阅读一本好书,会启迪我们的智慧,拓宽我们的视野。10.写读后感时,我们应该如何运用合适的语言和表达方式来传递自己的思想和感受呢?小编为大家精心挑选了一些有趣的读后感范文,供大家欣赏和学习。
数据化决策读后感篇一
读完《大数据时代》这本书后,我意识到:我们即将或正在迎接由书面到电子的跳跃之后的又一重大变革。
这本书介绍了大数据时代来临后,接踵而至的三项变革――商业变革、管理变革和思维变革。
其实,这场变革已经打响。商业领域由于大数据时代的到来而推陈出新。前几年,一家名为farecast的公司,让预订到更优惠的机票价格不再是梦想。公司利用航班售票的数据来预测未来机票价格的走势。现在,使用这种工具的乘客,平均每张机票可以省大约50美元,这就是大数据给人们带来的便利。
大家应该都知道2009年出现的h1n1型流感,就拿美国为例,疾控中心每周只进行一次数据统计,而病人一般都是难以忍受病痛的折磨才会去医院就诊,因此也导致了信息的滞后。然而,对于飞速传播的疾病,google公司却能及时地作出判断,确定流感爆发的地点,这便是基于庞大的数据资源,可见大数据时代对公共卫生也产生了重大的影响!
在我看来,如果想在在大数据时代里畅游,不仅要学会分析,而且还要能够大胆地决断。
在美国,每到七、八月份时,正是台风肆虐之时,防涝用品也摆上了商品货架。沃尔玛公司注意到,每到这时,一种蛋挞的销售量较其他月份明显增加。于是,商家作了大胆的推测,出现这样的结果源于两种物品的相关性,便将这种蛋挞摆在了防涝用品的旁边。这样的举措大大增加了利润,这就是属于世界头号零售商的大数据头脑!
大数据时代的到来,可以让我们的生活更加便利。但是,如果让大数据主宰一切,也存在一定的风险。
大家应该都知道电子地图,它可以为人们指引方向。但大家应该还不知道,它会默默地积累人们的行程数据,通过智能分析可以推断出哪里是自己的家,哪里是工作单位。我们的隐私就这样被不为人知地收集着。
大数据时代的到来,让我们的生活更安全,更方便,但与此同时,我们的隐私不再是隐私,数据的收集变得无所不包、无孔不入。世界已经向大数据时代迈进了一小步,一个崭新的时代正向我们走来。让我们用知识武装大脑,做好准备,迎接新时代的到来!
数据化决策读后感篇二
故事发生在未来的日本。有一个神秘的特殊解析研究所,他们依靠由数学天才——蓼科早树兄妹编写出来的dna侦察系统破案。
一开始,他们通过使用医院暗中提供的dna数据,进行“犯罪侧写”。他们可以利用计算机精准地将凶手的容貌图像化,得到嫌疑犯的个人信息和外貌特征,以便警察锁定嫌疑犯。之后,国会通过了法案,全国人民的dna都将交由政府管理。虽然dna侦查能够完美、精准地找出罪犯,但也意味着,所有人的基因信息,都被政府所控制,一开始,人们觉得自己被约束、控制了,不愿意提供自己的dna。而主角神乐龙平——研究所里的主任解析员,却说:“国民能做什么呢?就算示威或演讲,政治家们照样还是接二连三地通过了自己预想的法案。目前为止不是一直这样吗?和国民的反对没关系。对国民而言,不管是通过了什么样的离谱法案,也就是最开始会发怒,马上就习惯那种状况。这回也是如此。最终,大家还是会觉得dna被管理不是件坏事。”
直到后来,神乐发现了“白金数据”的真相。
在庞大的dna数据库中,存在着一些特殊的“白金数据”。这些被称为“白金数据”,在一开始设计程序的时候就被标记了。如果被检测的dna和“白金数据”所吻合,系统就会解析出和嫌疑犯完全不同的外貌特征,检索结果也会出现出notfound,而这个是那些政治人物和高官的主意。他们将自己和家人的dna都变成了“白金数据”,这样,即使他们犯了罪,也依旧可以逍遥法外。
