教案的编写需要综合考虑学生的学情和兴趣,确保教学内容与学生的需求相匹配。那么我们应该如何编写一份优秀的教案呢?首先,我们需要明确教学目标,明确要教授的知识点、能力和情感态度目标。其次,根据学生的实际情况,合理选择教学方法和教学手段。还需要根据课程标准和学生的学习需要,设计有趣、生动的教学活动。编写教案要注意语言简洁明了,结构合理,操作性强。希望通过这些努力,我们能够编写出一份完美的教案。以下是小编为大家收集的优秀教案范文,仅供参考,希望对大家有所帮助。
高三数学专题课教案篇一
教学设计示例
一、素质教育目标
(一)知识教学点
1.了解直线的概念.
2.掌握直线的表示方法,直线的公理和相交直线的概念.
3.使学生熟悉简单的几何语句,并能画出正确的图形表示几何语句.
(二)能力训练点
通过一些几何语句(如:某点在直线上,即直线“经过”这点;过两点有且只有一条直线,“有且只有”的双重含义,即存在性和惟一性)的教学,训练学生准确地使用几何语言,并能画出正确的几何图形.学生通过“说”与“画”的尝试实践,体验领悟到“言”与“图”的辩证统一.通过教学培养学生严谨的学习作风、严密的思考方法及逻辑思维能力,这也是学习好数学必备的基本素质.
(三)德育渗透点
通过直线公理的讲解,举出实例说明它的应用.使学生体验到从实践到理论,在理论指导下再进行实践的认识过程,潜移默化地影响学生,形成其理论联系实际的思想方法,激励学生要勤于动脑、敢于实践.
(四)美育渗透点
通过对模型的观察,使学生体会物体的对称美,通过学生自己动手画直线体会直线美,逐步培养学生的几何美,激发学生的学习兴趣.
二、学法引导
1.教师教法:引导学生发现知识,并尝试指导与阅读相结合.
2.学生学法:自主式学习方法(学生自己阅读书本知识,总结学习成果)和小组讨论式学习方法.
三、重点、难点、疑点及解决办法
(-)重点
直线的表示方法,直线的公理及相交线.
(二)难点
两直线相交为什么只有一个交点的理解,直线公理的理解.
(三)疑点
两直线相交为什么只有一个交点?
(四)解决办法
通过实验法解决直线公理的理解;通过逆向思维解决两直线相交为什么只有一个交点的疑点.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片(软盘)、三角板、木条、铁钉.
六、师生互动活动设计
七、教学步骤
(一)明确目标
通过知识点教学,使学生理解和掌握直线及其性质,通过画图及对几何语言的认识培养学生图形结合的数学思维方式.
(二)整体感知
以情境教学为主,教师引导和指导,学生积极参与,逐步领悟,教师概括总结和学生自我学习评价相结合,提高课堂教学效益,充分体现以学为主的原则.
(三)教学过程
创设情境,引出课题
问题:投影仪显示本章开始的正十二面体的模型,学生观察这一复杂图形中有哪些是我们认识的简单图形?(学生会很快找出线段和角.)
演示:投影从正十二面体的模型中分离出某一部分,即线段、角.
引出课题:要掌握比较复杂的图形知识,需要从较简单的图形学起.本章我们就学习最简单的图形知识,即线段和角的知识,也就是我们从复杂图形中分离出来的两个图形.在这个基础上,以后我们再学习相交线、三角形、四边形等等.
?板书】第一章线段角一、直线射线线段1.1直线
探究新知
1.直线的概念
?教法说明】学生有小学的基础,会很快说出一些实际例子,如:黑板边缘、书本边缘、拉直的线、笔直的公路等等.教师要调动学生学习的积极性,引导学生展开想像的翅膀,充分发挥他们的想像力.
演示:学生发言的同时,教师利用电脑显示一些实例,如:黑板、书本、笔直公路等等.然后变换抽象成一直线.
师:我们在代数中,常用一条特殊的直线,你知道吗?
(学生会回想起数轴的概念,规定了原点、正方向和单位长度的直线.)
师小结:同学们回答得都很好,几何中的“直线”是向两方无限延伸的,我们可以用直尺画直线,但画出的只是直线的一部分.
2.直线的表示方法
学生活动:学生阅读课本第9页第四自然段,总结直线的表示方法.
?教法说明】对于直线的表示方法很简单,教师直接告诉学生,学生也会理解.但记忆不一定深,这种采取让学生自己阅读的方法,一是培养学生看书的习惯;二是培养学生的阅读能力,使学生爱看书且会看书.自己学到的知识要比教师直接告诉的记忆深刻得多.
由学生小结,得出直线的两种表示方法:
(1)用直线上的两个大写字母表示.如图:记作直线.
(2)用一个小写字母表示.如图:记作直线.
