专业数学勾股定理教案(汇总20篇)

格式:DOC 上传日期:2023-10-30 20:15:07
专业数学勾股定理教案(汇总20篇)
时间:2023-10-30 20:15:07     小编:念青松

教案需要充分利用多种教学方法和教具,在教学过程中引导学生。教案的编写可以借鉴其他教师的经验和教学方法,但要根据自身情况进行适当调整。小编为大家整理了一些教学案例和教案分析,供大家参考指导。

数学勾股定理教案篇一

教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

数学勾股定理教案篇二

教学目标:

1、知识与技能目标:理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。

2、过程与方法目标:通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

3、情感、态度与价值观目标:了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。

教学重点:

引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题。

教学难点:

用面积法方法证明勾股定理

课前准备:

多媒体ppt,相关图片

教学过程:

(一)情境导入

1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。

已知一直角三角形的两边,如何求第三边?

学习了今天的这节课后,同学们就会有办法解决了

(二)学习新课

数学勾股定理教案篇三

【知识与技能】

理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理;利用勾股定理的逆定理判定一个三角形是不是直角三角形。

【过程与方法】

通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

【情感态度与价值观】

通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

二、教学重难点

【重点】

勾股定理逆定理的应用;

【难点】

探究勾股定理逆定理的证明过程。

三、教学过程

(一)导入新课

复习回顾出勾股定理。

师生活动:学生独立回忆勾股定理,师生共同分析得出其题设和结论,教师引导指出勾股定理是从形的特殊性得出三边之间的数量关系。

追问1:你能把勾股定理的题设与结论交换得到一个新的命题吗?

师生活动:师生共同得出新的命题,教师指出其为勾股定理的逆命题。

(四)小结作业

作业:总结一下判定一个三角形是直角三角形的方法。

数学勾股定理教案篇四

了解勾股定理的一些证明方法,会简单应用勾股定理解决问题

在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。

通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。

1、创设情境

师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。

设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。

2、探究勾股定理

观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界

追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?

师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。

设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论

问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。

师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。

数学勾股定理教案篇五

本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。

采用“七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。

数学勾股定理教案篇六

【知识与技能】

理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。

【过程与方法】

经历得出猜想、推理证明的过程,提升自主探究、分析问题、解决问题的能力。

【情感、态度与价值观】

体会事物之间的联系,感受几何的魅力。

【重点】勾股定理的逆定理及其证明。

【难点】勾股定理的逆定理的证明。

(一)导入新课

复习勾股定理,分清其题设和结论。

提问学生画直角三角形的方法(可用尺类工具),然后要求不能用绳子以外的工具。

出示古埃及人利用等长的3、4、5个绳结间距画直角三角形的方法,以其中蕴含何道理为切入点引出课题。

(二)讲解新知

请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确

出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。

学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,7.5cm,8.5cm,画出相应边长的三角形检验是否为直角三角形。

数学勾股定理教案篇七

1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。

2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。

3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。

数学勾股定理教案篇八

一、整个课堂设计完整、结构紧凑、逻辑严密、前后呼应,准备得比较充分,能引导学生循序渐进,思路很清晰,讲解也很到位。

二、不搞题海战术,精讲精练,举一反三、触类旁通。题型设计选题有针对性、典型性、层次性,亦有梯度,两位老师都设计了分层练习,作业分层设计精巧,适合满足不同层次学生的要求。

三、两位老师引入新课都很自然,两位老师都能从学生的实际水平出发,面向全体学生,因材施教,分层次开展教学工作,全面提高学习效率。

教师在整个教学过程中老师敢于让学生探索、体验,给了学生以最大的自由运用和探索规律的开阔的地带。特别是新塘三中的曾老师在教学中,通过教师有序的导、学生积极的学习参与、体验、讨论与交流,培养学生具有主动、负责、开拓、创新的个性特征和科学的思维方式。将知识与技能,过程与方法,情感态度和价值观完美结合。在整个教学活动中始终面对全体学生,让每一个学生都有收获,都得到成功的体验,充分体现了全面育人的新课标精神。建议新塘二中老师尽量少讲,让学生多思,多想,多做。......

