编写教案需要教师具备扎实的学科知识和教育教学理论知识。教案的表达清晰、条理分明是保证教学质量的重要保障。教案的编写要遵循科学的教学原则和方法。
二元一次方程教案北师大版篇一
一、学生起点分析:
学生已了解方程的基本概念和性质,并能熟练解二元一次方程,也 能整体系统地审清题意,能从具体问题的数量关系中找出等量关系并列出二元一次方程组;学生也基本能够运用方程的思想解决实际问题。初中二年级的学生,正处于少年期,已具备了初步的抽象、概括和分析问题解决问题能力,要培养他们敢于面对挑战和勇于克服困难的意志.鼓励他们大胆尝试,敢于发表自己的看法,以从中获得成功的体验,激发学习激情.
二、教学任务分析:
基于以上对学生情况的分析,特制定以下教学任务:
1、在具体问题的解决过程中提高学生的解二元一次方程组的技能;
3、进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.
4、通过\'鸡兔同笼\',把同学们带入古代的数学问题情景,学生体会到数学中 的\'趣\';进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神;通过对祖国文明史的了解,培养学生爱国主义精神,树立为中华崛起而学习的信心.
教学重点
根据等量关系列二元一次方程组解应用题.
教学难点
1、读懂古算题;
2、根据题意找出等量关系,列出方程.
三、教学过程设计
本节课设计了五个教学环节:第一环节: 引入课题;第二环节:典型例题;第三环节:闯关练习;第四环节:反馈练习;第五环节:感悟和收获;第六环节:作业布置.
第一环节:引入课题
活动内容1:例1 今有雉(兔 )同笼,上有三十五头,下有九十四足,问雉兔各几何?
提问:
(1)\'上有三十五头\'的意思是什么?\'下有九十四足\'呢?
(2)你能解决这个有趣的问题吗?
写出解题过程,让学生讨论对不对,有没有不同的思路和观点;最后在学生充分讨论的基础上,老师用多媒体课件,给出正确的答案.)
二元一次方程教案北师大版篇二
知识与技能
(1)初步理解二元一次方程和一次函数的关系;
(2)掌握二元一次方程组和对应的两条直线之间的关系;
(3)掌握二元一次方程组的图像解法.
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系.
数形结合和数学转化的思想意识.
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)
内容:
1.方程x+y=5的解有多少个?是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.
第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)
内容:
1.解方程组
2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的.图像.
(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.
第三环节典型例题(10分钟,学生独立解决)
探究方程与函数的相互转化
内容:例1用作图像的方法解方程组
例2如图,直线与的交点坐标是.
第四环节反馈练习(10分钟,学生解决全班交流)
内容:
1.已知一次函数与的图像的交点为,则。
2.已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为()。
(a)4(b)5(c)6(d)7
3.求两条直线与和轴所围成的三角形面积。
4.如图,两条直线与的交点坐标可以看作哪个方程组的解?
第五环节课堂小结(5分钟,师生共同总结)
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
1.二元一次方程和一次函数的图像的关系;
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;
(2)两条直线的交点坐标是对应的方程组的解;
3.解二元一次方程组的方法有3种:
(1)代入消元法;
(2)加减消元法;
(3)图像法.要强调的是由于作图的不准确性,由图像法求得的解是近似解.
第六环节作业布置
习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2
二元一次方程教案北师大版篇三
知识与技能
会用代入消元法解二元一次方程组
过程与方法
了解解二元一次方程组的消元思想,初步体现数学研究中“化未知为已知”的化归思想,从而“变陌生为熟悉”
情感态度与价值观
利用小组合作探讨学习,使学生领会朴素的辩证唯物主义思想
教学重点
用代入法解二元一次方程组,基本方法是消元化二元为一元.
教学难点
用代入法解二元一次方程组的基本思想是化归——化陌生为熟悉.
二元一次方程教案北师大版篇四
【知识目标】1、使学生初步理解二元一次方程与一次函数的关系
2、能根据一次函数的图象求二元一次方程组的近似解.
3、能利用二元一次方程组确定一次函数的表达式
【能力目标】通过学生的思考和操作,在力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养了学生初步的数形结合的意识和能力.
【情感目标】通过学生的自主探索,提示出方程和图象之间的对应关系,加强了新旧知识的联系,培养了学生的创新意识,激发了学生学习数学的兴趣.
