优秀高二数学心得(案例14篇)

格式:DOC 上传日期:2023-10-29 15:30:12
优秀高二数学心得(案例14篇)
时间:2023-10-29 15:30:12     小编:HT书生

培养自己的兴趣爱好,享受追求梦想的过程。在总结中要注意语言简练、条理清晰,避免罗列无意义的信息。以下是一些哲学思考的经典名言和哲学家的思想,让我们一起思考人生的意义和价值。

高二数学心得篇一

本节内容为人教版高一数学必修3模块第一章算法初步第1.1.2节第一课时,

主要包括程序框图的图形符号、算法的程序框图表示、算法的的逻辑结构等三部分内容。

算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。

通过对解决具体问题的过程与步骤的分析,体会算法的思想,了解算法的含义。理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。进一步体会算法的另一种表达方式。

本章节的重点是体会算法的思想,通过模仿、操作、探索,通过设计程序框图解决实际生活问题的过程。通过解决具体问题,理解三种基本逻辑结构中顺序和条件结构,经历将具体问题用程序框图来表示,在实际问题中能设计相关程序框图解决实际问题。

关于本节内容,相对学生来说,全是新知识,因它涉及到计算机科学相关内容,也是数学及其应用的重要组成部分。大部分学生并没有学习过程序框图的设计,在编写程序方面基本上都是“零起点”,而且认为程序框图设计是一件困难的事情,因此本课的举例和任务都适当降低难度,让学生能在实践中体会成功的喜悦,领略程序设计之算法程序框图表示的乐趣。另一方面要充分利用课外资料和实例,设置问题情景,激发学生的学习兴趣,通过建构模型,化抽象为具体,教师在整个学习过程中进行指导、启发、补充与完善。

(一)知识与技能

2、理解并掌握算法的三种基本逻辑结构,培养学生分析问题、解决问题的能力;

3、培养学生在实际现实生活中,能正确运用相关逻辑结构分析、解决实际问题;

(二)过程与方法

2、在具体问题的解决过程中理解程序流程图的三种基本逻辑结构之顺序结构、条件结构,寻找解决实际问题的规律与方法。

(三)情感态度与价值观

1:通过本节的学习,使学生对计算机的算法语言有一个基本的了解,明确算法的要求,认识计算机是人类征服自然的一种有力工具,进一步提高探索、认识世界的能力。

2:培养学生迎难而上,战胜困难的大无畏精神,克服畏难情绪,培养严谨的思维习惯、塑造认真、细致的做事态度。

教学重点:程序框图的图形符号、算法的基本逻辑结构及应用

教学难点:算法的条件结构在实际生活中的运用

3、竞争机制策略:据本章节中部分内容,合理设置分组竞争,小组赛形式激发学生高涨的.学习热情,不仅引导学生将所学知识应用于解决实际问题,且培养学生团队合作探究精神。

任务驱动法、启发引导式、小组合作探究学习法、模仿建构学习法

多媒体课件、生活中具体实例、同步学案

课时1

教学程序教师组织与引导学生活动设计意图

发放“任务”纸质

1、把任务学案发给学生

2、查阅、收集有关实际生活中实例,用于本节教学

1、预习

2、查阅相关资料学生是学习主体,自主合作、探究式学习

回顾旧知,引入新课

改进:生活中的问题,描述解决步骤(1)算法的描述:要交换两杯不同液体的方法、步骤;(自然语言描述法,复习)

穿插经典算法在教学中,激趣导学

1:鸡兔同笼、2:谁在说谎

(2)你还知道有什么渠道能使算法描述得更直观、高效、准确吗?引导学生看书自学

学生思考、回答,

学生看书自学本节程序框图相关知识:程序框图图形符号

激发学生对本节课内容的关注

探究不同程序框图符号表示的不同含义,初步探讨程序框图的画法

重点部分强记据教材设疑,并逐一提出下列问题:

(1)程序框图共有哪些图形符号?

改进:同学们,你们所常见的图形有哪些??学生回答

现在,从这些常用图形中,我们选出几中种来用于表示“算法”中的含义

(2)不同符号所表示的什么含义?

