)随机变量矩、协方差和相关系数

第五部分:大数定律和中心极限定理

(1)切比雪夫不等式

(2)大数定律

(3)中心极限定理

第六部分:数理统计的基本概念

(1)总体与样本

(2)样本函数与统计量

(3)样本分布函数和样本矩

第七部分:参数估计

(1)点估计

(2)估计量的优良性

(3)区间估计

第八部分:假设检验

(1)假设检验的基本概念

(2)单正态总体的均值和方差的假设检验

(3)双正态总体的均值和方差的假设检验

打有准备之战,胜算才能更大。希望各2015考研生抓紧时间复习,在考研中取得好成绩。

概率论总结心得篇十四

第一章随机事件和概率

一、本章的重点内容:

四个关系:包含,相等,互斥,对立r

五个运算:并,交,差r

四个运算律:交换律,结合律,分配律,对偶律(德摩根律)r

概率的基本性质:非负性,规范性,有限可加性,逆概率公式r

五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式r·

条件概率r利用独立性进行概率计算r·重伯努利概型的计算,

近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。

二、常见典型题型:

1.随机事件的关系运算r2.求随机事件的概率r3.综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。

第二章随机变量及其分布

一、本章的重点内容:

随机变量及其分布函数的概念和性质(充要条件)r

分布律和概率密度的性质(充要条件)r

会计算与随机变量相联系的任一事件的概率r

随机变量简单函数的概率分布,

近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布

二、常见典型题型:

1.求一维随机变量的分布律、分布密度或分布函数r

2.一个函数为某一随机变量的分布函数或分布律或分布密度的.判定r

3.反求或判定分布中的参数r

4.求一维随机变量在某一区间的概率r

5.求一维随机变量函的分布。

第三章二维随机变量及其分布

一、本章的重点内容:

二维随机变量及其分布的概念和性质,

边缘分布,边缘密度,条件分布和条件密度,

随机变量的独立性及不相关性,

一些常见分布:二维均匀分布,二维正态分布,

几个随机变量的简单函数的分布。

本章是概率论重点部分之一!应着重对待。

二、常见典型题型:

1.求二维随机变量的联合分布律或分布函数或边缘概率分布或条件分布和条件密度r

2.已知部分边缘分布,求联合分布律r

3.求二维连续型随机变量的分布或分布密度或边缘密度函数或条件分布和条件密度r

4.两个或多个随机变量的独立性或相关性的判定或证明r

5.与二维随机变量独立性相关的命题r

6.求两个随机变量的相关系数r

7.求两个随机变量的函数的概率分布或概率密度或在某一区域的概率。

概率论总结心得篇十五

概率论是数学中的一个重要领域,应用广泛,涉及到保险、金融、统计等多个领域。甚至在我们日常生活中,也会涉及到一些概率的概念,比如说摇彩票、扔硬币等。那么,概率论是怎么发展起来的呢?在这篇文章中,我将通过学习概率论的发展史,分享我对概率论的一些心得体会。

二、概率论的起源

概率论的起源可以追溯到古代,比如说在古希腊时期,人们使用投骰子来做出重要的决策。但是,真正的概率论是在17世纪以后开始发展的,而当时的概率论重要的研究对象是赌博的均值问题。18世纪,概率论开始出现在自然科学中,比如说生物学家在研究基因传递时使用了概率的概念。19世纪,概率论逐渐成为了现代统计学的基础。

三、概率论的发展

概率论的发展可以分为三个阶段。第一个阶段是概率论的基础期,在这个阶段,人们开始研究赌博的均值问题,建立了概率分布的概念。第二个阶段是概率论的成熟期,在这个阶段,人们开始探讨概率分布的性质,比如说均值、方差等。同时,也出现了众多重要的概率分布,比如说正态分布、泊松分布等。第三个阶段是概率论的发展新时期,在这个阶段,人们开始研究概率论的应用问题,比如说最小二乘法、随机游走等。

四、概率论的应用

概率论在各个领域都有着广泛的应用。在经济学中,人们使用概率论来研究股票市场行情的走势;在医学领域,人们把概率论应用于疾病的诊断和治疗中。在自然科学领域,人们使用概率论来研究量子力学中的随机过程。在工程领域,人们应用概率论研究应用统计学的问题,比如说质量控制等。

五、我的收获

通过学习概率论的发展史,我深刻地认识到概率论是数学中一个重要的分支,有着广泛应用。同时,我也意识到概率论的发展是与社会的发展密切相关的。随着科技的发展,人们对概率论的应用也将越发广泛。在今后的学习和工作中,我将努力加强对概率论的掌握,并尽可能地将其应用于实际生活中。

概率论总结心得篇十六

越是临考试,大家一定要稳定自己的情绪,不能乱了脚步。下面是大学概率论知识点总结,为大家提供参考。

第一章随机事件和概率

1、随机事件的关系与运算

2、随机事件的运算律

3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)

