最优一元一次方程概念教案(模板13篇)

格式:DOC 上传日期:2023-10-30 20:32:05
最优一元一次方程概念教案(模板13篇)
时间:2023-10-30 20:32:05     小编:字海

教案是教师为实施某一教学活动而编写的一种详细的指导性文件。教案的编写应充分利用多媒体和教学辅助工具,提升教学效果。教案范文展示了不同学段、不同学科的教学内容和教学设计。

一元一次方程概念教案篇一

1、了解方程和一元一次方程的概念;

2、理解方程的解的概念,会判断一个数值是否是已知方程的解。

环节一自主学习——对于疑惑的问题尽量小组互助解决。

课前至少阅读课本两遍,完成例题与习题,熟知本节课学习目标与重点难点。

环节二生生互动——课堂5分钟练习并与小组成员相互交流心得。

1、下列各式中,是方程的是()

a。b。c。d。

2、方程的概念:含有的等式叫做方程。

3、下列方程中是一元一次方程的是()

a。b。c。d。

4、一元一次方程的概念:只含有个未知数,并且未知数的次数都是,这样的整式方程叫做一元一次方程。

5、根据下面所给的条件,能列出方程的是()

a与的'差的b甲数的2倍与乙数的的和

c一个数的是6d与的差的

6、由第5题可知,问题中必须含有才能列出方程,这正是列方程的关键!

7、下列以为解的方程是()

a。b。c。d。

8、解方程与方程的解的概念:解方程就是求出使方程中等号的值,而这个值就是。

环节三师生互动——你惑我释,合作交流,知识提升。

一元一次方程概念教案篇二

(一).知识与技能

会利用合并同类项解一元一次方程.

(二).过程与方法

通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用.

(三).情感态度与价值观

开展探究性学习,发展学习能力.

二、重、难点与关键

(一).重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程.

(二).难点:会列一元一次方程解决实际问题.

(三).关键:抓住实际问题中的数量关系建立方程模型.

三、教学过程

(一)、复习提问

1.叙述等式的两条性质.

2.解方程:4(x-)=2.

解法1:根据等式性质2,两边同除以4,得:

x-=

两边都加,得x=.

解法2:利用乘法分配律,去掉括号,得:

4x-=2

两边同加,得4x=

两边同除以4,得x=.

(二)、新授

公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题.

分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买2x台,又知今年购买数量是去年的2倍,则今年购买了22x(即4x)台.

题目中的相等关系为:三年共购买计算机140台,即

前年购买量+去年购买量+今年购买量=140

列方程:x+2x+4x=140

如何解这个方程呢?

2x表示2x,4x表示4x,x表示1x.

根据分配律,x+2x+4x=(1+2+4)x=7x.

这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0.

下面的框图表示了解这个方程的具体过程:

x+2x+4x=140

合并

7x=140

系数化为1

x=20

由上可知,前年这个学校购买了20台计算机.

上面解方程中合并起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.

例:某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.

分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.

问:本题中相等关系是什么?

答:甲组人数+乙组人数+丙组人数=60.

解:设每一份为x人,则甲组人数为2x人,乙组人数为3x人,丙组为5x人,列方程:

2x+3x+5x=60

合并,得10x=60

系数化为1,得x=6

所以2x=12,3x=18,5x=30

答:甲组12人,乙组18人,丙组30人.

请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60.

(三)、巩固练习

1.课本第89页练习.

(1)x=3.

(2)可以先合并,也可以先把方程两边同乘以2.

具体解法如下:

解法1:合并,得(+)x=7

即2x=7

系数化为1,得x=

解法2:两边同乘以2,得x+3x=14

合并,得4x=14

系数化为1,得x=

(3)合并,得-2.5x=10

系数化为1,得x=-4

2.补充练习.

(2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)

解:(1)设每份为x个,则黑色皮块有3x个,白色皮块有5x个.

列方程3x+2x=32

合并,得8x=32

系数化为1,得x=4

黑色皮块为43=12(个),白色皮块有54=20(个).

(2)设全书共有x页,那么第一天读了(x+2)页,第二天读了(x-1)页.

本问题的相等关系是:第一天读的`量+第二天读的量+还剩23页=全书页数.