(3)具体应用,实例列举,老师在黑板上“补”画“长方形面积”流程图

(4)要求学生结合上述老师所讲实例,模仿“补充”画出,改进:

a:圆的面积、周长的流程图(老师完成)

b:正方形面积、周长的流程图(师生共同完成)

c:三角形面积、周长的流程图(学生自己完成)

d:求学生语、数、英三科成绩平均分的程序框图(学生自己完成)

(5)例3.已知三角形三边长,求三角形面积的程序框图(老师提示公式,学生自己理解)

(6)判别整数n是否为质数后面学

老师引导学生说出程序框图特征并作简要归纳学生看书掌握

学生联系实际,回答

看书自学,回答

看书自学,回答

听讲,学习

学生根据图形特点,找记忆方法

讨论、交流、模仿、经历

学生思考、讨论并画图

反复练习,巩固、加强记忆

学生自己设计

对照课本,检查正误

学生总结归纳程序框图特点

学生仿做

学生仿做

学生理解

s=p*r^2培养自学能力

明确每种图形符号的不同含义及不同应用

培养学生模仿学习与制作流程图的能力

培养学生善于总结归纳的习惯

重点突破

框图符号

重、难点攻克条件结构

总结过渡并提出问题:

改进:联系实际生活,结合课本,自主探究:算法的逻辑结构应有几种

(1)如何用框图符号来表示算法?

(2)算法有几种基本逻辑结构?

(3)你会用框图符号表示算法的顺序结构了吗?(前面刚讲,总结归纳)

(4)你会用框图符号表示条件结构吗?

老师列举并画实例流程图:

引导学生带着问题边看书边在练习本将几种结构画出来,加强看书效果

例4:老师启发学生,师生共同完成三数为边是否组成三角形程序框图

补充:1:求绝对值的程序框图:

2:y=

引导学生思考设计分段函数的流程图,运用条件结构

教师引导学生列举生活中实例

学生看书

同桌间自主探究、理解掌握

讨论回答问题

学生思考、模仿、探究着画流程图,和课本对照判正误

学生模仿、思考、讨论与交流

设计相应流程图

同学上台展示自己的流程图,其它学同指正其正误

学生对比条件与顺序结构的框图,总结归纳条件结构的框图的绘制任务驱动,

创设学习情景

层层深入

引领学生纵向学习

模仿,思考,对照,学生有所思有所悟,

体验学习成功的快乐

突出学生学习的主体

培养学生的逻辑思维能力

教师对学生的讲解进行补充和完善,小结本节内容。学生交流生活中实例及框图解决办法。

课堂小结引导学生总结本节课的知识要点

并谈谈本节课的收获与提高及改进学生回顾总结本节所学梳理本节课的知识主干

布置课后作业作业:p20习题1.1

a组1,3课后完成巩固、反馈学习效果

参阅经典算法:穿插在教学中,激趣导学

2:谁在说谎

*运行结果

zhangsantoldalie(张三说假话)

lisitoldatruch.(李四说真话)

wangwutoldalie.(王五说假话)

九、板书设计

1.1.2程序框图及算法的基本逻辑结构

一、程序框图

1:程序框图又名_______

二:算法的基本逻辑结构

2:请你表示出条件结构和循环结构的框图形式:

3:请仿照写出求长方形的面积的框图,类似正方形面积框图、圆面积、三角形面积等程序框图(顺序结构)

4:设计给定三角形任意三边长a,b,c,试表示出三角形面积相应程序框图

(对照p9例3,检查正误)

三:算法的条件框图

1:试画条件结构框图的2种形式

2:例4会了吗?试试看

3:试设计求绝对值的程序框图

小结作业:p20,习题:1.1a组1,3两题

改进效果:经过斟酌改进实践后的算法,方式更适宜中学生个性特点,更易被中学生接受,效果更好。

高二数学心得篇二

数学一向被视为是一门难度大、全靠磨练及背诵的科目,但事实上,数学更多的是一种思维方式。自我在高二数学学习的一年中,虽然有些时候会遇到挫折,但不可否认地,我对于数学的热爱也是因为它所激发出的思考与求证的乐趣。在这篇文章中,我将会分享我的数学学习和心得体会,并诉说我在学习过程中的感悟。

第二段:学习过程中遇到的麻烦

曾经,在我学习数学的过程中,遇到了很多意料之外的难题。有时候当我思考题目的时候,会被深奥的公式或是无从下手的题目难倒。有时候看着同班同学很轻松地处理出这些问题,我便会被沮丧感所困扰。这种感受是很正常的,每个人都会遇到,但是,我发现,通过不断的阅读、自我思考或是说出自己对此问题的思考和理解,也能够得到教师或同学的帮助。

第三段:通过挫折中成长

通过不断地反思和同学之间的交流,我逐渐学会了更好的从各个角度来审视问题。例如,在一次模拟考试中,我错过了一题关键的一步,导致解题到最后陷入死循环。当时我兴致尽失,既然都被这道题难住了,还有什么用学。但过后,我回想了这次考试,看到了自己错了的地方,并重新审视了这个问题。后来,我马上就能够解决类似的题目,这让我感到非常的惊喜:原来我的进步可以来自于失败!