?教法说明】用字母表示图形,小学没有介绍,现在学生初步接触,所以教师这里要补充说明点的表示方法.同时指出:以后学习中,常用字母表示几何图形,便于说明与研究.
3.点和直线的位置
师生共同总结:
(1)点在直线上,如图,叙述方法:点在直线上,或直线经过点.
(2)点在直线外,如图,叙述方法:点在直线外,或直线不经过点.
?教法说明】在点和直线的位置关系中,要注意几何语言的训练.点在直线上和点在直线外,各有两种不同的叙述方法,要反复练习,以培养他们几何语言的表达能力.
4.直线的公理
实验尝试:用一个铁钉把木条钉在小黑板上,让学生转动木条,并观察现象.教师在木条上加上一个钉子,再让学生转动,并观察现象.
提出问题:以上实验你认为说明了什么道理?
学生活动:学生分组讨论,相互纠正或补充.
师小结:经过一点有无数条直线,经过两点有一条直线,并且只有一条直线.同时板书公理内容.
[板书]公理:经过两点有一条直线,并且只有一条直线.简言之,过两点有且只有一条直线.
体验证实:教师小结后让学生在练习本上分别经过一点和两点画直线.
?教法说明】(1)学生通过实验,对直线公理有认识,但欲言之而不能,或虽能表达出意思但不严密.此时离不开教师的引导,教师一定要强调几何语言的严密性和准确性.向学生们讲清“有且只有”的两层含义.第一个“有”说明的是存在性,过两点有直线存在.“只有”说明的是惟一性,经过两点的直线不会多,只有一条.如果把直线公理说成是:“经过两点有一条直线”就是错误的.了.(2)公理得出后,让学生再次动手验证,使学生体会到公理的科学性,培养学生对待事物的科学态度,也便于学生对公理的记忆.(3)通过教师指导下的实验活动,激发了学生的学习兴趣,培养了学生勇于探索的精神,提高独立分析问题解决问题的能力.
?教法说明】通过公理在日常生活中的应用举例,使学生明白科学来源于生活并服务于生活的道理.只有现在好好学习,积累本领,长大后才能更好地报效祖国.并体会从实践到理论,再回到实践的认识过程.
5.相交线
师:根据直线公理,过两点有几条直线?
(学生会答出:有且只有一条.)
师:反过来,两条不同的直线可能同时经过两个点吗?
(学生容易答出:不能)
[板书]如果两条直线有一个交点,我们叫这两条直线相交.这个公共点叫做它们的交点,这两条直线叫相交直线.
如图,直线和直线相交于点,点是直线和直线的交点.
?教法说明】两直线相交为什么只有一个交点,是本节课的难点.从公理入手提出问题,再反过来考虑,这种逆向思维的方法使学生易于理解,突破难点,问题得以解决.
反馈练习
(出示投影1)
1.问答题
(1)经过一点能否画直线?能画几条?
(2)经过两点能否画直线?能画几条?
(3)只用直线上的一个点来表示直线是否可以?用直线上的两个点表示直线呢?
2.读出下列语句,并按照这些语句画图
(1)直线经过点.
(2)点在直线外.
(3)经过点的三条直线.
(4)直线与相交于点.
(5)直线经过、、三点,点在点与点之间.
(6)是直线外一点,过点有一直线与直线相交于点.
?教法说明】问答题的目的是进一步理解巩固直线公理,作图的目的是训练学生的“言”与“图”的转化能力.
(四)总结、扩展
以提问的形式,归纳出以下知识点:
八、布置作业
预习下节内容
补充:按照下面的图形说出几何语句.
(1)(2)
(3)(4)
(5)
附答案
补充:(1)直线过(点在直线上).
(2)点在直线外(直线不过点).
(3)直线、相交于点.
(4)直线过、、三点.
(5)直线、、、都过点.
思考题:课本第16页b组的第2题.
高三数学专题课教案篇二
一、教学目标
1.把握菱形的判定.
2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.
3.通过教具的演示培养学生的学习爱好.
4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.
二、教法设计
观察分析讨论相结合的方法
三、重点·难点·疑点及解决办法
1.教学重点:菱形的判定方法.
2.教学难点:菱形判定方法的综合应用.
四、课时安排
1课时
五、教具学具预备
教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具
六、师生互动活动设计
教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨
七、教学步骤
复习提问
1.叙述菱形的定义与性质.
2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.
引入新课
师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?
生答:定义法.
此外还有别的两种判定方法,下面就来学习这两种方法.
讲解新课
菱形判定定理1:四边都相等的四边形是菱形.
菱形判定定理2:对角钱互相垂直的'平行四边形是菱形.图1
分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.
分析判定2:
师问:本定理有几个条件?
生答:两个.
师问:哪两个?
生答:(1)是平行四边形(2)两条对角线互相垂直.