数学勾股定理教案篇九

1、知识与技能目标

学会观察图形,勇于探索图形间的关系,培养学生的空间观念。

2、过程与方法

(1)经历一般规律的探索过程,发展学生的抽象思维能力。

(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

3、情感态度与价值观

(1)通过有趣的问题提高学习数学的兴趣。

(2)在解决实际问题的过程中,体验数学学习的实用性。

教学重点:

探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。

教学难点:

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。

教学准备:

多媒体

教学过程:

第一环节:创设情境,引入新课(3分钟,学生观察、猜想)

情景:

第二环节:合作探究(15分钟,学生分组合作探究)

学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算。

第三环节:做一做(7分钟,学生合作探究)

教材23页

李叔叔想要检测雕塑底座正面的ad边和bc边是否分别垂直于底边ab,但他随身只带了卷尺。

(1)你能替他想办法完成任务吗?

第四环节:巩固练习(10分钟,学生独立完成)

2.如图,台阶a处的蚂蚁要爬到b处搬运食物,它怎么走最近?并求出最近距离。

第五环节课堂小结(3分钟,师生问答)

内容:如何利用勾股定理及逆定理解决最短路程问题?

第六环节:布置作业(2分钟,学生分别记录)

作业:1.课本习题1.5第1,2,3题.

要求:a组(学优生):1、2、3

b组(中等生):1、2

c组(后三分之一生):1

数学勾股定理教案篇十

教学目标1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

2.会综合运用平行四边形的判定方法和性质来解决问题

教学重点:平行四边形的判定方法及应用

教学难点:平行四边形的判定定理与性质定理的灵活应用

二.探

阅读教材p44至p45

利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

(2)你怎样验证你搭建的四边形一定是平行四边形?

(3)你能说出你的做法及其道理吗?

(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?

(5)你还能找出其他方法吗?

从探究中得到:

平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

平行四边形判定方法2对角线互相平分的四边形是平行四边形。

证一证

平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

证明:(画出图形)

平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。

证明:(画出图形)

三.结

两组对边分别相等的四边形是平行四边形。

对角线互相平分的四边形是平行四边形。

四.用

数学勾股定理教案篇十一

本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:

(1)让学生主动提出问题

(2)让学生自己解决问题

(3)通过实际问题的解决,培养学生的数学意识.

数学勾股定理教案篇十二

思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)

数学勾股定理教案篇十三

1.理解勾股定理的逆定理的证明方法和证明过程;

2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;

二数学思考

1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;

2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用.

三解决问题

通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.

四情感态度

2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神.

数学勾股定理教案篇十四

1、通过拼图,用面积的方法说明勾股定理的正确性.

2、通过实例应用勾股定理,培养学生的知识应用技能.

1.用面积的方法说明勾股定理的正确.

2.勾股定理的应用.

勾股定理的应用.

一、学前准备:

1、阅读课本第46页到第47页,完成下列问题:

2、剪四个完全相同的直角三角形,然后将它们拼成如图所示的'图形。大正方形的面积可以表示为_________________________,又可以表示为__________________________.对比两种表示方法,看看能不能得到勾股定理的结论。用上面得到的完全相同的四个直角三角形,还可以拼成如下图所示的图形,与上面的方法类似,也能说明勾股定理是正确的方法(请逐一说明)

二、合作探究:

(一)自学、相信自己:

(二)思索、交流:

(三)应用、探究:

(四)巩固练习:

1、如图,64、400分别为所在正方形的面积,则图中字

母a所代表的正方形面积是_________。

三.学习体会:

本节课我们进一步认识了勾股定理,并用两种方法证明了这个定理,在应用此定理解决问题时,应注意只有直角三角形的三边才有这样的关系,如果不是直角三角形应该构造直角三角形来解决。

2②图

四.自我测试:

五.自我提高:

数学勾股定理教案篇十五

我对本节课的教学过程是这样设计的:

通过欣赏xxxx年在我国北京召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,引入课题。

接下来,让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。

通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。

先了解赵爽的证明思路,然后让学生利用学具自己剪拼,并利用图形进行证明。

由于难度比较大,组织学生开展小组合作学习。教师要巡回辅导,给予学生必要的帮助。

一是让学生自己回顾总结本节的收获。(当然多数为具体的知识和方法)。二是教师要引导学生学习科学家敏锐的观察力和勤于思考的作风,不断提高自己的数学素养,适时对大家进行思想教育。

主要练习勾股定理的其它证明方法。

请你利用网络资源,收集有关勾股定理的证明方法来进行学习。写出有关勾股定理知识的小论文。一个月过去了,我已忘记了这一项特殊的作业,但部分学生却写出了出乎意料的小论文。