第四段:多种学习方式的探索

学习数学并不仅仅局限于课堂上跟着老师变换符号。在高二的数学课程中,我了解到有许多方法也能够提高我对于数学的理解和掌握。例如在做一些证明题时,我可以从反证法、数学归纳法、演绎法等多种方法中选择。同时,我也学会在班内组织讨论和结伴学习,这有助于我在问题解决中得到同学的互助。

第五段:结语

随着对于数学的探索和学习,我开始意识到数学学习的快乐并不仅仅源于运算和计算,同时来自于它所带来的思考和领悟。在高二的数学学习中,我学习到的不仅是数学的知识和数学的技术,更多的是数学带来的思维方式和学习的方法。我希望这些心得体会也能够帮助到其他正在学习数学的同学们。

高二数学心得篇三

【自主梳理】

1.函数单调性的定义:

(1)一般地,设函数的定义域为a,区间.

如果对于区间i内的任意两个值,当时,都有_______________,那么就说在区间i上是单调增函数,i称为的___________________.

如果对于区间i内的任意两个值,当时,都有_______________,那么就说在区间i上是单调减函数,i称为的___________________.

(2)如果函数在区间i上是单调增函数或单调减函数,那么就说在区间i上具有___________性,单调增区间或单调减区间统称为____________________.

2.复合函数的单调性:

对于函数如果当在区间上和在区间上同时具有单调性,则复合函数在区间上具有__________,并且具有这样的规律:___________________________.

3.求函数单调区间或证明函数单调性的方法:

(1)______________;(2)____________________;(3)__________________.

【自我检测】

1.函数在r上是减函数,则的取值范围是___________.

2.函数在上是_____函数(填增或减).

3.函数的单调区间是_____________________.

4.函数在定义域r上是单调减函数,且,则实数a的取值范围是________________________.

5.已知函数在区间上是增函数,则的大小关系是_______.

6.函数的单调减区间是___________________.

【例1】填空题:

(1)若函数的单调增区间是,则的递增区间是_________.

(2)函数的单调减区间是________________.

(3)若上是增函数,则a的取值范围是_____________.

(4)若是r上的减函数,则a的取值范围是_________.

【例2】求证:函数在区间上是减函数.

【例3】已知函数对任意的,都有,且当时,.

(1)求证:是r上的增函数;

(2)若,解不等式.

1.函数单调减区间是_________________.

2.若函数在区间上具有单调性,则实数a的取值范围是______.

3.已知函数是定义在上的'增函数,且,则实数x的取值范围是_________________________.

4.已知在内是减函数,,且,设,,则a,b的大小关系是_________________.

5.若函数上都是减函数,则上是______.(填增函数或减函数)

6.函数的递减区间是________________.

7.已知函数上单调递减,则a的取值范围是_________.

8.已知函数满足对任意的,都有成立,则a的取值范围是_________.

9.确定函数的单调性.

10.已知函数是定义在上的减函数,且满足,,若,求的取值范围.

错题卡题号错题原因分析

高二数学教案:数的单调性教案(答案)

一、课前准备:

【自主梳理】

1.(1),单调增区间,,单调减区间,

(2)单调,单调区间

2.单调性,同则增异则减

3.(1)定义法(2)图象法(3)导函数法

【自我检测】

1.2.增3.和4.

5.6.

二、课堂活动:

【例1】

(1)(2)(3)(4)

【例2】证明:设

【例3】(1)证明:

(2)解:

三、课后作业

1.2.3.4.

5.减函数6.7.8.

9.解:定义域为,任取,且

10.解:

高二数学心得篇四

高二数学在很多同学的心目中往往是一门比较难的学科,但是经过一年左右的学习和积累,我对数学的认识也渐渐深入了解,不再对它觉得害怕与陌生。在此,我想分享我高二数学的一些心得和体会。

第一段:“练习是关键”

高二数学学习需要做很多的练习,对于练习,我个人感觉记得住公式,理解定理是一方面,真正掌握它,只有不断地去练习,做题才能够达到的。而且,有时候,各种不同的题型和问题思路也会有很大的差异性,只有去多做题,才有机会遇到或者想到不同的思路,从而让我们更好的理解、掌握这堂课。

第二段:“坚定信心”