师问:再需要什么条件可证该平行四边形是菱形?
生答:再证两邻边相等.
(由学生口述证实)
证实时让学生注重线段垂直平分线在这里的应用,
师问:对角线互相垂直的四边形是菱形吗?为什么?
可画出图,显然对角线,但都不是菱形.
菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):
注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.
例4已知:的对角钱的垂直平分线与边、分别交于、,如图.
求证:四边形是菱形(按教材讲解).
总结、扩展
1.小结:
(1)归纳判定菱形的四种常用方法.
(2)说明矩形、菱形之间的区别与联系.
2.思考题:已知:如图4△中,,平分,,,交于.
求证:四边形为菱形.
八、布置作业
教材p159中9、10、11、13(2)
九、板书设计
十、随堂练习
教材p153中1、2、3
高三数学专题课教案篇三
学习目标1、通过讲评使学生进一步理解周长的含义,进一步巩固对长方形、正方形周长的计算及应用。
2、抓住典型题目和共性问题,引导学生把握解题思路,总结解题一般规律,培养学生灵活的思维能力。重点理解周长的意义巩固长方形、正方形周长的计算公式及其在实际生活中的灵活应用教学法分析总结合作交流难点通过处理典型题目和共性问题,引导学生把握解题思路,培养学生灵活的思维能力和严谨的态度。
例:一、(3)一个长方形长9厘米,宽比长少3厘米,它的周长是()(可能有的学生把宽看成3)。二、1.周长相等的两个正方形,边长也一定相等。()
例:二、5.由两个相同的正方形拼成一个长方形,它的周长是两个正方形周长之和。()
三、3.下面三个图形,哪个图形的周长最长?()
一、成绩分析1、分析成绩2、简单介绍本次测试存在的主要问题:a、计算出错b、公式不能灵活运用c、不理解题意(题意分析不透)
三、典型分析1、找出由学生自主不能解决的问题,也就是学生学习中的`难点,由师生共同再阅读、再分析、再解答。2、示错例,找错因,引以为戒此题学生可能会因对题意不理解而出现错误,本题中既考察了学生对长方形周长公式的掌握,也考察了对正方形公式的应用,更重要的是培养学生认真审题的好习惯。
四、对应练习1、师找出本次测试中失误的集中点、重难点,编写适量针对性的练习题。(课前完成)2、学生独立完成。3、集体订正。
高三数学专题课教案篇四
函数是中学数学的重要内容,中学数学对函数的研究大致分成了三个阶段。
三角函数是最具代表性的一种基本初等函数。4.8节是第二章《函数》学习的延伸,也是第四章《三角函数》的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其知识和方法将为后续内容的学习打下基础,有承上启下的作用。
本节课是数形结合思想方法的良好素材。数形结合是数学研究中的重要思想方法和解题方法。
本节通过对数形结合的进一步认识,可以改进学习方法,增强学习数学的自信心和兴趣。另外,三角函数的曲线性质也体现了数学的对称之美、和谐之美。
因此,本节课在教材中的知识作用和思想地位是相当重要的。
(二)课时安排
4.8节教材安排为4课时,我计划用5课时
(三)目标和重、难点
1.教学目标
教学目标的确定,考虑了以下几点:
(2)本班学生对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。
(3)学会方法比获得知识更重要,本节课着眼于新知识的探索过程与方法,巩固应用主要放在后面的三节课进行。
由此,我确定了以下三个层面的教学目标:
(3)情感层面:通过运用数形结合思想方法,让学生体会(数学)问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的信心和兴趣。
2.重、难点
由以上教学目标可知,本节重点是师生共同探索,正、余函数的性质,在探索中体会数形结合思想方法。
难点是:函数周期定义、正弦函数的单调区间和对称性的理解。
为什么这样确定呢?
因为周期概念是学生第一次接触,理解上易错;单调区间从图上容易看出,但用一个区间形式表示出来,学生感到困难。
如何克服难点呢?