【教学重点】1、二元一次方程和一次函数的关系
2、能根据一次函数的图象求二元一次方程组的近似解
【教学难点】方程和函数之间的对应关系即数形结合的意识和能力
二元一次方程教案北师大版篇五
1.会用加减法解一般地二元一次方程组。
2.进一步理解解方程组的消元思想,渗透转化思想。
3.增强克服困难的勇力,提高学习兴趣。
把方程组变形后用加减法消元。
根据方程组特点对方程组变形。
用加减消元法解方程组。
1.思考如何解方程组(用加减法)。
先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或互为相反数?
能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。
学生解方程组。
2.例1.解方程组
思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?
学生讨论,小组合作解方程组。
提问:用加减消元法解方程组有哪些基本步骤?
1.p40练习题(3)、(5)、(6)。
2.分别用加减法,代入法解方程组。
解二元一次方程组的加减法,代入法有何异同?
p33.习题2.2a组第2题(3)~(6)。
b组第1题。
选作:阅读信息时代小窗口,高斯消去法。
后记:
2.3二元一次方程组的应用(1)
二元一次方程教案北师大版篇六
一、学生起点分析:
学生的知识技能基础:学生能够正确解方程(组),初步掌握了一次函数及其图 像的基础知识,已经具备了函数的初步思想,对于数形结合的数学思想也有所接触。
学生的活动经验基础:学生能够根据已知条件准确画出一次函数图象,能够认识和接受函数解析式与二元一次方程之间的互相转换.在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.
二、 学习任务分析:
本节课的主要内容是二元一次方程(组)与一次函数及其图像的综合应用.通过探索“方程”与“函数图像”的关系,培养学 生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:
1.初步理解二元一次方 程和一次函数的关系;
2.掌握二元一次方程组和对应的两条直线之间的关系;
3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.
教学重点
二元一次方程和一次函数的关系;
教学难点
数形结合和数学转化的思想意识.
四、教法学法
1.教法学法
启发引导与自主探索相结合.
2.课前准备
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
五、教学过程
本节课设计了六个教学环节:第一环节 设置问题情境,启发 引导;第二环节 自主探索,建立“方程与函数图像”的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.
二元一次方程教案北师大版篇七
1.有一个两位数,个位数比十位数大5,如果把这两个数的位置对换,那么所得的新数与原数的和是143.求这个两位数.
3.甲、乙两人练习跑步,如果甲让乙先跑10 米,甲跑5秒就追上乙;如果甲让乙先跑2秒,那么甲跑4秒就追上乙.若设甲、乙两人每秒分别跑x、y米,列出的方程组为.
7.甲、乙两人分别从相距30千米的a、b两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到b地所剩路程是乙到a地所剩路程的2倍,求甲、乙两人的速度.
二元一次方程教案北师大版篇八
学生的知识技能基础:在学习本节之前,学生已经掌握了有理数、合并同类项、去括号等法则,能熟练的进行简单的整式的加、减法运算整式的运算,知道方程的解的意义,能熟练的求解一元一次方程,了解了二元一次方程以及解的意义、二元一次方程组及其解的意义,能通过代人消元法求解二元一次方程组.
学生活动经验基础:在相关知识的学习过程中,学生已经经历了列 整式、列一元一次方程并求解,列二元一次方程组解决了一些简单的现实问题,感受到了方程是刻画现实世界数量关系的有效模型,通过解一元一次方程和用代入消元法解二元一次方程组获得了解二元一次方程的基本经验和基本技能;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.
二、教学任务分析
教科书基于学生对前面解一元一次方程和用代入消元法解二元一次方程组基础之上,提出了本课的具体学习任务:会用加减消元法解二元一次方程组,了解解二元一次方程组的“消元”思想,初步体现数学研究中“化未知为已知”的化归思想.
《课程标准(2011年版)》把方程与方程组的重点放在解法和应用上,特别强调体会方程是刻画现实世界数量关系的有效模型,如何解方程与方程组时方程与方程组教学的主体和重点.对于二元一次方程组来讲,强调“消元”的思想和方法,应是贯 穿于始终的一条主线,通过“消元”,将二元一次方程转化为一元一次方程实现求解的目的,体现了化繁为简,以简驭繁的基本策略,对促进了学生理性思维的发展具有重要意义.通过第一课时是学习,学生已经能够解一般的二元一次方程组,但对于有些方程用代人消元法解可能比较繁杂,用加减消元法要简单一些,同时加减消元法在学生将来的矩阵运算中有广泛的应用。因此这个课时就进一步学习二元一次方程组的加减消元法.