4、概率的基本性质

5、随机事件的条件概率与独立性

6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)

7、全概率公式的思想

8、概型的计算(古典概型和几何概型)

第二章随机变量及其分布

1、分布函数的定义

2、分布函数的充要条件

3、分布函数的性质

4、离散型随机变量的分布律及分布函数

5、概率密度的充要条件

6、连续型随机变量的性质

7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)

8、随机变量函数的分布(离散型、连续型)

第三章多维随机变量及其分布

1、二维离散型随机变量的三大分布(联合、边缘、条件)

2、二维连续型随机变量的三大分布(联合、边缘和条件)

3、随机变量的独立性(判断和性质)

4、二维常见分布的性质(二维均匀分布、二维正态分布)

5、随机变量函数的分布(离散型、连续型)

第四章随机变量的`数字特征

1、期望公式(一个随机变量的期望及随机变量函数的期望)

2、方差、协方差、相关系数的计算公式

3、运算性质(期望、方差、协方差、相关系数)

4、常见分布的期望和方差公式

第五章大数定律和中心极限定理

1、切比雪夫不等式

2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)

3、中心极限定理(列维—林德伯格定理、棣莫弗—拉普拉斯定理)

第六章数理统计的基本概念

1、常见统计量(定义、数字特征公式)

2、统计分布

3、一维正态总体下的统计量具有的性质

4、估计量的评选标准(数学一)

5、上侧分位数(数学一)

第七章参数估计

1、矩估计法

2、最大似然估计法

3、区间估计(数学一)

第八章假设检验(数学一)

1、显著性检验

2、假设检验的两类错误

3、单个及两个正态总体的均值和方差的假设检验。

概率论总结心得篇十七

一、种子的萌发

3、抽样检测:抽样检测是指从检测对象中抽取少量个体作为样本进行检测。以样本的检测结果来反映总体情况的方法。

二、植株的生长

1、根尖的结构:根冠(保护)、分生区(分裂增生)、伸长区(伸长最快)、成熟区(外有根毛,内有导管)

2、幼根的生长一方面要靠分生区细胞的分裂增加细胞的数量;另一方面要靠伸长区细胞的体积的增大。

4、植株生长需要营养物质:水、无机盐(需要量最多的是含氮的、含磷的含钾的无机盐)、有机物。

三、开花和结果

1、花的结构:(p.104)

2、花的主要结构是雄蕊和雌蕊,雄蕊花药里有花粉,花粉中有精子,雌蕊下部的子房里有胚珠,胚珠里有卵细胞。

3、传粉:花粉从花药中散放而落在雌蕊柱头上的过程,叫做传粉。传粉方式一般有两种类型:自花传粉和异花传粉。

4、受精:胚珠里面的卵细胞,与来自花粉管中的精子结合,形成受精卵的过程,称为受精。

将本文的word文档下载到电脑,方便收藏和打印

推荐度:

点击下载文档

搜索文档

概率论总结心得篇十八

随着学习的深入,我们在大二下学期开了《概率论与数理统计》这一门课。概率论与数理统计是研究随机现象统计规律性的一门数学学科,其理论与方法的应用非常广泛,几乎遍及所有科学技术领域、工农业生产、国民经济以及我们的日常生活。学习这门课,不仅能培养我们的理论学习能力,也能在日后给科研及生活提供一种解决问题的工具。

说实话,这门课给我的第一印象就是它可能很难很抽象,很难用于实际生活中,并且对于这门课的安排与流程我并没有太确切的认识。但在第一节课上听了老师的讲解我才理出了一些头绪。这门课分为概率论与数理统计两个部分,其中概率论部分又是数理统计的基础。我们所要课程就是围绕着这两大部分来学习的。

如今经过了一学期的学习,在收获了不少知识的同时也颇有些心得体会。首先,它给我们提供了一种解决问题的的新方法。我们在解决问题不一定非要从正面进行解决。在某些情形下,我们可以进行合理的估计,然后再去解决有关的问题。并且,概率论的思维方式不是确定的,而是随机的发生的思想。

其次,在这门课程学习中,我意识到其实概率论与数理统计才是与生活紧密相连的。它用到高数的计算与思想,却并不像高数那样抽象。而且老师所讲例题均与日常生产和生活相关,让我明白了日常生产中如何应用数学原理解决问题,我想假设检验便是很好的诠释。

最后,概率论与数理统计应该被视为工具学科,因为它对其他学科的学习是不可少的。它对统计物理的学习有重要意义,同时对于学习经济学的人在探究某些经济规律也是十分重要的。

总之,通过学习这门课程,我们可以更理性的对待生活中的一些问题,更加谨慎的处理某些问题。

最后,感谢老师近半年来的辛苦教学与谆谆教导!

【本文地址:http://www.xuefen.com.cn/zuowen/5448264.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档