其一,抓住周期函数定义中的关键字眼,举反例说明;
高三数学专题课教案篇五
理解数列的概念,掌握数列的运用
理解数列的'概念,掌握数列的运用
【知识点精讲】
1、数列:按照一定次序排列的一列数(与顺序有关)
2、通项公式:数列的第n项an与n之间的函数关系用一个公式来表示an=f(n)。
(通项公式不)
3、数列的表示:
(1)列举法:如1,3,5,7,9……;
(2)图解法:由(n,an)点构成;
(3)解析法:用通项公式表示,如an=2n+1
5、任意数列{an}的前n项和的性质
高三数学专题课教案篇六
本课文拟用一个教学时完成。如有可能,建议语、政、历三科老师能集中一起备课,从各自学科的特点分析本课文,以讲座的形式向同学们讲授,亦可从文科综合的角度,不光是从语文的角度,可以揉进哲学、历史等学科知识,考查学生对本篇课文的理解。
教学目标
知识传授目标:
1.初步了解孔孟思想观点的异同点;
2.掌握本文中出现的词和成语;
3.背诵孔孟的名言警句。
能力培养目标:
通过课文学习,培养学生从事物发生,问题产生的时代背景中去分析原因的能力。
情意目标:
为孔孟两位伟大的哲人自豪,为祖国的悠久历史和深厚文化积淀骄傲。
预习要求:
1.认真阅读课文,搞懂课文中的注释;
2.把课文中谈及孔孟两人不同思想观点的语句画出来。
教学过程
一、导入:
“大成至圣老师”大家都知道指的是孔子,在儒家学派中,地位仅次于他的就是孟子了,所以孟子被称为“亚圣”。这两位人物,常常是孔孟并举,孔孟之道并提,被视为儒学的代表人物,孟子被认为完全继承了孔子的学说和观点。他们的学术观点,生活理念被认为毫无二致。事实是这样的吗?请看课文—孔孟。引出板书课题。
二、简介作者
(投影以下文字资料,并配以朗读。也可不要配音朗读。课堂教学时由教师或学生读)
孔子:(前551—前479)春秋末期思想家、政治家、教育家。名丘,字仲尼。鲁国陬邑(今山东曲阜东南)人。少“贪且贱”及长,做过“委吏”(会计)和“乘田”(管畜牧)等事。晚年致力于教育,整理《诗》、《书》等古代文献。现存《论语》一书,记有孔子的谈话以及孔子与门人的问答。
孟子:(约前372—前289)战国时思想家、政治家、教育家。名轲,字子舆。邹(今山东邹县东南)人。受业于子思的门人。一度任齐宣王客卿,因主张不被采纳,退而与弟子万章等著书立说。他被认为是孔子学说的继承人。
三、研习课文
1.读第一自然段,思考:从哪里可以看出人们总认为孔孟是一体的?(形影相随,孔称“至圣”,孟称“亚圣”,孔有《论语》,孟有《孟子》,孔主张“成仁”,孟主张“取义”—总之,从两人“尊号”、著述、主张方面,都印证了这一点—形影相随,孟随孔,有孔则有孟。)(板书:形影相随)
2.那么,真的是如影相随,孔孟一体吗?
(由此一问,导入第二、三、四自然段的阅读)
1.请同学迅速阅读这三个自然段,教师要分以下几个方面—生活、人性、人际。学生按课文内容找出答案。教师将答案以板书形式列出。
((1)相去两百年,中国局势,已起了很大变化;(2)此一时,彼一时)
2.孔子时代社会特点是什么?(虽有战事,但不足以造成全社会的动荡;礼的约束力虽不太大了,但仍有影响;孔子认为“克已复礼”可行)——板书:社会相对宁静。
3.孟子时代社会特点是什么?(时代动乱,国君草菅民命,孟子认为,恢复过去是不可能了,要改弦更张)板书——社会十分动乱。
高三数学专题课教案篇七
§3.1.1数列、数列的通项公式目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。
重点:1数列的概念。按一定次序排列的一列数叫做数列。数列中的每一个数叫做数列的项,数列的第n项an叫做数列的通项(或一般项)。由数列定义知:数列中的数是有序的,数列中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。
3.4.-1的正整数次幂:-1,1,-1,1,…
5.无穷多个数排成一列数:1,1,1,1,…
二、提出课题:数列
1.数列的定义:按一定次序排列的一列数(数列的有序性)
2.名称:项,序号,一般公式,表示法
3.通项公式:与之间的函数关系式如数列1:数列2:数列4:
4.分类:递增数列、递减数列;常数列;摆动数列;有穷数列、无穷数列。
5.实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集n-(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。
6.用图象表示:—是一群孤立的点例一(p111例一略)
三、关于数列的通项公式1.不是每一个数列都能写出其通项公式(如数列3)
2.数列的通项公式不唯一如:数列4可写成和
3.已知通项公式可写出数列的任一项,因此通项公式十分重要例二(p111例二)略
五、小结:1.数列的有关概念2.观察法求数列的通项公式
六、作业:练习p112习题3.1(p114)1、2
2.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1、、、;(2)、、、;(3)、、、;(4)、、、。
3.求数列1,2,2,4,3,8,4,16,5,…的一个通项公式
6.在数列{an}中a1=2,a17=66,通项公式或序号n的一次函数,求通项公式。
7.设函数(),数列{an}满足(1)求数列{an}的通项公式;(2)判断数列{an}的单调性。
7.(1)an=(2)
高三数学专题课教案篇八
一、教学目标:
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
二、教学重点:
向量的性质及相关知识的综合应用。
三、教学过程:
(一)主要知识:
1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
(二)例题分析:略
四、小结:
1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,
2、渗透数学建模的思想,切实培养分析和解决问题的能力。
高三数学专题课教案篇九
理解数列的概念,掌握数列的运用
教学重难点
理解数列的概念,掌握数列的运用
教学过程
【知识点精讲】
1、数列:按照一定次序排列的一列数(与顺序有关)
2、通项公式:数列的第n项an与n之间的函数关系用一个公式来表示an=f(n)。
(通项公式不)
3、数列的表示:
(1)列举法:如1,3,5,7,9……;
(2)图解法:由(n,an)点构成;
(3)解析法:用通项公式表示,如an=2n+1
5、任意数列{an}的前n项和的性质
高三数学专题课教案篇十
【教学目标】:
(1)知识目标:
通过实例,了解简单的逻辑联结词“且”、“或”的含义;
(2)过程与方法目标:
(3)情感与能力目标:
在知识学习的基础上,培养学生简单推理的技能。
【教学重点】:
通过数学实例,了解逻辑联结词“或”、“且”的含义,使学生能正确地表述相关数学内容。
【教学难点】:
简洁、准确地表述“或”命题、“且”等命题,以及对新命题真假的判断。
【教学过程设计】:
教学环节教学活动设计意图
情境引入问题:
下列三个命题间有什么关系?