加减消元法是解二元一次方程组的基本方法之一,它要求两个方程中必须有某一个未知数的系数的绝对值相等(或利用等式的基本性质在方程两边同时乘以一个适当的不为0的数或式,使两个方程中某一个未知数的系数的绝对值相等),然后利用等式的基本性质在方程两边同时相加或相减消元.
为此,本节课的教学目标是:
(1)会用加减消元法解二元一次方程组.
(2)进一步理解二元一次方程组的“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.
(3) 选择恰当的方法解二元一次方程组 ,培养学生的观察、分析能力.
本节课的教学重点是:
用加减消元法解二元一次方程组.
本节课的教学难点是:
在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想.
三、教学过程 设计
本节课设计 了五个教学环节:第一环节:情境引入;第二环节:讲授新知;第三环节:巩固新知;第四环节:课堂小结;第五环节:布置作业.
第一环节:情境引入
内容:巩固练习,在练习中发现新的解决方法
怎样解下面的二元一次方程组呢?(学生在练习本上做,教师巡视、引导、解疑,注意发现学生在解答过程中出现的新的想法,可以让用不同方法解题的学生将他们的方法板演在黑板上,完后进行评析,并为加减消元法的出现铺路.)
二元一次方程教案北师大版篇九
知识与技能
(1)初步理解二元一次方程和一次函数的关系;
(2)掌握二元一次方程组和对应的两条直线之间的关系;
(3)掌握二元一次方程组的图像解法.
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系.
数形结合和数学转化的思想意识.
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)
内容:1.方程x+y=5的解有多少个?是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.
第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)
内容:1.解方程组
2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像.
(1)求二元一次方程组的.解可以转化为求两条直线的交点的横纵坐标;
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.
第三环节典型例题(10分钟,学生独立解决)
探究方程与函数的相互转化
内容:例1用作图像的方法解方程组
例2如图,直线与的交点坐标是.
第四环节反馈练习(10分钟,学生解决全班交流)
内容:1.已知一次函数与的图像的交点为,则.
2.已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为().
(a)4(b)5(c)6(d)7
3.求两条直线与和轴所围成的三角形面积.
4.如图,两条直线与的交点坐标可以看作哪个方程组的解?
第五环节课堂小结(5分钟,师生共同总结)
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
1.二元一次方程和一次函数的图像的关系;
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;
(2)两条直线的交点坐标是对应的方程组的解;
3.解二元一次方程组的方法有3种:
(1)代入消元法;
(2)加减消元法;
(3)图像法.要强调的是由于作图的不准确性,由图像法求得的解是近似解.
第六环节作业布置
习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2
附:板书设计
六、教学反思
二元一次方程教案北师大版篇十
教学目标:
知识与技能目标:
通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题.初步体会解二元一次方程组的基本思想“消元”。
培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。
过程与方法目标:
经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。
情感态度与价值观目标:
1.进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.
2.通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神。重点:
经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。
难点:
确立等量关系,列出正确的二元一次方程组。
教学流程:
课前回顾
复习:列一元一次方程解应用题的一般步骤
情境引入
探究1:今有鸡兔同笼,
上有三十五头,
下有九十四足,
问鸡兔各几何?
“雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何?
(1)画图法
用表示头,先画35个头
将所有头都看作鸡的,用表示腿,画出了70只腿
还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿
四条腿的是兔子(12只),两条腿的是鸡(23只)
(2)一元一次方程法:
鸡头+兔头=35
鸡脚+兔脚=94
设鸡有x只,则兔有(35-x)只,据题意得:
2x+4(35-x)=94
比算术法容易理解
想一想:那我们能不能用更简单的方法来解决这些问题呢?
回顾上节课学习过的二元一次方程,能不能解决这一问题?
(3)二元一次方程法
今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
(1)上有三十五头的意思是鸡、兔共有头35个,
下有九十四足的意思是鸡、兔共有脚94只.
(2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;
鸡足有2x只;兔足有4y只.
解:设笼中有鸡x只,有兔y只,由题意可得:
鸡兔合计头xy35足2x4y94
解此方程组得:
练习1:
2.小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65.
合作探究
找出等量关系:
解:设绳长x尺,井深y尺,则由题意得
x=48
将x=48y=11。
所以绳长4811尺。
想一想:找出一种更简单的创新解法吗?