列方程:x+2+x-1+23=x.

四、课堂小结

初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中找等量关系是关键也是难点,本节课的两个问题的相等关系都是:总量=各部分量的和.这是一个基本的相等关系.

合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0.

五、作业布置

1.课本第93页习题3.2第1、3(1)、(2)、4、5题.

2.选用课时作业设计.

合并同类项习题课(第2课时)

一、解方程.

1.(1)3x+3-2x=7;(2)x+x=3;

(3)5x-2-7x=8;(4)y-3-5y=;

(5)-=5;(6)0.6x-x-3=0.

二、解答题.

3.甲、乙两地相距460千米,a、b两车分别从甲、乙两地开出,a车每小时行驶60千米,b车每小时行驶48千米.

(1)两车同时出发,相向而行,出发多少小时两车相遇?

4.甲、乙二人从a地去b地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达b地,求a、b两地之间的距离.

答案:

二、2.705人,设育红小学1995年学生人数为x人,列方程320=x-150.

3.(1)4小时,设出发后x小时相遇,列方程60x+48x=460.

(2)3小时,设b车开出后x小时两车相遇,列方程60+60x+48x=460.

4.3千米,设a、b两地间的距离为x千米,-=.

5.1分钟,设经过x分钟两人首次相遇,列方程550x-250x=400.

一元一次方程概念教案篇三

1、学生通过旅游、选灯、用电、水费、用气、电信等问题的方案设计,弄清各类问题中的等量关系,掌握用方程来解决一些生活中的实际问题的技巧.

2、通过一个开放式的空间,放手让学生去探索,去发现,培养学生分析问题和用方程去解决实际问题的能力.

3、让学生在生动活泼的问题情境中感受数学的应用价值,产生对数学的兴趣,养成认真倾听他人发言的习惯,感受与同伴交流的乐趣。

把生活中的实际问题抽象出数学问题。

引导学生弄清题意,设计出各类问题的最佳方案

(师生活动)设计理念

提出问题问题:小江一家三口准备国庆节外出旅游.现有两家

由学生完成选择旅行社的方案。从学生比较感兴趣的实际生活问题,引入新课,并由学生自己设计出选择旅行社的方案,为新授哪种灯省钱埋下伏笔。

分析问题出示教科书94页探究2:用哪种灯省钱?

师生共同探讨完成下列问题:

1、上述问题中基本等量关系有哪些?

(费用=灯的售价+电费,电费=0.5×灯的功率(千

瓦)×照明时间(时)

2、列式表示两种灯的费用各为多少?

(节能灯用t小时的费用(元)为:60+0.5×0-o.11t

白炽灯用t小时的费用(元)为:3十0.06×0.5t)

3、当照明时间t取何值时,(1)白炽灯比节能灯省钱,

(2)节能灯比白炽灯省钱?(3)白炽灯与节能灯费用一样?(精确到1小时)

4、如果计划照明3500小时,则需要购买两个灯,试设计你认为能省钱的选灯方案。

以课本例题中实际生活问题为素材,使学生感受数学来源于生活,激发学生学数学的兴趣,师生共同参与合作完成问题中的探讨的几个问题,体现了以学生为主体,教师作为问题解决的组织者,引导者,合作者的新课程教育理念。

探索创新下面问题是学生课前调查到的与人们生活密切相关的实际问题,每一大组完成一个,分四个小组讨论后设计出最佳方案。

10分钟后,大组派代表交流发言.

1、电价问题

据我们调查,我市居民生活用电价格为每天早晨7时到晚上23时每度0.47元,每天23时到第二天7时每度0.25元.请根据你家每月用电情况,设计出用电的最佳方案.

2、水费问题

我市为鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨部分按0.45元/吨收费,超过10吨而不超过20吨部分按0.8元/吨收费,超过20吨部分按0.50元/吨收费,某月甲户比乙户多交水费3.75元,已知乙户交水费3.15元.

问:(1)甲、乙两户该月各用水多少吨?(自来水按整吨收费)

(2)根据你家用水情况,设计出最佳用水方案.

3、用气问题

某市按下列规定收取每月的煤气费:用煤气如果不超过60立方米,按每立方米o.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.怎样用气最节约?请设计出方案来.