(1)12能被3整除;
(2)12能被4整除;
知识建构归纳总结:
一般地,用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,
记作,读作“p且q”。
引导学生通过通过一些数学实例分析,概括出一般特征。
1、引导学生阅读教科书上的例1中每组命题p,q,让学生尝试写出命题,判断真假,纠正可能出现的逻辑错误。学习使用逻辑联结词“且”联结两个命题,根据“且”的含义判断逻辑联结词“且”联结成的新命题的真假。
2、引导学生阅读教科书上的例2中每个命题,让学生尝试改写命题,判断真假,纠正可能出现的逻辑错误。
归纳总结:
当p,q都是真命题时,是真命题,当p,q两个命题中有一个是假命题时,是假命题,
学习使用逻辑联结词“且”改写一些命题,根据“且”的含义判断原先命题的真假。
引导学生通过通过一些数学实例分析命题p和命题q以及命题的真假性,概括出这三个命题的真假性之间的一般规律。
高三数学专题课教案篇十一
1.把握菱形的判定.
2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.
3.通过教具的演示培养学生的学习爱好.
4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.
二、教法设计
观察分析讨论相结合的方法
三、重点·难点·疑点及解决办法
1.教学重点:菱形的判定方法.
2.教学难点:菱形判定方法的综合应用.
四、课时安排
1课时
五、教具学具预备
教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具
六、师生互动活动设计
教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨
七、教学步骤
复习提问
1.叙述菱形的定义与性质.
2.菱形两邻角的比为1:2,较长对角线为 ,则对角线交点到一边距离为________.
引入新课
师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?
生答:定义法.
此外还有别的两种判定方法,下面就来学习这两种方法.
讲解新课
菱形判定定理1:四边都相等的四边形是菱形.
菱形判定定理2:对角钱互相垂直的'平行四边形是菱形.图1
分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.
分析判定2:
师问:本定理有几个条件?
生答:两个.
师问:哪两个?
生答:(1)是平行四边形(2)两条对角线互相垂直.
师问:再需要什么条件可证该平行四边形是菱形?
生答:再证两邻边相等.
(由学生口述证实)
证实时让学生注重线段垂直平分线在这里的应用,
师问:对角线互相垂直的四边形是菱形吗?为什么?
可画出图,显然对角线 ,但都不是菱形.
菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):
注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.
例4 已知: 的对角钱 的垂直平分线与边 、 分别交于 、 ,如图.
求证:四边形 是菱形(按教材讲解).
总结、扩展
1.小结:
(1)归纳判定菱形的四种常用方法.
(2)说明矩形、菱形之间的区别与联系.
2.思考题:已知:如图4△ 中, , 平分 , , , 交 于 .
求证:四边形 为菱形.