数学是门有规律、有条理、有逻辑性的学科,但并不代表这门学科对于每个人而言,都简单易懂。可能有些时候,我们会遇上一些很难的问题,自己找不到方法。所以,我深深地理解到,不管遇到什么困难,我们都不能放弃,不能泄气,只有坚定信心相信自己,越克服困难,才能在学习上走得更远。

第三段:“理解是核心”

要对数学有一个更加深入的认识和掌握,理解定理和公式是至关重要的。培养自己对于每个知识点的理解和逻辑思维的训练,才能在做题中迅速定位并解决问题,这也是自己学习好不好的重要一环。数学学科中的很多知识点相互都存在着联系,理解之后我们也能举一反三,各种不同方面的题型做起来就会更加得心应手。

第四段:“难点往往就在平凡之中”

有的时候,看似很简单的问题,用一般的思维方法会觉得很容易,却会忽略掉其中的细节方面,从而导致感性的思维跟不上它的逻辑。因此,对于数学学科而言,我们必需要时刻保持高度集中的精力,正如有些难点往往就隐藏在平凡之中。

第五段:“教学和实践完美结合”

学习是需要一定时间和功夫的,在这个过程中,老师的教学和学生的独立思考,以及实践的结合相辅相成很重要。和老师积极互动,主动向老师请教困惑,加强自己的掌握和理解,是提升自己水平的一个有效途径。同时,多参加各种大大小的数学竞赛及比赛,拓宽知识视野,取得更多成功,也才能更好的进步。

通过这一年的学习和积累,我认识到数学是个有趣的学科,也感悟了成功的喜悦,失败的挫折和艰辛,这些都是人生路上很重要的感悟。我也会在今后的学习中,更加踏实,持之以恒更加努力,去攀登数学知识的高峰,以此来认识自己,在不断进步的过程中去追寻自己的精彩。

高二数学心得篇五

主动掌握数学知识,发展数学能力,形成良好的个性心理品质的认识与发展相统一的过程,而教师的"教"和学生的"学"的双边活动要以教材为中介,教材把他们紧密地联系在一起。教材的编写在一定程度上决定着教师的"教"和学生的"学"法。

新课程标准的观念强调我们教师要变"教教材"为用"教材教"。在传统教育观念下所编写的旧教材,过于注重知识编写,其逻辑严密、高度抽象概括、知识环环相扣,使学生感到惧怕。在教材的"指引"下教师把知识源源不断地硬塞给学生,然后通过强化训练而达到学生对基础知识的掌握,而过去历来学生数学期末考试平均分均不合格,大大打击了学生学习数学的兴趣和信心。而在新课标的观念下所编写的新教材将数学知识形成的基本过程和基本方法贯穿始终,教师要善于发掘出新教材优点,转变教育观念,培养出适应时代要求的新型人材。

我本人的教学,主要从新教材具有的几个突出的优点着手,进行教学。

"教学课程标准指出,教学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已在的生活经验出发。数学教材每一章开始,都是一个典型的例子引入,体现整章的核心,而每节课开始,也安排生活中的例子。在学习平面直角坐标系时,教材创设电影院的情境。在电影院内如何找到电影票上所指的位置?此时学生七嘴八舌地说出自己的意见,有的说先看第几排再看第几号,而有的同学说还要看是几楼(因为有的电影院是两层甚至是多层的)这是每一位同学都很熟悉的",即使平时考试成绩很差的同学也不陌生,能充分引起学生学习的愿望和增强学好数学的信心。此时教师作适当的鼓励,学生的热情就更高了。并顺势引出,在电影票上"6排3号"与"3排6号"中的"6"和含义有什么不同呢?从而导出新知识,如果将"8排3号"简记作(8,3),那么"3排8号"如何表示呢?(5,6)表示什么含义呢?这样的引入学生学起来不容易混淆,应用不着教师费心的讲解了,只需作适当引导,归纳就可,把学习的自主权还给学生。

又如,学习旋转知识中,举出生活中钟、车的方向盘等,观察它们在转动过程中其形状、大小、位置是否发生改变,从而导出旋转的概念,化抽象为直观,教师点出有的知识虽然抽象但有可直观理解,消除学生对几何知识的恐惧心理。