4、电信支费

随着电信事业的发展,各式各样的电信业务不断推出,请你通过市场调查,为你家设计出一种通讯方案.

(1)两地间打长途电话所付电费有如下规定:若通话在3分钟以内都付2.4元.超过3分钟以后,每分钟付1元.

根据上述资料,(1)你认为一个月通话多少分钟,两种移动通讯费用相同?(2)某人估计一个月内通话300分钟,应选择哪种移动通讯或用长途电话合算些?提供给学生一个开放的空间,放手让学生去探索、去发挥,通过学生合作交流来设计最佳方案,培养学生用数学的意识和创新意识。

课堂小结可用教师对各小组交流的方案进行简单的评价作为小结。

布置作业1、必做题:课本第98页习题2.4第5、7题

2、选做题:

分层次布置作业。

本课教育评注(课堂设计理念,实际教学效果及改进设想)

本课以生活中的实际问题引入,以学生为主体,师生共同合作参与完成例中设计的

几个问题,教师在学生接受新知识的过程中,起到了一个组织者、合作者、引导者的角色.学生的学习始终是主动的.通过学生课前的社会调查,对生活中的一些方案以开放形式设计问题,学生通过小组合作交流,设计出不同的方案,让学生在生动活泼的交流情境中感受到数学的应用价值,产生对数学的兴趣.同时养成认真倾听他人发言的习惯,感受与同伴交流想法的乐趣.通过用电、用水最佳方案的设计,培养学生节约用电、用水的意识.

一元一次方程概念教案篇四

教学目标:

1、能说出什么叫一元一次方程;

2、知道“元”和“次”的含义;

3、熟练掌握最简一元一次方程的解法及理论依据;

能力目标:

1、培养学生准确运算的能力;

2、培养学生观察、分析和概括的能力;

3、通过解方程的教学,了解化归的数学思想.

德育目标:

1、渗透由特殊到一般的辩证唯物主义思想;

2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;

3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;

重点:

1、一元一次方程的概念;

2、最简方程的解法;

难点:正确地解最简方程。

教学方法:引导发现法

教学过程

一、旧知识的复习:

1.什么叫等式?等式具有哪些性质?

2.什么叫方程?方程的解?解方程?

二、新知识的教学:

(1)只含有一个未知数;

(2)未知数的次数都是一次。

想一想:

(1)你认为最简单的一元一次方程是什么样的?

(2)怎样求最简方程(其中是未知数)的解?

三、巩固练习

1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。

2、检测:

3、课堂小结:

四、本节学习的主要内容

1、一元一次方程定义;

2、最简方程(其中是未知数);

3、解最简方程的主要思路和解题的关键步骤及依据。

五、课堂作业。

一元一次方程概念教案篇五

学习目标

1.了解一元一次方程及其相关概念

2.掌握等式的性质,理解掌握移项法则

3.会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法

5.初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的.实际问题。

难点重点:

解方程、用方程解决实际问题

难点:用方程解决实际问题

教学流程

二、典例回顾

1.一元一次方程的概念:

例1.试判断下列方程是否为一元一次方程.

(1).x=5(2).x2+3x=2(3).2x+3y=5

2.一元一次方程的解(根):

判断下列x值是否为方程3x-5=6x+4的解.

(1).x=3(2)x=3

3.解一元一次方程的基本思路:

4.解决问题的基本步骤

解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:

去分母,得4x+8(x+2)=40

去括号,得4x+8x+16=40

移项及合并,得12x=24

系数化为1,得x=2

答:应先安排2名工人工作4小时.

注意:工作量=人均效率人数时间

本题的关键是要人均效率与人数和时间之间的数量关系.

三、基础训练:课本第113页第1.2.3题.

四、综合训练:课本113页至114页4.5.6.7.8

五、达标训练:3.7

五、课堂小结:收获了哪些?还有哪些需要再学习?

一元一次方程概念教案篇六

2.培养学生观察能力,提高他们分析问题和解决问题的'能力;

3.使学生初步养成正确思考问题的良好习惯.

教学重点和难点

一元一次方程解简单的应用题的方法和步骤.

课堂教学过程设计

一、从学生原有的认知结构提出问题

为了回答上述这几个问题,我们来看下面这个例题.