“无论在什么时代,都有身份的问题,人类永远不可能平等。”神乐投入全部而做出的dna搜查系统,本以为可以降低犯罪率,却成了只是用来加强阶级制度的东西。感到失望的神乐,最后选择了远离城市。
这是东野圭吾对如今的这个科技时代做出的反思和讽刺。
主角神乐本以为,人和机器在本质上并没有什么区别,基因和数据一样,决定了人心。可是数据是死的,即使有漏洞和缺陷,甚至也是人为制造的。数据本就没有错,错的是人心。文中的那些官员,享受着控制所有人的同时,又不想被控制,说到底,“白金数据”这个人为创造出来的漏洞,反应的是人心的漏洞,是无穷无尽的贪欲和控制欲,想要享受权利,掌握一切。
都说科技是把双刃剑,在给我们带来便利的同时,也给我们带来了不利和隐患。问题从来不是出在那些数据身上,而是对利益有着无穷无尽的追求的人心。
出错的从来不是数据,出错的向来是人心。
数据化决策读后感篇三
初识东野圭吾
第一次读东野圭吾的小说大概是高考那个暑假,那时候闲得无聊看电视,好像有一个图书推荐的节目,节目介绍了他的知名小说《嫌疑人x的献身》,那本书是他代表作之一,小伙主要以推理类型为主,当时也没特别在意,仅仅在心里埋下了一个种子。那是也正赶上母亲生病做了个小手术,我在医院陪护,中午没事的时候去旁边的新华书店转转,正好看到书店正在推荐东野圭吾的小说,印象中并不是《嫌疑人x的'献身》,而是一本叫《时生》小说,图书的封皮写了好多关于推荐词之类东西,于是处于好奇就买了,记得还来买了《山楂树之恋》这本书,那时候恰逢是张艺谋拍的电影上映。
在我有限的印象中,《时生》是一本穿越小说,大概讲述了儿子身患重病,穿越到二十前遇到自己父亲发生的各种有意思的故事,好像类似《乘风破浪》电影的套路。这本小说在当时并未给我留下了特别深刻的印象,只是觉得这边比较有趣。
后来去了西安上大学,在网上买了好几本他的小说,印象最深刻的是《白夜行》,读这本小说整个感觉都非常压抑。我还记得小说封底有一句话“我的天空里没有太阳,总是黑夜,但并不暗,因为有东西代替了太阳。虽然没有太阳那么明亮,但对我来说已经足够。凭借着这份光,我便能把黑夜当成白天。我从来就没有太阳,所以不怕失去。”这就是这本小说的缩影。看完之后,我深深的喜欢上了东野圭吾的小说,发疯似的在学校的图书馆上借阅他的小说,图书馆的内他的小说都看完了,后来自己在京东上买了他的其他的小伙,大概我把东野圭吾出版的小说读了个遍。
读《白金数据》
《白金数据》是我近期读的东叔的小说,()小说围绕dna展开一系列悬疑故事。主角神乐在天才少女的帮助下一直推动dna侧写项目,经过多起凶案,项目得到验证,大获成功。政府开始大规模采集民众的dna以完善宝库,然而看似造福人类的庞大工程中,其中却隐藏着惊天秘密,陆续出现“nf13”现象,凶手无法通过侧写被找到。在这个dna库中混进了一种白金数据,一旦某个人的dna变成白金数据,即时他犯案,系统无法匹配正确的数据。在这个问题的背后,政府高层利用白金数据“保护”自己和亲友之间的秘密。在发现此问题后,天才少女研发“猫跳”以应对。然而有些人知道后,不计一切代价摧毁,各方利益冲突而发生一些列凶案。