引导学生逐步得出更简单的方法:
找出等量关系:
(井深+5)×3=绳长
(井深+1
解:设绳长x尺,井深y尺,则由题意得
3(y+5)=x
4(y+1)=x
x=48
y=11
所以绳长48尺,井深11尺。
练习2:甲、乙两人赛跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.设甲速为x米/秒,乙速为y米/秒,则可列方程组为(b).
归纳:
列二元一次方程解决实际问题的一般步骤:
审:审清题目中的等量关系.
设:设未知数.
列:根据等量关系,列出方程组.
解:解方程组,求出未知数.
答:检验所求出未知数是否符合题意,写出答案。
二元一次方程教案北师大版篇十一
执教者钱嘉颖时间xxxx年6月12日
1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)
2、教材内容简要分析
教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。
3、学习内容分析表:
知识点
重点
难点
编号
内容
1
二元一次方程组定义及特点
二元一次方程组的两个特点
二元一次方程组成立的条件(未知数要同时满足两个条件)
2
二元一次方程组
代入消元法
代入消元法的具体解法
消元法与一元一次方程解法间的联系
3
二元一次方程组实际运用
以实际例题列出方程并解答
未知数的假设以及运用已知条件列出正确方程。
本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。
1、教学顺序
(1)复习已学过的一元一次方程知识引入开篇实例。
(2)以一元一次方程解释实例引导对于二元的思考。
(3)以二元一次方程的方法建立方程,进而介绍二元一次方程组的定义及特点并巩固。
(4)以本例引发思考二元一次方程组的解法。
(5)介绍二元一次方程组消元法的运用,并进行随堂练习以及随堂解答。
(6)在确定学生掌握消元法后进入二元一次方程组的实例运用讲解以及随堂练习。
(7)复习、回忆、巩固本次课程的主要内容,介绍课外延伸内容。
2、教学活动程序
(1)引起注意
以“上课”号令以及播放ppt唤起学习者的注意。
(2)告诉学习者目标
以ppt的播放以及言语刺激,明确告诉学习者本次课的内容是学习二元一次方程组,本次学习的目标是掌握二元一次方程组的消元法以及二元一次方程的实例运用。
(3)刺激对先前知识的回忆
回忆之前学过的一元一次方程的主要内容(定义、解法、实际运用),以实例进行先前内容的回忆并且充分利用原有的认知结构中关于一元一次方程的列式观念来与新学的二元一次方程产生共鸣。
(4)呈现刺激材料
在讲解过程中伴随着ppt的播放,并在关键需要注意的部分进行板书强调,在语调上有所突出。
(5)提供学习指导
以教材内容为指导,以及教师的提示语和示范性行为等进行引导。
(6)诱导行为
在重点部分题型注意,进行随堂练习,分为详细解答和对答案两种方式。在详细解答时要求同学与老师一同进行,必要时提问同学,让学习者参与进来,更好的理解信息并掌握学习内容。
(7)提供反馈
在学习者作出反应、表现出行为之后,及时让学习者知道学习结果,从而使学习者能肯定自己的理解与行为正确与否,以便及时更正。
(8)评定行为
以随堂测验的方式进行随堂评定,并且在课后布置习题让同学们课后完成,再由教师进行评定。
(9)增强记忆与促进迁移
设置教学活动(见附录),强化刺激,为学习者加深印象,并且促使其发散思维,将学习的知识广泛运用。
3、教学组织形式
本次教学中选择运用了以下几种教学组织形式
(1)讲解的形式
以教师的说明和解释为主,向学生传输新信息,是本次教学主要形式,因本次教学内容的特征,这种形式能够全面详细的解释本次教学内容,并能充分发挥教师的引导作用。
(2)提问的形式
这一形式能够在教学过程中起到刺激课堂,引起学习者注意的作用,并且是对学习者某一知识学习情况的抽样调查,由教师找出学习者存在的问题进行解决。
(3)师生共同解答的形式
采用这个形式能够在师生之间产生共鸣,提起课堂气氛,产生共鸣,引起注意,使大部分学习者都参与进来,也是一个小型头脑风暴过程,在学习者之间互相影响,从而对知识得到正确理解。
4、教学方法的选择
本次课程选择运用了讲授法、演示法、练习法的教学方法。
(1)语言的方法—讲授法,主要是根据教学目标和教学任务,数学这门学科的解释性强的特点以及这个学习阶段的学习者的自学能力不够然而接受能力很强的特点而选择的。
(2)直观的方法—演示法,顺应时代的发展,教学中出现了利用新媒体的需要,并且,对于这个阶段的学习者,在课程开展中利用ppt来进行演示可以更加有效的刺激学习者感官,并且配合适当的板书,对于这个年龄段的学习者更加容易接受,同时也由于我们已经具备了采用新媒体的条件。在课后,会以电子杂志的形式形成重点复习资料留给学习者课后复习。
(3)实践的方法—练习法,包括了口头练习和书面练习。口头练习是这个年龄段学习者心理特征的需要,因为他们独立性还不够强,在进行口头练习的时候,比较能够跟上大多数人的思维,产生共鸣。书面练习是这个学科特征的需要,必须进行书面练习才能让同学们更好的掌握所学知识,随堂练习能及时反映出当场学习的状况。
二元一次方程教案北师大版篇十二
(1) 初步理解二元一次方程和一次函数的关系;
(2) 掌握二元一 次方程组和对应的两条直线之间的 关系;
(3) 掌握二元一次方程组的图像解法.