例1某数的3倍减2等于某数与4的和,求某数.

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

x-15%x=42500,

所以x=50000.

答:原来有50000千克面粉.

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

教师应指出:

(2)例2的解方程过程较为简捷,同学应注意模仿.

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.

一元一次方程概念教案篇七

一、教材分析

1、地位和作用

地位:本节位于青岛版七年级上册第八章第4节第三课时,在研究了解简单的一元一次方程的基础上进行的,其后是第5节一元一次方程的应用。

作用:是一元一次方程解应用题的基础,也是解其他方程的基础。

2、教学目标

(1)知识与技能:让学生掌握解一元一次方程的基本步骤,会解一元一次方程。

(2)过程与方法:让学生经历解一元一次方程的探索过程,总结出解一元一次方程的一般步骤。

(3)情感、态度与价值观:通过自主学习、合作交流,培养学生的自信心与团结互助精神,让学生体会到解方程中分析与转化的思想方法。

3、重难点与关键

重点:解一元一次方程的一般步骤。

难点:解一元一次方程的一般步骤的归纳。

关键:每一步的`依据及应注意的问题。

二、学情分析

学生已经历了两节简单的解一元一次方程,大部分学生应已经初步了解了去括号、移项、合并同类项、系数化为1等方法,对本节学习大有帮助,但在去分母及其余各步骤中都有易错点,是学生难以全面掌握的。

三、教学思想

新课改理念强调学生的主体地位,把课堂还给学生,学生是每一环节的主体。数学是思维的体操。这节课的目的是让学生真正思考,将知识与技能内化成自己的东西,同时养成良好的行为、学习习惯。

四、教学过程教学环节教师活动学生活动设计目的一、师生定向

了解学情出示上节

习题练习了解具体学情确定新旧知识的衔接点三、自主预习

预习检测布置任务

巡视督导

板书例题

预习检测

抽查学生

指导学生自改自评

自学课本内容,思考解方程的每一步变化的名称及具体做法,思考易错点

闭卷答题

自改、自评预习效果

教师指明做法,帮学生走进教材,理解文本,把握重点。

通过学生阅读思考让学生将部分知识内化。

检查预习情况,暴晒问题

让学生将技能内化,培养学生独立学习能力

四、合作探究

展示交流指导学生互评

引导学生讨论总结步骤及具体做法,易错点小组合作解决自学未能解决的问题

由会的同学展示

小组讨论总结每一步的易错点兵教兵

在互动中提高学生的分析能力、判断能力,培养团结互助精神五、达标自测

拓展应用引导学生完成相应学案上的问题

独立完成

自评互评

小组交流后当堂完成检验学生学习成果用以确定课后作业六简谈收获

布置作业引导学生谈谈这节课的收获

布置作业

从知识、方法、情感等方面谈课堂收获了解学生收获情况

布置课下任务,让学生继续牢固学习成果

一元一次方程概念教案篇八

3.初步体会一元一次方程的应用价值,感受数学文化;

4.理解解方程的目标,体会解法中蕴涵的化归思想.

探索1

等式一边的项可以移到等式的另一边吗?

如果把"3"变号后移到的另一边呢?

换一个等式-6-7=-13试一试.

任写一个等式再试一试.

探索2

(1)方程x+3=-1的解是多少?

探索3

怎样求方程x-7=5的解?

有的学生可能还是乐意用算术解法,教师要有足够的耐心.

甲的解法是:这是一个表示减法运算的式子,x是被减数,7是减数,5是差.所以有x=5+7(理由是_______________________),于是x=12.

乙的解法是:这是一个等式,根据等式的性质1,等式两边________,结果仍相等,把方程的两边都加7,得x-7+7=5+7,于是x=12.

丙的解法是:把方程左边的项-7,变号(即变成+7)后移到方程的右边,得x=5+7,于是x=12.

议一议,三种解法,你乐意用哪一种?

归纳

解方程时,把方程一边的某项变号后移到另一边,这种变形叫移项.

注意:移项的要点不在移动,而在于变号.

想一想:移项为什么要变号?移项的根据是什么?

探索4

以下各方程的“移项”对不对?为什么?