八、布置作业
教材p159中9、10、11、13(2)
九、板书设计
十、随堂练习
教材p153中1、2、3
高三数学专题课教案篇十二
近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。更加注重考查考生进入高校学习所需的基本素养,这些问题应引起我们在教学中的关注和重视。
20__年是湖南省新课标命题的第二年,数学试卷充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注意考查进入高校继续学习的潜能。在前二年命题工作的基础上做到了总体保持稳定,深化能力立意,积极改革创新,兼顾了数学基础、思想方法、思维、应用和潜能等多方面的考查,融入课程改革的理念,拓宽题材,选材多样化,宽角度、多视点地考查数学素养,多层次地考查思想能力,充分体现出湖南卷的特色:
1、试题题型平稳突出对主干知识的考查重视对新增内容的考查
2、充分考虑文、理科考生的思维水平与不同的学习要求,体现出良好的层次性
3、重视对数学思想方法的考查
4、深化能力立意,考查考生的学习潜能
5、重视基础,以教材为本
6、重视应用题设计,考查考生数学应用意识
二、教学计划与要求
新课已授完,高三将进入全面复习阶段,全年复习分两轮进行。
第一轮为系统复习(第一学期),此轮要求突出知识结构,扎实打好基础知识,全面落实考点,要做到每个知识点,方法点,能力点无一遗漏。在此基础上,注意各部分知识点在各自发展过程中的纵向联系,以及各个部分之间的横向联系,理清脉络,抓住知识主干,构建知识网络。在教学中重点抓好各中通性、通法以及常规方法的复习,是学生形成一些最基本的数学意识,掌握一些最基本的数学方法。同时有意识进行一定的综合训练,先小综合再大综合,逐步提高学生解题能力。
三、具体方法措施
1、认真学习《考试说明》,研究高考试题,提高复习课的效率。
《考试说明》是命题的依据,复习的依据、高考试题是《考试说明》的具体体现。只有研究近年来的考试试题,才能加深对《考试说明》的理解,找到我们与命题专家在认识《考试说明》上的差距。并力求在复习中缩小这一差距,更好地指导我们的复习。
2、高质量备课,
参考网上的课件资料,结合我校学生实际,高度重视基础知识,基本技能和基本方法的复习。充分发挥全组老师的集体智慧,确保每节课件都是高质量的。统一的教案、统一的课件。
3、高效率的上好每节课,
重视通性、通法的落实。要把复习的重点放在教材中典型例题、习题上;放在体现通性、通法的例题、习题上;放在各部分知识网络之间的内在联系上抓好课堂教学质量,定出实施方法和评价方案。
4、狠抓作业批改、讲评,教材作业、练习课内完成,课外作业认真批改、讲评。一题多思多解,提炼思想方法,提升学生解题能力。
5、认真落实月考,考前作好指导复习,试卷讲评起到补缺长智的作用。
6、结合实际,了解学生,分类指导。
高考复习要结合高考的实际,也要结合学生的实际,要了解学生的全面情况,实行综合指导。可能有的学生应专攻薄弱环节,而另一些学生则应扬长避短。了解学生要加强量的分析,建立档案、了解学生,才有利于个别辅导,因材施教,对于好的学生,重在提高;对于差的学生,重在补缺。
四、复习参考资料
1、20__年数学科《考试说明》(全国)及湖南省《补充说明》。
2、《创新设计》高考第一轮总复习数学及《学海导航》高考第一轮总复习数学。
五、教学参考进度
第一轮的复习要以基础知识、基本技能、基本方法为主,为高三数学会考做好准备。
高三数学专题课教案篇十三
(一)引入:
(1)情景1
2元/千克,而送到县城每千克大豆可获利1.2元,每千克红薯可获利0.6元,王老汉决定明天就带上家中仅有的1000元现金,踏着可载重350千克的三轮车开始自己的发财大计,可明天应该收购多少大豆与红薯呢?王老汉决定与家人合计.回家一讨论,问题来了.孙女说:“收购大豆每千克获利多故应收购大豆”,孙子说:“收购红薯每元成本获利多故应收购红薯”,王老汉一听,好像都对,可谁说得更有理呢?精明的王老汉心中更糊涂了。
(2)问题与探究
师:同学们,你们能用具体的数字体现出王老汉的两个孙子的收购方案吗?
生,讨论并很快给出答案.(师,记录数据)
师:请你们各自为王老汉设计一种收购方案.
生,独立思考,并写出自己的方案.(师,查看学生各人的设计方案并有针对性的请几个同学说出自己的方案并记录,注意:要特意选出2个不合理的方案)
师:这些同学的方案都是对的吗?
生,讨论并找出其中不合理的方案.
师:为什么这些方案就不行呢?
生,讨论后并回答
师:满足什么条件的方案才是合理的呢?
生,讨论思考.(师,引导学生设出未知量,列出起约束作用的不等式组)
师,让几个学生上黑板列出不等式组,并对之分析指正
(教师用多媒体展示所列不等式组,并介绍二元一次不等式,二元一次不等式组的概念.)
生,讨论并回答(教师记录几组,并引导学生表示成有序实数对形式.)
生,讨论并回答(教师对于学生的回答指正并有选择性的记录几组比较简单的数据,对于这些数据要事先设计好并在课件的坐标系中标出备用)
(教师对引例中给出的不等式组介绍,并指出上面的正确的设计方案都是不等式组的解.进而介绍二元一次不等式(组)解与解集的概念)
生,讨论并在下面作图(师巡视检查并对个别同学的错误进行指正)
师,利用多媒体课件展示平面直角坐标系及不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解所对应的一些点,让学生观察并思考讨论:不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解在平面直角坐标系中的位置有什么特点?(由于点太少,我们的学生可能得不出结论)
生,提出猜想:直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计分得的左下半平面.