教师按照教材编排上述的内容留给学生思考的时间和空间,充分体现教师组织学生主动获取、掌握数学知识,发展学生的数学家思维能力。如学习平行线之间的距离相等时,教材设计了"想一想"在笔直的铁轨上,夹在两根铁轨之间的枕木是否一样长?教师不要急着下结论,给出定理,而是组织学生展开思考。有的学生认为不一样长,因为当铁轨的宽度不一样,那么夹它们之间的枕木就不一样长了;有的同学则反搏说,铁轨是让火车行走的,而火车的两边的铁轮位置是固定不变的,也即它们的距离是不变的,要是铁轨宽度不一样,火车就会出轨造成事故。此时课堂成了学生的辨论台,然而教师作适当引导,题目的前提是在笔直的铁轨上,不用考虑转弯时的变化,学生一点即明。同学们开心的笑了"哦!","我早说了吗!"等声一遍,再转入下面的学习就从容多了,也体现了教师组织、引导学生主动获取和掌握知识。

又如"议一议":举出生活中的几个实例,反映"平行线之间的垂线段处处相等"的几何事实。教师组织学生分组讨论,让学生合作交流,调动学生学习数学的积极性,让每个学生都有机会发表自己的意见,培养学生的创新精神。并且学生举出多种多样的例子,丰富了学生的知识面。

三、教材的实例多、实物图多。化深奥为浅白,化抽象为直观,降低了教师"教"的难度

传统的数学教材即使是学习成绩很好的同学也产生这样的疑问"我们为什么要学习这么深奥的数学呢,它们有用吗?"而现在教材举也很多实际的例子,不用教师费心说,学生看题或在学的过程中已感知到数学在我们生活中发挥着重要的作用。如九年级下册"船有触礁的危险吗"这一节内容,它是利用三角函数知识求路线或物高的内容,本是难度大而又枯燥无味的内容,但因其实例,学生生活中会应用到的知识,学生很感兴趣,并且再加上美丽的实物图,把学生感官也动员起来了,那学的劲就不用说了。而教师也不用把知识"形象化"了才去让学生理解,相对来说教师讲授的时间少了,学生学的时间多了。

"读一读"的内容有的是以问题的形式出现,有的只是介绍知识的由来,不仅扩阔学生的知识面,还培养学生热爱数学的情感等。如有"矩形、正方形"这一节的课后,"读一读"的内容是"侦察兵密码通信游戏",它是正方形性质应用的游戏,非常有趣,能充分调动学生自学、阅读的情感和兴趣。要是学生弄不明又想知道其因由,教师可以与学生一起探究,和学生一起在知识的海洋里遨游并发展良好的师生关系。

新教材还有许多可利用的优点,让我们一起慢慢去发现并加以应用吧!然而,正如索尔尼雪夫斯基所言:"既然太阳上了有黑点,人世间的事情就更不可能没有缺陷"。因此新教材也有其不足之处,而取其"精"去其"糠"就更能发挥新教材的作用,更好地让教材服务于教师的"教"和学生的"学"。

高二数学心得篇六

作为一名新高二的学生,我有幸参加了学校举办的数学讲座。通过这次讲座,我不仅学到了新的知识,而且也对数学这门学科有了更深层次的理解。以下是我对这次讲座的心得体会:

第一段:引言

数学一直以来被人们认为是一门枯燥乏味的学科。但是通过这次讲座,我发现数学是一门内含着深厚哲学思想的学科。它不仅包含着几何、代数等基础知识,而且也涉及到一些高深的概念和定理。在这次讲座中,我学到了很多在课堂上很难听到的知识,这些知识不仅能够让我更好地理解数学,还能够帮助我更好地应对高二的学习。

第二段:感悟

这次讲座让我最感慨的是老师的讲课方式。他用通俗易懂的语言讲述了数学中的各种概念和定理,使得我这个数学不太好的学生也能够轻松理解。同时,在讲课过程中,老师也穿插了很多生活中的例子,让我真正感受到数学与我们的生活息息相关。这种讲课方式不仅适合我这种数学基础比较弱的学生,也可以帮助其他学生更好地理解数学。

第三段:收获

通过这次讲座,我不仅了解到了数学的基本概念和公式,更重要的是从老师的例子中发现了对数学思维的启发。数学中的定理和公式本身是没有任何意义的,真正重要的是应用它们的方法和思维方式。这种应用方式不仅可以在数学中发挥作用,还能够应用到其他科学领域,从而提高我们的综合能力。

第四段:态度

数学是一门耗费时间和精力的学科,需要我们付出更多的努力。我的体会是,在学习数学时,我们要有耐心和恒心,不断地思考并不断地理解。同时,我们也要把数学学习当作一种乐趣,享受其中的挑战和乐趣。只有如此,我们才能够更好地掌握数学的知识,提高自己的学业成绩。