通过这节课的两种不同的上法,以及学生的不同表现与收获,让我更深刻地认识到:

(3)要相信学生的能力,为学生创造自我学习和创造的机会(如布置开放性的学习任务:数学实践活动、研究学习、写小论文等)。

我相信:只要坚持不懈地这样去做,不但能很好地实施新课改,实现教育的本来目标,而且也一定能让学生“考出”好的成绩;不过,这样教师一定不会轻松。

数学勾股定理教案篇十六

教学目标:

1、知识目标:

(1)掌握勾股定理;

(2)学会利用勾股定理进行计算、证明与作图;

(3)了解有关勾股定理的历史。

2、能力目标:

(1)在定理的证明中培养学生的拼图能力;

(2)通过问题的解决,提高学生的运算能力

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过有关勾股定理的历史讲解,对学生进行德育教育。

教学重点:勾股定理及其应用

教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育。

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

教学过程:

1、新课背景知识复习

(1)三角形的三边关系

(2)问题:(投影显示)

直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

2、定理的获得

让学生用文字语言将上述问题表述出来。

勾股定理:直角三角形两直角边的平方和等于斜边的平方。

强调说明:

(1)勾――最短的边、股――较长的直角边、弦――斜边

(2)学生根据上述学习,提出自己的问题(待定)

3、定理的证明方法

方法一:将四个全等的直角三角形拼成如图1所示的正方形。

方法二:将四个全等的直角三角形拼成如图2所示的正方形。

方法三:“总统”法、如图所示将两个直角三角形拼成直角梯形。

以上证明方法都由学生先分组讨论获得,教师只做指导、最后总结说明

4、定理与逆定理的应用

5、课堂小结:

(1)勾股定理的内容

(2)勾股定理的作用

已知直角三角形的两边求第三边

已知直角三角形的一边,求另两边的关系

6、布置作业:

a、书面作业p130#1、2、3

b、上交作业p132#1、3

数学勾股定理教案篇十七

1、知识目标:

(1)理解并会证明勾股定理的逆定理;

(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;

(3)知道什么叫勾股数,记住一些觉见的勾股数.

2、能力目标:

(1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

(2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过知识的纵横迁移感受数学的辩证特征.

教学重点:勾股定理的逆定理及其应用

教学难点:勾股定理的逆定理及其应用

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

数学勾股定理教案篇十八

一、填空题

1、在一个比例里,两个外项的积是最小的质数,一个内项是0.5,另一个内项是()。

2、甲数×=乙数×60%,甲:乙=(:)???3、0.75:化成最简整数比是()。

4、一幅地图的线段比例尺是它表示实际距离是图上距离的()倍。

5、在的图纸上,一个正方形的面积为16平方厘米,它的实际面积是()?6、甲数的是甲乙两数和的,甲乙两数的比是()。

7、一个比例式,两个外项的和是37,差是13,比值是,这个比例式是()。

8、一车水果重1.8吨,按2:3:5的比例分配给甲、乙、丙三个水果店,乙水果店分得这批水果的()。

9、星期天,小丽看一本书用了2小时15分,小红同样一本书用了2.15小时,小丽和小红看书用的时间比是()。

10、两地相距80千米,画在比例尺是1:400000的地图上,应画()厘米。

11、一杯糖水,糖比水是1:4,喝去杯糖水后,又用水加满,这时糖与水的比是()。

12、甲数比乙数多,甲数与乙数的比是()。

13、甲、乙、丙三个数的平均数是15,甲、乙、丙三个数的比是2:3:4,甲数是()。

14、一个比例的两个内项互为倒数,一个外项是,另一个外项是()。

15、圆柱的高一定,圆柱的底面积与体积()比例。

16、东风小学六年级人数是五年级人数的,五年级与六年级人数的比是()。

17、学校购到一批书,按2:3:5借给四、五、六三个年级。四年级借到这批书的()%。

18、一个零件长2米,在设计图上这个零件长4厘米,这幅设计图的比例尺是()。

19、把3克盐放入12克水中,盐与盐水重量的最简整数比是()。

20、把(5平方米):(50平方分米)化成最简整数比是(),它们的比值是()。

21、甲数除以乙数的商是1.5,甲数与乙数的最简整数比是()。

22、昆明到西双版纳的实际距离是1200千米,在一幅地图上量得两地之间的距离是6厘米。在这幅地图上量得泸西到丽江的图上距离是4厘米。泸西到丽江的实际距离是()千米。