(1)x+5=7,移项得x=7+5;

(2)3-x=7,移项得-x=7-3;

(3)2x=7x,移项得2x+7x=0;

(4)2x=7x-6,移项得2x-7x=-6.

探索5

(1)3x+6=0,移项得0=-3x-6;

(2)3x=5x-7,移项得3x+7=5x;

(3)3-x=5x,移项得3-x-5x=0;

(4)3x+20=7x-18,移项得-7x+18=-3x-20.

例题学习

p81.例1

练习

p81.练习

作业

p84.习题2,3,9

补充作业

1.一个两位数,个位上的数是十位上的数的2倍,如果把十位上的数与个位上的数对调,那么所得到的两位数比原两位数大36.求原两位数.

解:设原两位数十位上的数为x,

那么,根据个位上的数是十位上的数的2倍,得个位上的数是________,

则原两位数记为___________.

因为对调后所得到的新两位数的十位上的数为______,个位上的数为______,新两位数应记为___________________.

根据新两位数比原两位数大36,列方程:_____________________.

解这个方程得__________.答:______________________________.

一元一次方程概念教案篇九

知识与能力

1.通过对典型实际问题的分析,体验从算术方法到代数方法是一种进步.

2.在根据问题寻找相等关系、根据相等关系列出方程的过程中,培养获取信息、分析问题、处理问题的能力.

3.在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的.过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.

1.能结合实际问题情境发现并提出数学问题.

2.通过学习进一步体会方程是刻画现实世界的有效数学模型,增强从实际问题出发建立数学模型的能力.

情感态度与价值观目标

1.勤于思考,乐于探究,敢于发表自己的观点;

2.以积极的态度与同伴合作,从解决实际问题中体验数学价值.

教学重难点

重点

会用一元一次方程解决实际问题.

难点

将实际问题转化为数学问题,通过列方程解决问题.

一元一次方程概念教案篇十

去括号,移项,合并同类项,系数化为1。

4、巩固练习

(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)

(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)

5、小结:和同学们一起回顾我们这节课学习了什么?

一元一次方程概念教案篇十一

3.3解一元一次方程(二)(第4课时)

一、教学目标

知识与技能

1、会根据实际问题中的数量关系列方程解决问题。

2、熟练掌握一元一次方程的解法。

过程与方法

培养学生的数学建模能力,以及分析问题解、决问题的能力。

情感态度与价值观

1、通过问题的`解决,培养学生解决问题的能力。

2、通过开放性问题的设计,培养学生的创新能力和挑战自我的意识,增强学生的学习兴趣。

二、重点难点

重点

根据题意,分析各类问题中的等量关系,熟练的列方程解应用题。

难点弄清题意,用列方程解决实际问题。

三、学情分析

学生在上一节课已经学习了一元一次方程的解法,对于学生来说解方程已不是问题了,本节课是以上一节课为基础,用方程来解决实际问题,只要学生读懂题意,建立数学模型,用一元一次方程会解决就行了。

四、教学过程设计

教学

环节问题设计师生活动备注情境创设

讨论交流:按怎样的解题步骤解方程才最简便?由此你能得到怎样的启发。

创设问题情境,引起学生学习的兴趣。

学生动手解方程

自主探究

问题一:

一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。

问题二:

问题三:

整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加两人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同。

一元一次方程概念教案篇十二

我们这堂课主要有五个特色:

1、学而时习之

2、新课当旧课上

3、重视引导学生再创造,再发现

4、突出学习和强度,角度和反思

5、创设情景,让学生主动积极参与

一、学而时习之

二、新课当旧课上

三、重视引导学生再创造、再发现

b组训练题较a组灵活,适用于学有余力的学生

第(4)题,学生要考虑两种情况;目的是通过分类讨论的思想,培养学生思维的严密性

四、突出学习的速度、角度、强度和反思

例如:课前训练一和作业中对新旧知识的系统复习,通过多次巩固达到强化训练的目的

另外,我们设计了强化a组题,在学生完成a组训练题后,可以自由选择是进入强化a组题还是进入b组训练题中这部分的设计主要是让学生养成客观的自我评价,和为在a组训练中未能形成基本技能的学生再次创造一个条件和空间,务求使学生掌握基础知识,再次有机会形成基本技能,充分体现学习强度和分层教学。