读完此书后,第一个感受:东叔又开始碰触科幻题材,非常烧脑悬疑推理小说,然而小说的结局在读到一半之后基本上就能预见。最后的凶手登场感觉比较突兀,结尾不是很进奏,有点虎头蛇尾。在东叔这么多的小说中算非常一般的,如果要打分的话(5分制),我觉得3.5分吧,刚刚及格,优秀未满。不过还是推荐读一读,应该算东叔科幻推理小说中,结合现实非常紧密的。
数据化决策读后感篇四
2014级经济管理专业 李学堂 学号20140238
短短几天把涂子沛先生的《大数据》这本书浏览一遍,结合去年北大继续教育学院进行现代管理学科学习时,老师介绍这本书时的精髓、内涵时的情景,写这篇
心得体会
。现将浅薄体会与老师同学们一起交流,部分内容参考了书内容和涂子沛先生的观点,希望老师同学给予批评指正。“一个真正的信息社会,首先是一个公民社会”,这是全书的一个出发点,这个出发点就是说,“信息社会最大的特点就是,信息的自由流动。”涂子沛在书中的观点是:如果没有人的平等,没有人的自由,信息能够自由流动吗?如果没有人的平等,我们这个社会彼此另外压抑另外一个人,我们的创造力怎么迸发出来?我们每个人都面临大数据时代思维变革的挑战。
涂先生在书中说出 “大数据时代的公民生活”,题目他在书中来演绎公民生活的时候,它的背景是“大数据”时代。首先他讲了“什么是大数据时代”,在研究一个现象的时候,首先要研究它的定义,研究它的内涵,咱们就先把数据给它抽走,看看代表是什么。数据不是数字,数据是有跟列的数字,当他在书中谈到数据的时候,我们想到的是它代表计算,代表精确,代表理性,代表科学,代表事实。大家说姚明很高,到底有多高,你最后说两米多左右,这就是一个精确的事实。数据的出现也是人类认识这个世界,不断地向前推进的需要,人类发现需要精确的数字,就好像回到刚才的例子,你说很高很高,到底有多高,我们看,人类历史上很多重大的文明推进和演进都跟数据离不开,比如说度量衡的发明,货币的发明,再比如二进制的发明最后导致计算机的发明,最背后就是数据。
他在书中有一个新的词叫database--数据库。这个词完全是一个外来的词,1
计算机最早是计算数字和处理数字,那时候就存在database,后来随着计算机能力的不断增强,它可以处理文字、图片、视频、声音等等,但所有这些都放在database,所以他在书中把这所有的一切都称为数据,这时候数据的内涵扩大了。其实大家要知道数据的内涵在扩大,还有一些其他的事情也在发生变化,就是说数据的容量在增大。八十年代的时候就有人提出big data这个概念,那时候的“大数据”的还不是现在“大数据”的概念。“大数据”这个概念不断的演变,最早有人就预见到说有一天数据会比程序更加重要,比软件更加重要,它是指重要性。所以我们往大了说,可以说这是一个大的机器,一个大的房子,也可以说是一个大容物。书中说的:到2000年的时候,宾夕法尼亚大学有一个教授出来定义,那时候企业的数据已经到泰了,他说200泰的数据就是大数据了,那泰到底是什么样的单位呢?比如全世界最大的图书馆是美国国会图书馆,美国国会图书印刷品的含量,不包括电子图书加起来是15泰,北师大应该是2个泰或者更少,这个数据就叫“泰”。