第五段:总结

总之,这次讲座给我留下了深刻的印象。在未来的学习过程中,我将更努力地学习数学,不断地巩固和扩展自己的知识储备。同时,我也会尝试运用数学中的思维方式,将其应用在其他的学科中。最后,感谢这次讲座给我带来的启发和收获,我会继续学习、探索数学的无穷魅力。

高二数学心得篇七

首先,我是一位高中二年级的学生,最近我参加了一场关于新高二数学讲座,在此分享一下我的心得体会。

我在学习数学中遇到了一些困难,因为我觉得这个学科比较抽象和难以理解。但是,我一直在努力挑战自己,认为这是提升自己的重要途径。于是听到有关于数学讲座的消息,我决定抓住这个机会学出点有用的东西。

第二段:讲座内容

讲座的内容非常丰富和实用,涵盖了很多在考试中容易出现的题型和知识点,例如概率、三角函数和微积分等。演讲者还详细解答了一些常见的难题,并且分享了他自己的学习体验和技巧。

在讲座中,我尤其受益于这些技巧和解决问题的方法。他们不仅帮助我更好地理解和学习数学,而且还加强了我对数学的兴趣和热情。

第三段:交流互动

在讲座中,讲师还带领我们参加了一些互动和交流活动,让我们在师生互动中加深对讲座内容的理解和掌握。

例如,我们组成了小组,一起讨论在考试中可能会遇到的难题并分析解答方法。这样的交流让我更好地理解了其他人对问题的看法和知识,同时也提高了我的沟通能力和合作能力。

第四段:学习感受

通过这场数学讲座,我真正意识到数学不仅仅是一门学科,更是一个思考和解决问题的过程。之前我总是认为数学是一种死板严格的学科,但是现在我认识到数学同样充满了乐趣和想象力。

这场讲座也让我对自己有了新的认识,我不再觉得自己在数学方面很弱,而是更加自信和努力,准备着在未来的学习和考试中取得更好的成绩。

第五段:总结

总之,这场数学讲座为我提供了一个学习数学的全新视角,让我突破了自己固有的思维和瓶颈。在讲座中我不仅学到了知识,还学到了学习的方法和技巧。

我相信,只要我继续努力和付出,我一定能在数学方面更上一层楼。感谢讲师和主办单位为我提供这样一个机会,也期待未来还能有更多的讲座帮助我提高自己的知识水平和学习能力。

高二数学心得篇八

1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;

2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;

归纳——猜想——证明的数学研究方法;

3、数学思想:培养学生分类讨论,函数的数学思想。

重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;

难点:等比数列的性质的探索过程。

1、问题引入:

前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?

(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(第一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)

2、新课:

1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。

师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

公式的推导:(师生共同完成)

若设等比数列的公比为q和首项为a1,则有:

方法一:(累乘法)

3)等比数列的性质:

下面我们一起来研究一下等比数列的性质

通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。

问题4:如果{an}是一个等差数列,它有哪些性质?

(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:

3、例题巩固:

例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。

答案:1458或128。

例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3…a20=_10____.

(本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)

1、小结:

今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习

我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。

2、作业:

p129:1,2,3

教学设计说明:

1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的.因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。

2、教学设计过程:本节课主要从以下几个方面展开:

1)通过复习等差数列的定义,类比得出等比数列的定义;

2)等比数列的通项公式的推导;

3)等比数列的性质;

有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧

知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。

在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。

在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。

通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。

等比性质的研究是本节课的高潮,通过类比

关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。

高二数学心得篇九

2、2、3直线的参数方程

学习目标

1.了解直线参数方程的条件及参数的意义;

2.初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习过程

复习:

1、若由共线,则存在实数,使得,

2、设为方向上的,则=︱︱;

3、经过点,倾斜角为的直线的普通方程为。

探究新知(预习教材p35~p39,找出疑惑之处)

1、选择怎样的参数,才能使直线上任一点m的坐标与点的坐标和倾斜角联系起来呢?由于倾斜角可以与方向联系,与可以用距离或线段数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。

如图,在直线上任取一点,则=,

而直线

的单位方向

向量

=(,)

因为,所以存在实数,使得=,即有,因此,经过点

,倾斜角为的直线的参数方程为:

2.方程中参数的几何意义是什么?

应用示例

例1.已知直线与抛物线交于a、b两点,求线段ab的长和点到a,b两点的距离之积。(教材p36例1)

解:

例2.经过点作直线,交椭圆于两点,如果点恰好为线段的中点,求直线的方程.(教材p37例2)

解:

反馈练习

1.直线上两点a,b对应的参数值为,则=()

a、0b、

c、4d、2

2.设直线经过点,倾斜角为,

(1)求直线的参数方程;

(2)求直线和直线的交点到点的距离;

(3)求直线和圆的两个交点到点的距离的和与积。

本节小结

1.本节学习了哪些内容?