师:这个结论正确吗?你能说出理由来吗?
生,分组讨论,并利用自己的数学知识去探究.(由于没有给出一个固定的方向,所以各人用的方法不一,有的可能用特殊点再去检验,有的可能会试着用坐标轴的正方向去说明,也有的可能会用直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计下方的点与对应直线上的点对照比较的方法进行说明)
师,在巡视的基础上请运用不同方法的同学阐述自己的理由,并对于正确的作法给予表扬,然后用多媒体展示出利用与直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计横坐标相同而纵坐标不同的点对应分析的方法进行证明.
生:表示为二元一次不等式(组)与简单的线性规划问题的模块单元教学设计,(很快回答)
师:从中你能得出什么结论?
生,讨论并得到一般性结论(教师总结纠正)
(教师总结并用多媒体展示,二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的某侧所有点组成的平面区域,因不包含边界故直线画成虚线;二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示的平面区域因包含边界故直线画成实线.)
生,作图分析,讨论并回答(师,对学生的回答进行分析)
师:结合上面问题请同学们归纳出作不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计对应的平面区域的过程.
生,讨论并回答(师,对于学生的答案给以分析,并肯定其中正确的结论)
生,讨论并回答(教师总结并用多媒体展示:直线定界,特殊点定域)
生,讨论,思考(教师巡视,并观察学生的解答过程,最后引导学生得出:一个是不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解,一个是不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解)
生.讨论分析,最后得到不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计并求解.
师:若把上面问题改为点在同侧呢?请同学们课后完成.
(二)实例展示:
例1、画出不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示的平面区域.
例2、用平面区域表示不等式组二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解集.
(三)练习:
学生练习p86第1-3题.
【及时巩固所学,进一步体会画出不等式(组)表示的平面区域的基本流程】
(四)课后延伸:
(五)小结与作业:
二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计某侧所有点组成的平面区域,画出不等式(组)表示的平面区域的基本流程:直线定界,特殊点定域(一般找原点)
作业:第93页a组习题1、2,
高三数学专题课教案篇十四
数学教学是数学活动的教学,是师生交往、互动、共同发展的过程。有效的数学教学应当从学生的生活经验和已有的知识水平出发,向他们提供充分地从事数学活动的机会,在活动中激发学生的学习潜能,促使学生在自主探索与合作交流的过程中真正理解和掌握基本的数学知识、技能和思想方法。提高解决问题的能力,并进一步使学生在意志力、自信心、理性精神等情感、态度方面都得到良好的发展。
二.对教学内容的认识
1.教材的地位和作用
本节课是在学生学习过“一百万有多大”之后,继续研究日常生活中所存在的较小的数,进一步发展学生的数感,并在学完负整数指数幂的运算性质的基础上,尝试用科学记数法来表示百万分之一等较小的数。学生具备良好的数感,不仅对于其正确理解数据所要表达的信息具有重要意义,而且对于发展学生的统计观念也具有重要的价值。
2.教材处理
基于设计理念,我在尊重教材的基础上,适时添加了“银河系的直径”这一问题,以向学生渗透辩证的研究问题的思想方法,帮助学生正确认识百万分之一。
通过本节课的教学,我力争达到以下教学目标:
3.教学目标
(1)知识技能:
借助自身熟悉的事物,从不同角度来感受百万分之一,发展学生的数感。能运用科学记数法来表示百万分之一等较小的数。
(2)数学思考:
通过对较小的数的问题的学习,寻求科学的记数方法。
(3)解决问题:
能解决与科学记数有关的实际问题。
(4)情感、态度、价值观:
使学生体会科学记数法的科学性和辩证的研究问题的思想方法。培养学生的合作交流意识与探究精神。
4.教学重点与难点
根据教学目标,我确定本节课的重点、难点如下:
重点:对较小数据的信息做合理的解释和推断,会用科学记数法来表示绝对值较小的数。
难点:感受较小的数,发展数感。
三.教法、学法与教学手段
1.教法、学法:
本节课的教学对象是七年级的学生,这一年级的学生对于周围世界和社会环境中的实际问题具有越来越强烈的兴趣。他们对于日常生活中一些常见的数据都想尝试着来加以分析和说明,但又缺乏必要的感知较大数据或较小数据的方法及感知这些数据的活动经验。
因此根据本节课的教学目标、教学内容,及学生的认知特点,教学上以“问题情境——设疑诱导——引导发现——合作交流——形成结论和认识”为主线,采用“引导探究式”的教学方法。学生将主要采用“动手实践——自主探索——合作交流”的学习方法,使学生在直观情境的观察和自主的实践活动中获取知识,并通过合作交流来深化对知识的理解和认识。