2 代公民的生活。data在五年的时候,应该有一个创始人,他发现一个东西:同一个计算机芯片,同一个面积上晶体管的数量每一到两年就要增加一倍,这意味着什么?意味着计算机处理的能力越来越强,存储的能力也越来越强,同一个面积上东西越来越多,越来越密,一到两年就增加一倍,物力存在器的性能不断上升,价值不断的下降。有一个考证说,从五十年代起最早的存储器发明到现在,存储器的价格下降了300万倍,大家可以想想,历史上还有什么商品它的价格能在半个世纪下降300万倍?而摩尔定律也成为了一个代名词,呈指数形发展的变化,急剧变化的状态,剧变的变化。我们可以看看,这个图代表摩尔定律,是条直线,为什么是直线呢?因为没办法画,如果严格按刻度来画的话应该是一条横轴的曲线。涂先生在书中分析了:“1988年一个科学家提出了普适计算,普适计算提的不多,大家都提物联网。物联网是普适计算一个子概念,人家计算机的浪潮是分阶段的:第一个阶段是主机阶段,到80年代由于微软、苹果一直到个人电脑的阶段,88年互联网之后,科学家说这不是结果”。
“一个主动你就能改变的时代,因为资源就在那里,你不能去等其他的人”这是涂先生的观点。他说说影响公民的第一点:公民最主要的精神是什么?是积极地介入,积极地改变。影响我们公民的第二点,书里面有很多关于“大数据”时代的隐私文化,有的专家说87%都不能定位,只要通过“大数据”挖掘就会定位,这是影响我们公民生活的一个巨大的挑战,就是隐私权的挑战,而隐私权是一个非常重要的问题,是对个人自由的凭照。他为什么用这么大的篇幅来写隐私权利呢?也是因为我觉得,我们中国社会特别需要隐私权利,不仅是政府在侵犯公民的隐私权利,我们公民彼此之间也在不停地侵犯隐私权,而且大家习以为常。但是隐私权是一个文明社会的标志,越文明的社会,越注重隐私权,个人才越有自由,隐私权是把自己跟公共生活划分开的一条界线,保障个人的自由。社交媒体让我们进入一个前所未有人文相连的时代,这影不影响我们的公民生活?这是最大的隐患,为什么?它把我们人跟人连接起来,我们知道人跟人一旦连接起来,1+1大于2的作用。
总之,使我感受到当前我们正生活在,每天都不同、都高速度发展、激烈竞
4 争和大数据时代。我们每个人都必须面对大数据时代、结合实际面对挑战,要相信“想不到事情会发生,想不到的速度会发生”。要及时更新知识、广纳信息、梳理思维及时做出正确判断、做好工作学习生活中的精准决策。
数据化决策读后感篇五
数据,对于我们现代社社会来说,已经是再熟悉不过了。大量化(volume)、多样化(variety)、快速化(velocity)和大价值(value)。这四个v就是大数据的基本特征。每天我们都不得不和数据打交道,比如我们平常所说得“眼观六路,耳听八方,”就是生活中一个很好的的收集数据的例子。还有,在我们平时的学习中,我们对于一些学习上的数据的整理等等。可以说,数据已经成为了我们的影子一样,无时无刻的在我们的身边活动。
拿到《大数据》这本书时,吸引我的不是书评的内容,而是书的封面上的一句话“除了上帝,任何人都可以用数据说话。”也就是说,上帝可以不用数据来说话,但是,作为一个平常人,我们做事,言论等都必须用数据来说话。用数据论来证我们的观点正确性。
那么数据真的就是那么重要吗?其实不然,数据果真有那么的重要。作者在书中大量应用世界头号强国美国的例子来说明美国是如何利用数据以及数据在美国人的利用下,是如何造福美国人的。使得美国人走上了民主、发展的道路。书中还引用了大量的利用数据的案例,以及利用数据会有什么样的后果。当然,作者在书中也很明确的表达了自己观点,也就是数据要被人利用,利用的好了,造福人类,否则,祸害无穷。