答:1.了解直线参数方程的条件及参数的意义;

2.初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习评价

一、自我评价

你完成本节导学案的情况为()

a.很好b.较好c.一般d.较差

课后作业

1.已知过点,斜率为的直线和抛物线相交于两点,设线段的`中点为,求点的坐标。

2.经过点作直线交双曲线于两点,如果点为线段的中点,求直线的方程

3.过抛物线的焦点作倾斜角为的弦ab,求弦ab的长及弦的中点m到焦点f的距离。

高二数学心得篇十

1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。

体会直角坐标系的作用。

能够建立适当的直角坐标系,解决数学问题。

新授课

启发、诱导发现教学.

多媒体、实物投影仪

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的.位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动

学生回顾

刻画一个几何图形的位置,需要设定一个参照系

1、数轴它使直线上任一点p都可以由惟一的实数x确定

2、平面直角坐标系

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。

3、空间直角坐标系

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

2、确定点的位置就是求出这个点在设定的坐标系中的坐标

四、数学运用

例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练

思考

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小结:本节课学习了以下内容:

1.平面直角坐标系的意义。

2.利用平面直角坐标系解决相应的数学问题。

六、课后作业:

高二数学心得篇十一

(一)立足学生实际,实施分层教学。

学业水平考试无论是考试的功能要求、命题的指导思想,还是命题的难度系数,与作为选拔性考试的高考相比,都有显著不同。“立足学生实际,实施分层教学”,就是应对学业水平考试的根本策略。在具体的备考工作中,立足学生实际,因材施教,合理确定教学标高,选择教学方式和策略,安排训练难度、密度和强度。

(二)根据学业水平考试的难度特点,以及学习实际,调整教学策略,课堂教学主要依据“注重基础,点面结合”的原则,采取“以考点训练带动知识建构”的教学方式,紧扣书本,以书中所涉及的例题和习题为蓝本,引出变形题。

(三)认真备课、有的放矢

教师在每堂课都要有明确的目的,由于课堂复习容量的增大,要在重点问题多花时间,集中精力解决学生困惑的问题,减少不必要的环节,少做无用功;既不能满堂灌也不能大撒手每堂课都要认真研究学生的实际情况,精讲精练,同时要发挥学生主体地位,让学生多参与解题活动和教学过程,启迪思维,点拨要害。教师一定要把课本和资料认真地分析比较和联系归纳,这样才能清楚地启发学生。

(四)做好学生的学习指导工作

(1)加强学法指导:指导学生除掌握专题知识外,还应该静下心来把生物课本梳理一遍,加强和巩固对基础知识的理解掌握,并及时解决有疑问的知识点,有问题不能拖。

(2)引导学生正确对待每次模拟考试:模拟测试的成绩在一定限度上对复习起一个指导作用,分数不管高低,都要认真总结一下,分析一下这阶段的复习有什么不足,在哪些知识点上还有漏洞。

(3)树立明确的目标:引导学生根据自己的实际,确定比较高的目标,为自己的目标实现增添动力。

(4)引导学生制定复习计划。学生要结合教师的计划指定自己的学习计划,基础好的同学,多做一些综合能力较强的题目,以提高自己的应变能力,争取过a;基础较薄弱的同学,以基础知识点的复习为主,保证过c。

(5)做好心理辅导:由于高二年级各方面的压力比较大,学生时常会出现一些心理或思想方面的问题,教师要及时进行疏导,以免影响学习效果。

高二数学心得篇十二

1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

2.能根据几何结构特征对空间物体进行分类。

3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

【教学重难点】

教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

教学难点:柱、锥、台、球的结构特征的概括。

【教学过程】

1.情景导入

教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

2.展示目标、检查预习

3、合作探究、交流展示

(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;

(2)其余各面都是平行四边形;

(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

(3)提出问题:请列举身边的棱柱并对它们进行分类

(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的`概念,分类以及表示。

(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)

(2)棱柱的任何两个平面都可以作为棱柱的底面吗?

(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

(5)绕直角三角形某一边的几何体一定是圆锥吗?