(2) 通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.
(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.
(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系.
数形结合和数学转化的思想意识.
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
内容:
1.方程x+y=5的解有多少个? 是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?
3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?
由此得到本节课的第一个知识点:
二元一次方程和一次函数的图像有如下关系:
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上的点的坐标都适合相应的二元一次方程 .
内容:
1.解方程组
2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数 的图像.
(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.
(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.
探究方程与函数的相互转化
内容:
例1 用作图像的方法解方程组
例2 如图,直线 与 的交点坐标是 .
内容:
1.已知一次函数 与 的图像的交点为 ,则 .
2.已知一次函数 与 的图像都经过点a(—2, 0),且与 轴分别交于b,c两点,则 的面积为.
(a)4 (b)5 (c)6 (d)7
3.求两条直线 与 和 轴所围成的三角形面积.
4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
1.二元一次方程和一 次函数的图像的关系;
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上 的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
(1) 方程组的解是对应的两条直线的交点坐标;
(2) 两条直线的交 点坐标是对应的方程组的解;
3.解二元一次 方程组的方法有3种:
(1)代入消元法;
(2)加减消元法;
(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.
习题7.7a组(优等生)1、 2、3 b组(中等生)1、2 c组1、2
二元一次方程教案北师大版篇十三
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
1.列二元一次方程组解简单问题。
2.彻底理解题意
找等量关系列二元一次方程组。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
比较用一元一次方程求解,用二元一次方程组求解谁更容易?
1.根据问题建立二元一次方程组。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
是二元一次方程。求a、b的值。
2.p38练习第1题。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
p42。习题2.3a组第1题。
后记:
2.3二元一次方程组的应用(2)
二元一次方程教案北师大版篇十四
寻找等量关系
看一看:课本99页探究2
问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?
2、“甲、乙两种作物的总产量比为3:4”是什么意思?
3、本题中有哪些等量关系?
提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?
思考:这块地还可以怎样分?
练一练
一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:
农作物品种每公顷需劳动力每公顷需投入奖金
水稻4人1万元
棉花8人1万元
蔬菜5人2万元
问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?
二元一次方程教案北师大版篇十五
1、本节课是一堂概念课,设计时按照“实例研究、初步体会―类比分析,把握实质――归纳概括,形成定义――应用提高,发展能力”的思路进行,让学生体会到因为“需要”而学习新知识,逐步渗透应用意识。
2、二元一次方程及其解的意义类比一元一次方程进行学习,一方面加深学生对方程中“元”与“次”的理解,另一方面易于理清一元一次方程组有关概念的学习扫清障碍。
3、分层递进,循环上升,学生对知识的理解,教师对学生的要求,都是由低到高,逐步提升,题目设计从单一知识点的直接用,逐渐对多个知识点的灵活运用,给学生设置必要的'台阶,使其一步步向前,最终达到教学目标,充分尊重学生的认识规律。
4、教师始终把自己放策划者,引志者,引导者,促进者的位置,注重学法指导,把学生推向前台,使学生以探索者,研究者的身份穿梭于课堂,充分突出其主体地位,让学生在学习中获得成功,收获自信,使其德智双赢。
二元一次方程教案北师大版篇十六
本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.
学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.
1.教学目标
知识与技能目标
(1)初步理解二元一次方程和一次函数的关系;
(2)掌握二元一次方程组和对应的两条直线之间的关系;
(3)掌握二元一次方程组的图像解法.
过程与方法目标
(2)通过做一做引入例1,进一步发展学生数形结合的意识和能力.