毫无疑问,我们正处在一个真正意义的大数据时代。但是,大数据浪潮的来龙去脉如何?数据技术变革何以能推动政府信息的公开、透明和社会公正?又何以给我们带来无限的商机,既便利又危及我们每个人的生活?《大数据》给了我们一个很好的答案。在拿到徐子沛《大数据》时,与其说这是个新概念,还不如说就是一个现实。信息技术的迅速发展和普遍应用,存储能力的膨胀,网络传输的便捷,必然产生巨大的数据量。即使是一个公司,经过多年的积累,产生的数据也是惊人的。每天繁多的数据,这就是要求企业要很好地存储数据,利用数据通过数据,使得数据说话,提升企业的业绩和知名度。
对于一个企业来说,比较实际的倒是关注一下企业微观大数据,如何充分利用现有的、能够得到的和自己创造的数据,采用《大数据》里提及的新技术、新方法、新理念,筛选、组织、关联、分析,精细化管理和挖掘数据,探索规律性的东西,指导企业活动。尽可能多的获取数据,首先是要有心,对于公司员工来说,随时随地注意收集客户数据、需求数据、产品数据、市场数据、资源数据等,经过整理,把它变成公司的数据资产;然后是要有据,信息与数据最大的不同,就是数据是能够度量或者确定的信息,不能“毛估估”,收集数据要精细化,要准确;其次要有序,数据需要存储,更加需要整理,单个数据没有很大意义,静止的数据也没有很大意义,有价值的数据是流动的、与其他数据交互作用的。一个大杂烩的数据库,在需要时让人找不到北,没有任何意义。再次,需要技术支持,大量的数据如何检索,如何关联,单靠人脑是不行的,需要建立基于特定理论的数据处理系统来分析管理。对于一个企业,最理想的是建立一个类似人类神经系统的数据管理系统,采用各种信息终端采集内部和外部信息,通过分析、归纳、筛选,形成管理数据,某些数据可以成为系统的“本能”,一旦触发能够自动做出反应;某些数据可以成为组合信息提交大脑综合分析,作出决策和反应。数据应该为人服务,这是一条基本原则。在大数据时代始终发挥人的主观能动性,采用先进的理念和技术驾驭数据,让人们生活更方便,工作效率更高,劳动强度降低,为社会创造更多的物质财富和精神财富。
在中国,统计部门提供的数据,是各级政府部门和广大人民群众了解国家社会经济发展和人民生活状况主要渠道。只有真实可靠统计数据,才能使政府决策有的放矢,人民了解国家经济与人民生活的真实状况。如果统计数据虚假不实,就会误导政府和人民,让政府失信于人民。因此,我们一定把握好数据的生命线—质量关,确保给国家和人民提供准确、真实、可靠、无误的数据。
二、如何高效有序地收集数据?
收集数据的目的是为分析利用数据。通过数据分析挖掘数据背后隐含的经济规律及有利于提高效率、改进工作的因素,提高政府管理、决策和人民生活水平,实现“用数据改进管理”。因此,作为统计人,不仅要做好数据收集的及时有效和真实正确,更重要的是要善于分析利用数据,写好专业分析报告,发现问题、支撑决策、评估绩效的目的。
此外我们还可以看到不少政府机构或者其他一些组织也在开始大数据解决他们遇到的一些问题。在本书的最后一章,作者告诉了我们大数据可能带来的坏处。如:通过大数据可能我们的个人各种信息、隐私会很容易地被大数据的拥有者找到,这些信息,可能被政府用来监管我们等;通过大数据可以预测可能发生的事,或者预测我们人个人本书即将做的行为,书中有个例子:警察通过大数据分析得出一个人即将可能犯罪,并把它逮捕了,但事实上这个人现在并没有犯罪。也许这就限制、约束了我们个人的自由。