高二数学心得篇十三

圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象、恰当地利用xx解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用xx解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3、借助多媒体辅助教学,激发学习数学的兴趣、

教学重点

1、对圆锥曲线定义的理解

2、利用圆锥曲线的定义求“最值”

3、“定义法”求轨迹方程

教学难点:

巧用圆锥曲线xx解题

开门见山,提出问题

例题:

(1)已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是()。

(a)椭圆(b)双曲线(c)线段(d)不存在

(2)已知动点m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是()。

(a)椭圆(b)双曲线(c)抛物线(d)两条相交直线

定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的'学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

高二数学心得篇十四

一、抓好基础。

数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。反之,会使解题速度慢,逻辑混乱、叙述不清。

那么如何抓基础呢?

1、看课本;

2、在做练习时遇到概念题是要对概念的内涵和外延再认识,注意从不同的侧面去认识、理解概念。

4、归纳全面的解题方法。要积累一定的典型习题以保证解题方法的完整性。

5、认真做好我们网校同步课堂里面的每期的练习题,采用循环交替、螺旋式推进的方法,克服对基本知识基本方法的遗忘现象。

二、制定好计划和奋斗目标。

复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。可以说,每天的习题可以少做,但这些归纳、反思、回顾是必不可少的。望你在制定计划时注意。

三、严防题海战术,克服盲目做题而不注重归纳的现象。

做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。

因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。

四、常做高考题,揭开高考试题的神秘面纱。

高考题是的习题,它在考查知识点时的切入点新而不俗,它正确地控制了对所考查的知识点的难度。解答一定的高考题,有助于把握高考对该知识点的难度要求;有助于判断高考题目与平时常见题目的异同,增强判断题目信度的能力,防止做偏题、怪题。

特别在排列组合二项式定理、复数、立体几何、极坐标、三角部分的高考题,难度不大,而平时所见的复习资料中,有相当的习题已超出高考难度,其实,高考题目中这几部分的习题复习时都能做,并不是很难,更不可怕,可见常做高考题,会克服对高考题的恐惧感。增强将来决胜高考的自信心。

五、归纳数学大思维、大策略。

数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。在平时听课时,一个明知的学生,应该听老师对该题目的分析和归纳。但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。

听课是认真,但费力,听完后是满脑子的计算过程,支离破碎。老师的分析是引导学生思考,启发学生自己设计出处理这些问题的大策略、大思维。当教师解答习题时,学生要用自己的计算和推理已经知道老师要干什么。另外,当题目的答案给出时,并不代表问题的解答完毕,还要花一定的时间认真总结、归纳理解记忆。要把这些解题策略全部纳入自己的脑海成为永久地记忆,变为自己解决这一类型问题的经验和技能。同时也解决了学生中会听课而不会做题目的坏毛病。

六、打好最后阶段复习这一仗,促成数学学习的飞跃。

最后阶段的复习是专题讲座,老师讲对重点知识、重点解题方法、重点数学思想的详细讲座和强化训练。在这一阶段的复习,要相信老师,淡化各种复习资料,认真地、保质、保量地完成老师布置的强化训练题,集中精力,突破试题中的立体几何、三角、复数、二项式定理、极限等部分的常考知识点,这几部分的习题难度不大。尽的努力多解决解答题目中的函数、解析几何、数列等压轴题。如果在这一阶段能及时训练,会使你感到个立竿见影的感觉,使数学学习成绩大幅度提高,促成数学学习的第二次飞跃。

七、积累一定的考试经验。

本学期每月初都有大的考试,加之每单元的单元测验和模拟考试有十几次,抓住这些机会,积累一定的考试经验,掌握一定的考试技巧,使自己应有的水平在考试中得到充分的发挥。其实,考试是单兵作战,它是考验一个人的承受能力、接受能力、解决问题等综合能力的战场。这些能力的只有在平时的考试中得到培养和训练。

高二数学选择题的解题方法

方法一:直接法

所谓直接法,就是直接从题设的条件出发,运用有关的概念、定义、性质、定理、法则和公式等知识,通过严密的推理与计算来得出题目的结论,然后再对照题目所给的四个选项来“对号入座”.其基本策略是由因导果,直接求解.

方法二:特例法

特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中,所谓特例法,就是用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.

注意:

在题设条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的较佳策略.近几年高考选择题中可用或结合特例法来解答的约占30%.因此,特例法是求解选择题的好招.

方法三:排除法

数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.

注意:

排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中占有很大的比重.

方法四:数形结合法

数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的支持作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.

方法五:估算法

在选择题中作准确计算不易时,可根据题干提供的信息,估算出结果的大致取值范围,排除错误的选项.对于客观性试题,合理的估算往往比盲目的准确计算和严谨推理更为有效,可谓“一叶知秋”.

方法六:综合法

当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.

【本文地址:http://www.xuefen.com.cn/zuowen/4846990.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档