(3)情感与态度目标
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.
2.教学重点
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系.
3.教学难点
数形结合和数学转化的思想意识.
1.教法学法
启发引导与自主探索相结合.
2.课前准备
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
本节课设计了六个教学环节:第一环节设置问题情境,启发引导;第二环节自主探索,建立方程与函数图像的模型;第三环节典型例题,探究方程与函数的相互转化;第四环节反馈练习;第五环节课堂小结;第六环节作业布置.
第一环节:设置问题情境,启发引导
内容:1.方程x+y=5的解有多少个?是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
二元一次方程和一次函数的图像有如下关系:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.
意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y=相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.
效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的`思想意识.
前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.
第二环节自主探索方程组的解与图像之间的关系
内容:1.解方程组
2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像.
(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.
意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.
效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.
第三环节典型例题
探究方程与函数的相互转化
内容:例1用作图像的方法解方程组
例2如图,直线与的交点坐标是.
意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.
效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.
第四环节反馈练习
内容:1.已知一次函数与的图像的交点为,则.
2.已知一次函数与的图像都经过点a(2,0),且与轴分别交于b,c两点,则的面积为().
(a)4(b)5(c)6(d)7
3.求两条直线与和轴所围成的三角形面积.
4.如图,两条直线与的交点坐标可以看作哪个方程组的解?
意图:4个练习,意在及时检测学生对本节知识的掌握情况.
效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.
第五环节课堂小结
内容:以问题串的形式,要求学生自主总结有关知识、方法:
1.二元一次方程和一次函数的图像的关系;
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;
(2)两条直线的交点坐标是对应的方程组的解;
3.解二元一次方程组的方法有3种:
(1)代入消元法;
(2)加减消元法;
(3)图像法.要强调的是由于作图的不准确性,由图像法求得的解是近似解.
意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.
第六环节作业布置
习题7.7
附:板书设计
本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.
二元一次方程教案北师大版篇十七
3体会列方程组比列一元一次方程容易
4进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力
重点:能根据题意列二元一次方程组;根据题意找出等量关系;
难点:正确发找出问题中的两个等量关系
课前自主学习
1.列方程组解应用题是把“未知”转化为“已知”的`重要方法,它的关键是把已知量和未知量联系起来,找出题目中的()
2.一般来说,有几个未知量就必须列几个方程,所列方程必须满足:
(1)方程两边表示的是()量
(2)同类量的单位要()
(3)方程两边的数值要相符。
3.列方程组解应用题要注意检验和作答,检验不仅要求所得的解是否( ),更重要的是要检验所求得的结果是否( )
4.一个笼中装有鸡兔若干只,从上面看共42个头,从下面看共有132只脚,则鸡有( ),兔有( )
新课探究
看一看
1题中有哪些已知量?哪些未知量?
2题中等量关系有哪些?
3如何解这个应用题?
本题的等量关系是(1)()
(2)()
解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg
根据题意列方程,得
解这个方程组得
答:每只母牛和每只小牛1天各需用饲料为( )和( ),饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算()出入。(“有”或“没有”)
练一练:
小结
用方程组解应用题的一般步骤是什么?
8.3实际问题与二元一次方程组(2)
1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;
2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;
3、学会开放性地寻求设计方案,培养分析问题,解决问题的能力
重点:能根据题意列二元一次方程组;根据题意找出等量关系;
难点:正确发找出问题中的两个等量关系
课前自主学习
1.甲乙两人的年收入之比为4:3,支出之比为8:5,一年间两人各存了5000元(两人剩余的钱都存入了银行),则甲乙两人的年收入分别为()元和()元。
2.在一堆球中,篮球与排球之比为赞助单位又送来篮球队10个排球10个,这时篮球与排球的数量之比为27:40,则原有篮球()个,排球()个。
二元一次方程教案北师大版篇十八
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型20xx年-20xx学年七年级数学下册全册教案(人教版)20xx年-20xx学年七年级数学下册全册教案(人教版)。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
1.列二元一次方程组解简单问题。
2.彻底理解题意
找等量关系列二元一次方程组。
一、情境引入。
二、建立模型。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
比较用一元一次方程求解,用二元一次方程组求解谁更容易?
三、练习。
1.根据问题建立二元一次方程组。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
是二元一次方程。求a、b的值。
2.p38练习第1题。
四、小结。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
五、作业。
【本文地址:http://www.xuefen.com.cn/zuowen/5254588.html】