五、创设情境,让学生主动积极参与

一元一次方程概念教案篇十三

(一)知识与技能

会利用合并同类项解一元一次方程。

(二)过程与方法

通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。

(三)情感态度与价值观

开展探究性学习,发展学习能力。

(一)重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程。

(二)难点:会列一元一次方程解决实际问题。

(三)关键:抓住实际问题中的数量关系建立方程模型。

(一)、复习提问

1、叙述等式的两条性质。

2、解方程:4(x—)=2

解法1:根据等式性质2,两边同除以4,得:

x—=

两边都加,得x=

解法2:利用乘法分配律,去掉括号,得:

4x—=2

两边同加,得4x=

两边同除以4,得x=

(二)、新授

公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程。这本书的拉丁文译本取名为《对消与还原》。对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题。

分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买2x台,又知今年购买数量是去年的2倍,则今年购买了22x(即4x)台。

题目中的相等关系为:三年共购买计算机140台,即

前年购买量+去年购买量+今年购买量=140

列方程:x+2x+4x=140

如何解这个方程呢?

2x表示2x,4x表示4x,x表示1x。

根据分配律,x+2x+4x=(1+2+4)x=7x。

这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0

下面的框图表示了解这个方程的具体过程:

x+2x+4x=140

合并

7x=140

系数化为1

x=20

由上可知,前年这个学校购买了20台计算机。

上面解方程中合并起了化简作用,把含有未知数的`项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数。

例:某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数。

分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人。

问:本题中相等关系是什么?

答:甲组人数+乙组人数+丙组人数=60。

解:设每一份为x人,则甲组人数为2x人,乙组人数为3x人,丙组为5x人,列方程:

2x+3x+5x=60

合并,得10x=60

系数化为1,得x=6

所以2x=12,3x=18,5x=30

答:甲组12人,乙组18人,丙组30人。

请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60。

(三)、巩固练习

1、课本第89页练习。

(1)x=3、

(2)可以先合并,也可以先把方程两边同乘以2、

具体解法如下:

解法1:合并,得(+)x=7

即2x=7

系数化为1,得x=

解法2:两边同乘以2,得x+3x=14

合并,得4x=14

系数化为1,得x=

(3)合并,得—2、5x=10

系数化为1,得x=—4

2、补充练习。

(2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)

解:(1)设每份为x个,则黑色皮块有3x个,白色皮块有5x个。

列方程3x+2x=32

合并,得8x=32

系数化为1,得x=4

黑色皮块为43=12(个),白色皮块有54=20(个)

(2)设全书共有x页,那么第一天读了(x+2)页,第二天读了(x—1)页。

本问题的相等关系是:第一天读的量+第二天读的量+还剩23页=全书页数。

列方程:x+2+x—1+23=x。

四、课堂小结

初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中找等量关系是关键也是难点,本节课的两个问题的相等关系都是:总量=各部分量的和。这是一个基本的相等关系。

合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或—x的系数分别是1,—1,而不是0。

五、作业布置

1、课本第93页习题3、2第1、3(1)、(2)、4、5题。

2、选用课时作业设计。

合并同类项习题课(第2课时)

一、解方程。

1、(1)3x+3—2x=7;(2)x+x=3;

(3)5x—2—7x=8;(4)y—3—5y=;

(5)—=5;(6)0。6x—x—3=0。

二、解答题。

3、甲、乙两地相距460千米,a、b两车分别从甲、乙两地开出,a车每小时行驶60千米,b车每小时行驶48千米。

(1)两车同时出发,相向而行,出发多少小时两车相遇?

4、甲、乙二人从a地去b地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达b地,求a、b两地之间的距离。

答案:

二、2、705人,设育红小学1995年学生人数为x人,列方程320=x—150。

3、(1)4小时,设出发后x小时相遇,列方程60x+48x=460。

(2)3小时,设b车开出后x小时两车相遇,列方程60+60x+48x=460。

4、3千米,设a、b两地间的距离为x千米,—=。

5、1分钟,设经过x分钟两人首次相遇,列方程550x—250x=400。

【本文地址:http://www.xuefen.com.cn/zuowen/5435171.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档