看完这本书,颠覆了自己之前的一些想法: 以前我们认为错误的数据是没有用,我们需要保证统计的数据的准确性,但是在大数据中,错误的数据也是有用的,它和其他所有相对正确的数据一起构成了整体,也就算不了什么了。我们同样可以从这些数据中得出比较正确的预测和分析。google利用人们搜索的关键字来预测和判断某个地区是否发生流感,google通过分析这个地区的人们搜索和流感有关的词的数量等来分析得出。google 从互联网抓取数以亿记的各种语言、各种翻译水平的翻译结果,使用其翻译出来的准确率比那些微软使用正确的词库翻译出来的句子准备率更高。我自己的感想是,其实大数据无处不在,只要我们细心,我们就可以挖掘出身边的那些大数据,并做一些有意义的是,就像书中说的那样,我们不需要强求每条数据都那么真实准确,但是从大量的数据中我们就可以得出相对准备的结果。未来成功的公司必定是是那些拥有大量数据、并使用那些数据为大众提供服务的公司。
数据化决策读后感篇六
然而在后半部分揭示了本书的写作目的:上层阶级dna数据早已被标记为白金数据,原本的天网恢恢竟然成为了他们的免死金牌。上层阶级所大力推行的东西,目的也只是为了巩固其阶级地位,而不是为了什么真正的公平。天网恢恢,而终须一漏。
作者一路狂飙,连连闯红灯解锁几大谜题,令我们大开眼界,惊叹竟然还能如此操作。然而却在最紧张最刺激的时刻,作者选择了面对现实。
就像作者本来告诉我们:“这个世界太黑暗了,我们去消灭坏人,拯救地球吧!”我们就随着他兴高采烈地揭竿而起,正当攻入坏人的堡垒、打算捅个天翻地覆时,作者却又说:“坏人太强大了,唉呀还是算了吧!我们还是回家去种地吧!”
《白金数据》的结局给了我们许多的无奈,然而这不就是现实吗?我们都曾经是那个为了正义不肯低头的少年,然后慢慢被这个社会磨去了棱角。东野圭吾很明显的并不想给我们写一个的童话故事,任何时代都不存在真正意义上的公平,与其浪费短暂的一生与世界较劲,不如回去自己的世外桃源。
数据化决策读后感篇七
歌德把历史称为“上帝的神秘作坊”。在徐子沛先生新作《数据之巅》的精彩演绎下,关于数据文化如何形成、数据治国理念如何深入人心的历史画卷徐徐展开,令我们再次饱览古今中外因数据成就的神奇瞬间,领略统计文史的山风水韵和数据文化的悠远回音。康德说,数字是重要的透视方式。此言不虚。
子沛先生一如既往把中国作为本书的重心和出发点。从中国历史上的吉光片羽到第一次现代意义上的人口普查,从中国数据可视化先驱人物陈正祥的执着努力到民族复兴能否量化的中国话题,这些元素无疑令中国读者感到亲切和温暖。遗憾的是,在悠久的中华文明史上,这样的“统计事件”不仅凤毛麟角,亦未能带动整个民族和社会形成用数据说话、以数据治事的风尚。即使今天,我们依然面对这样一个不容回避的事实:统计数据虽然证明了中国已经成为世界第二大经济体,在数据使用上,特别是大数据的收集、分析、应用的手段、意识、水平和能力方面,我们与美国、欧洲,甚至同处亚洲的日本,仍有不小差距。作为统计人,在享受本书呈现的统计和数据文化盛宴时,无疑更平添了一份独有的清醒与忧思。
中国需要进一步营造数据文化氛围。美国的历史,就是一部“善用数据”的历史。说数据成就了共和政治、数据终结了南方的奴隶制度,尚属见仁见智。“布兰代斯诉讼方法”及后来的汉德公式,公共预算制度的普及,统计学理论方法用于公共政策的制定,以及成本效益分析方法在美国政府的推行等,实实在在证明了数据在保障公平正义、促进进步发展、增进自由和理性方面的决定性支撑作用,体现了数据治国的基本理念。党的十八大把实现国家治理体系和治理能力的现代化作为新的奋斗目标,更加迫切需要大力弘扬建立在数据基础上的科学与理性,需要建树“尊重事实、强调精确、推崇理性和逻辑的数据文化”,需要进一步营造善用数据的社会氛围,使注重数据、使用数据真正成为一种习惯和风尚。