23、若图上距离的2厘米表示实际距离的80千米,则这幅图的比例尺是()。

24、六年级同学共同订阅《蜜蜂报》。报纸的总价和所订份数成()比例。

25、同样多的作业,李莉12分钟,王祥15分钟,李莉与王祥的最简单的速度比是()。

26、在比例尺是的平面图上,量得教室的长是4.5厘米,教室的实际长是(??)米。

27、达标课上,六(2)班的达标人数与未达标人数的比是24:1,这个班学生的达标率是()。

28、一只青蛙四条腿,两只眼睛一张嘴;两只青蛙八条腿,四只眼睛两张嘴;三只青蛙……”,儿歌中青蛙的只数与对应的腿数成()比例关系。

29、甲数的等于乙数的,甲乙两个数的最简单的整数比是(),比值是()。

30、一个长方形操场,长110米,宽90米。把它画在比例尺是的图纸上,长画()厘米,宽画()厘米。

31、如果=,与成()比例32、如果a×5=b×8,那么a:b=()。

33、三个数的平均数是40,三个数的比是1:2:3,最大数是()。

34、甲数与乙数的比是5:8,甲数比乙数少()%,乙数比甲数多。

二、判断题

1、小麦的出粉率一定,小麦的总重量和面粉的重量成正比例关系。()

2、因为甲数:乙数=25:23,所以甲数=25,乙数=23。?()

3、车轮的直径一定,车轮转动的周数和所行路程成正比例。()

4、如果a与b成反比例,b与c也成反比例,那么a与c成正比例。??()

5、如果a×3=b×5,那么a:b=5:3。???()

6、y=8x,表示x和y成正比例。?()

7、半径与直径的比是1:2。????()

8、甲地到乙地,甲车要6小时,乙车要8小时,甲车和乙车的速度比是3:4。()

9、如果=(,都不为0),那么和成正比例。??()

10、一项工程,甲独做6天完成,乙独做4天完成,乙甲的工效比是3:2。()

11、比例尺是1:500,表示图上1厘米代表实际距离的500厘米???()

12、从学校到文化宫,甲用9分钟,乙用10分钟,甲和乙每分钟行的路程比是9:10。()

13、山羊和绵羊头数的比是4:5,表示山羊比绵羊少。()

14、长方形的长和宽成反比例???()

15、两个数相除的商又叫做两个数的比?(???)

16、长方形的面积一定,长方形的长和宽成反比例???()

17、长方体的体积一定,底面积和高成反比例?()

三、选择题

1、一块长方形的周长是28米,它的长和宽的比是4:3,这块地的面积是()平方米。

a、192b、48c、28

2、一幅图纸的比例尺是20:1,表示图上距离是实际的()。

a、b、20c、20倍

3、一个圆柱和一个圆锥体积相等,已知圆锥体和圆柱的高的比是9:1,圆柱体底面积和圆锥体底面积的比是()。

a、9:1b、3:1c、6:1

4、成反比例的量是()。

a、a和b互为倒数b、圆柱的高一定,体积和底面积

c、被减数一定,减数与差d、除数一定,商和被除数

5、如果=那么和()。

a、成正比例b、成反比例c、不成比例

6、一幅地图的比例尺是1:100000。下面说法不正确的是()。

a、图上1厘米的距离相当于地面实际距离的100000米

b、把实际距离缩小100000倍后,再画在图纸上。

c、图上距离相当于实际的.。

7、做一批零件,甲需要4小时,乙需要3小时,甲与乙的速度比是()。

a、4:3b、5:4c、3:4

8、六年级(1)班有科技书和故事书共40本,它们的比可能是()。

a、5:1b、4:1c、2:5

9、互为倒数的两个数()。

a、成正比例b、成反比例c、不成比例

10、下列各组比能与:组成比例的是()。

a、5:6b、6:5c、:

11、把10克糖溶解在100克水中,糖与糖水的比是()

a、10:1b、1:10c、1:11d、11:1

12、一个圆的直径与周长的比是()。

a、1:2b、1:c、2:

13、一批产品,合格产品与不合格产品的比是4:1,这批产品的不合格率是()

a、25%b、20%c、10%

14、在同一个圆里,周长与直径()。

a、成正比例b、成反比例c、不成比例

15、一个三角形内角度数的比是7:2:1,这个三角形是()。

a、钝角三角形b、锐角三角形c、直角三角形

16、一条长5米的线段画在比例尺是1:100的图中,要比画在比例尺只是1:1000的图中()。

a、长b、短c、一样长

17、表示与成正比例关系的式子是()。

a、?=6b、=6c、=+6

18、在一幅云南地图上用4厘米的线段表示实际距离160千米,这幅地图的比例尺是()。

a、b、c、

19、路程一定,速度和时间()。

a、成正比例b、成反比例c、不成比例

20、在100克水中放入10克盐,那么盐与盐水的质量比是()

a、1:10b、10:1c、1:11

21、(?泸模二)的5倍与的3倍的比是1:2,那么与的比是()。

a、3:10b、10:3c、3:5

22、一项工程,甲队独做要8天完成,乙队独做要6天完成。甲队和乙队的工作效率比是()。

a、8:6b、4:3c、:d、:

23、在比例尺是1:1000000的地图上,图上距离为10厘米的两地,实际距离是()千米。

a、100000b、100c、1000d、10000

24、车轮直径一定,所行驶的路程和车轮转数()。

a、成正比例b、成反比例c、不成比例

25、在含糖25%的糖水中,糖与水的比是()。

a、1:4b、3:1c、1:3

26、10克糖溶解在100克水中,糖和糖水重量的比是()。

a、11:1b、1:11c、

27、两个圆的直径比是1:2,周长比是()。

a、1:2b、1:4c、1:8

28、距离一定,时间和速度()

a、不成比例b、成正比例c、成反比例

四、求未知数

6.5:=3.25:4

13:7=

五、应用题

3、盖一幢职工宿舍。计划使用6米长的水管240根。后来改用8米长的水管,共需要多少根?(用两种方法解答)

4、做一批零件,如果每天做200个,15天可以做完,现在要在12天完成,平均每天做多少个?(用两种方法解答)

5、甲地到乙地的公路长392千米。一辆汽车3小时行了168千米。照这样计算,行完全还需要几小时?(用两种方法解答)

7、金光电子厂要生产一批零件,原计划每天生产180个,12天完成。实际的生产效率是原计划的120%,实际多少天可以完成?(用两种方法解答)

8、一辆汽车4小时行140千米,照这样计算,7小时行多少千米?行驶315千米需要几小时?(用两种方法解答)

10、(?泸模二)铁路工人修铁路,用每根长9米的新铁轨替换原来每根6米的旧铁轨,共换下旧铁轨240根,换上的新铁轨有多少根?(用两种方法解答)

11、泸西县水泥厂5天生产水泥320吨。照这样计算,要生产6600吨水泥,需要多少天完成?(用两种方法解答)

12、某工程队修一条路,12天共修780米,还剩下325米没有修。照这样速度,修完这条公路,共需要多少天?(用两种方法解答)

13、甲乙两个小组要在6小时内加工1560个零件。已知甲小组每小时加工120个零件,乙每小时加工零件多少个?(用两种方法解答)

14、50千克花生仁可以榨油19千克。要榨200千克花生油需多少千克花生仁?(用两种方法解答)

数学勾股定理教案篇十九

勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.

即直角三角形两直角的平方和等于斜边的平方.

因此,在运用勾股定理计算三角形的边长时,要注意如下三点:

(2)注意分清斜边和直角边,避免盲目代入公式致错;

2.学会用拼图法验证勾股定理

如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形.

请读者证明.

请同学们自己证明图(2)、(3).

3.在数轴上表示无理数

二、典例精析

解:由勾股定理,得

132-52=144,所以另一条直角边的长为12.

所以这个直角三角形的面积是×12×5=30(cm2).

例2如图3(1),一只蚂蚁沿棱长为a的正方体表面从顶点a爬到

顶点b,则它走过的最短路程为

a.b.c.3ad.分析:本题显然与例2属同种类型,思路相同.但正方体的

各棱长相等,因此只有一种展开图.

解:将正方体侧面展开

数学勾股定理教案篇二十

(一)教材地位

这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)教学目标

知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。

过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。

情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。

(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

教学难点:用面积法(拼图法)发现勾股定理。

突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。

教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。

【本文地址:http://www.xuefen.com.cn/zuowen/5429167.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档