2.教学手段:
1.采用现代化的教学手段——多媒体教学,能直观、生动地反映问题情境,充分调动学生学习的积极性。
2.以常见的生活物品为直观教具,丰富了学生感知认识对象的途径,使学生对百万分之一的认识更贴近生活。
四.教学过程
(一).复习旧知,铺垫新知
问题1:光的速度为300000km/s
问题2:地球的半径约为6400km
问题3:中国的人口约为1300000000人
(十).教学设计说明
本节课我以贴近学生生活的数据及问题背景为依托,使学生学会用数学的方法来认识百万分之一,丰富了学生对数学的认识,提高了学生应用数学的能力,并为培养学生的终身学习奠定了基础。在授课时相信会有一些预见不到的情况,我将在课堂上根据学生的实际情况做相应的处理。
高三数学专题课教案篇十五
一、过程目标
1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标
1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标
1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:
1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体
【学前准备】对照指数函数试研究对数函数的定义、图象和性质。
高三数学专题课教案篇十六
(二)评价说明
1.针对本班学生情况对课本进行了适当改编、细化,有利于难点克服和学生主体性的调动。
2.根据课堂上师生的双边活动,作出适时调整、补充(反馈评价);根据学生课后作业、提问等情况,反复修改并指导下节课的设计(反复评价)。
3.本节课充分体现了面向全体学生、以问题解决为中心、注重知识的建构过程与方法、重视学生思想与情感的'设计理念,积极地探索和实践我校的科研课题——努力推进课堂教学结构改革。
通过这样的探索过程,相信学生能从中有所体会,对后续内容的学习和学生的可持续发展会有一定的帮助。希望很久以后留在学生记忆中的不是知识本身,而是方法与思想,是学习的习惯和热情,这正是我们教育工作者追求的结果。
高三数学专题课教案篇十七
1.板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;同时不完全按课本上的呈现方式来编排板书。即体现系统性、程序性、概括性、指导性、启发性、创造性的原则;(原则性)
2.使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。(灵活性)
高三数学专题课教案篇十八
教学目标:
1、知识与技能:
1)了解导数概念的实际背景;
2)理解导数的概念、掌握简单函数导数符号表示和基本导数求解方法;
3)理解导数的几何意义;
4)能进行简单的导数四则运算。
2、过程与方法:
先理解导数概念背景,培养观察问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程及运算,培养解决问题的能力。
3、情态及价值观;
让学生感受数学与生活之间的联系,体会数学的美,激发学生学习兴趣与主动性。
教学重点:
1、导数的求解方法和过程;
2、导数公式及运算法则的熟练运用。
教学难点:
1、导数概念及其几何意义的理解;
2、数形结合思想的灵活运用。
教学课型:复习课(高三一轮)
教学课时:约1课时
高三数学专题课教案篇十九
(一)导入
引出数形结合思想方法,强调其含义和重要性,告诉学生,本节课将利用数形结合方法来研究,会使学习变得轻松有趣。
采用这样的引入方法,目的是打消学生对函数学习的畏难情绪,引起学生注意,也激起学生好奇和兴趣。
(二)新知探索主要环节,分为两个部分
教学过程如下:
第一部分————师生共同研究得出正弦函数的性质
1.定义域、值域2.周期性
3.单调性(重难点内容)
为了突出重点、克服难点,采用以下手段和方法:
(1)利用多媒体动态演示函数性质,充分体现数形结合的重要作用;
(2)以层层深入,环环相扣的课堂提问,启发学生思维,反馈课堂信息,使问题成为探索新知的线索和动力,随着问题的解决,学生的积极性将被调动起来。
(3)单调区间的探索过程是:
先在靠近原点的一个单调周期内找出正弦函数的一个增区间,由此表示出所有的增区间,体现从特殊到一般的知识认识过程。
**教师结合图象帮助学生理解并强调“距离”(“长度”)是周期的多少倍
为什么要这样强调呢?
因为这是对知识的一种意义建构,有助于以后理解记忆正弦型函数的相关性质。
4.对称性
设计意图:
(1)因为奇偶性是特殊的对称性,掌握了对称性,容易得出奇偶性,所以着重讲清对称性。体现了从一般到特殊的知识再现过程。
(2)从正弦函数的对称性看到了数学的对称之美、和谐之美,体现了数学的审美功能。
5.最值点和零值点
有了对称性的理解,容易得出此性质。
第二部分————学习任务转移给学生
设计意图:
(3)通过课堂教学结构的改革,提高课堂教学效率,最终使学生成为独立的学习者,这也符合建构主义的教学原则。
(三)巩固练习
补充和选作题体现了课堂要求的差异性。
(四)结课
【本文地址:http://www.xuefen.com.cn/zuowen/5414015.html】