中国统计人要做大数据的先行者和引领者。在统计的“纯真年代”,政府统计是权威一般的存在,是统计生产的当然主导者。大数据时代,海量的网络化电子化信息使每一个人、每一个单位都可能成为信息的生产发布主体,政府统计包打天下的格局正在被打破。我们当然可以通过法律手段来“宣示主权”,但我相信大多数统计人凭着专业精神、职业尊严,将不屑于采取这么“简单而直率”的方法,而更愿意像一名“骑士”一样为荣誉而战。作为统计数据的生产者、发布者和使用者,没有人比我们更了解大数据的意义、价值和力量。“用大数据打造统计基础数据‘第二轨’”,深刻阐明了国家统计局应用大数据的战略思想和战略思维。目前,国家统计局已经与17家企业签订利用大数据战略合作框架协议,在贸易统计、价格统计、交通运输统计、农业统计等多个领域取得重要进展。我们不仅要直接应用大数据,还要在推动数据开放和共享、建立和统一相关应用标准,实施国家大数据创新驱动战略等方面,发挥应有作用。
中国统计人还要成为数据文化的倡导者和传播者。在宣传统计工作、弘扬数据文化方面,统计人有着天然的优势和便利。家喻户晓的gdp、cpi、ppi、pmi等统计拳头产品,大型的经济普查、人口普查、一套表联网直报等重要统计事件,为宣传统计、传播数据文化发挥了重要而积极的作用。我们还可以做得更好,也有理由做得更好。中国统计也要创建类似美国普查局的lehd-工作单位和家庭住址的纵向动态系统,当超级飓风“桑迪”来袭,该系统大显神通,成功帮助纽约市政府组织救灾,并迅速对灾害影响作出准确评估。这样的统计“明星”产品,能够使人们更加信赖数据、依靠数据,推动数据融入政府管理、商业运营和社会治理以及人们的日常生活。
近年来,国家统计局在统计文化宣传方面做了大量工作,精心打造了统计网站、中国统计开放日、统计微讯微信等一系列新的统计宣传平台,政府统计的形象和公信力不断提升。今后更要以启沃公众数据意识为己任,以记录中华民族复兴的伟大进程为使命,从更大的视野,以更宏大的叙事,讲述中国的统计故事,书写中国的统计历史,把数据文化理念播撒得更广、更深、更远。
尼采在《查拉图斯特拉如是说》中有这样一句话:在有力量的地方,数字这位女主人就会生成,她更有力量。数据不仅代表“真正的事实”,还蕴藏着事物的发展规律。随着大数据时代的到来,数据资源及其开发利用正逐渐成为决定和影响各国核心竞争力的关键因素。中国不仅要做数据大国,更要成为数据强国。
我们这代统计人注定无法甘于淡泊和平凡,唯有顺应时代要求,以更先进的理念、更开放的姿态、更高超的技术积极拥抱大数据,广泛应用大数据,生产出更多更具竞争力的统计产品,才能在智能时代、智慧城市建设以及实现国家治理现代化的进程中,续写政府统计新的辉煌。
数据化决策读后感篇八
(赵元)
最近闲暇之余我读了徐子沛先生的《大数据》一书,真是让我受益匪浅。《大数据》又叫做《大数据:正在到来的数据革命》。全书通过讲述美国在过去的半个世纪里所发生的关于信息、技术方面的典型案例,来为读者剖析出一个浅显易懂的“大数据”。
《大数据》一书,之所以珍贵、便于阅读,在于徐子沛先生在写作过程之中,将原本高、精、尖的数据专业的专业术语,转而用浅显易懂的话语来表现,使得本书成为了一本平易近人的科普读物。使得阅读此书的读者无论年龄、专业、学识,都能最大限度的接触到书中所阐释的基本知识。而我作为一个农行从业四年的员工,当然也有属于我自己的一些感想:
《大数据》一书之中,所提出的一个关键性的问题就是为什么在近几年出现了“大数据”这一词语?作者举出了美国在2009年的相关数据,我从中发现了对该问题给出的一些答案。书中举例,麦肯锡《大数据:下一代创新,竞争和生产率的前沿》报告中进行估算,政府848pb,传媒行业715pb,离散制造业966pb。正是针对相关数据指标的增长,以及当前以全球化为背景的数据信息开放化,各类信息的自由化等原因,导致了面对数据的分析,以及数据的处理,数据的预测和数据的决策都有了更高的要求。这些要求导致我们在针对经济全球化,交流多元扩大化,各个专业管理与发展的精细化必须有一个相对宏观的经济分析头脑。书中使我感触最深的是,针对美国目前发展中的大事件以及现象,例如,美国矿难的悲情历史,街头警察的创新创奇,美国最热的交友信息平台facebook与推特,以及美国纠结百年的统一身份证的问题等,都一一分析了其背后所蕴含的经济学、金融学道理,以及这些时间的背后数据对于美国政府,公民以及社会的种种挑战。书中针对美国半个世纪的发展历程,逐一的分析其内涵,并将美国的发展与进步的基本原因归结为开放和创新。正是因为在这个时代美国强调对于互联网的最大利用化,才有了即使面对压力和强大的经济困难还在稳步前进的现代美国。
这本书给了我最大的启迪,说实话不是那些经济学案例,也不是那些几年前的数据信息。而是一种如何发展的理念。美国正是有了开放和创新才有了如今不断发展中的世界第一强国。而我们中国对于开放和创新却还没有做出最好的诠释。虽然我国的改革开放,技术创新已经取得了一定的成绩,但是面对发达国家我相信其中的差距也是不言而喻的。大到一个国家,小到一个集体,都离不开开放和创新。读了徐子沛先生的《大数据》,我思考最深的不是国家的改革与创新,而是我身处的农行的发展与创新。
作为一个在农行工作了四年的员工,我热爱的着我的岗位,也热爱着我为之努力奋斗的中国农业银行。面对农行未来的创新与发展,在对了这本书以后我针对自身的岗位得出了一些不尽成熟的想法:一方面,我们农行有自己的理财产品,而我行主要的营销方法还是有些被动,我的一点想法是可以多做集中性质的营销,例如在浦口区农行网点附近繁华地段发放宣传单,或者针对有需要的企业可以进行集体宣传,使我行的优质产品深入人心,从而也可以提升我行的基本效益。例如去年举行了几场“新老客户答谢会”,如果举办的次数再多一点,我觉得效果会更好。
另一方面,对于我行的创新产品我也有一些想法。创新是任何个人,企业,乃至国家的发展原动力。那么,我行也应该响应时代的召唤。近日,正值旅游的黄金时期,很多人选择出境旅游,但是有很多国家不支持银联卡,所以很多人想办理visa或mc的信用卡,但是信用卡办起来需要至少半个月的时间,且要求比较高。所以现在有的银行正在发行visa或mc的借记卡,且申领条件比较简单、速度快。我行可以参照并大力开发这一领域。
以上两点只是我个人的一点想法,虽然还有些稚嫩,有些不成熟,但是这两点是我看了徐子沛先生的《大数据》一书以后,基于我对农行的热爱,有感而发,由心而生的。
2013年09月
数据化决策读后感篇九
《白金数据》是我近期读的东叔的小说,小说围绕dna展开一系列悬疑故事。主角神乐在天才少女的帮助下一直推动dna侧写项目,经过多起凶案,项目得到验证,大获成功。政府开始大规模采集民众的dna以完善宝库,然而看似造福人类的庞大工程中,其中却隐藏着惊天秘密,陆续出现“nf13”现象,凶手无法通过侧写被找到。在这个dna库中混进了一种白金数据,一旦某个人的dna变成白金数据,即时他犯案,系统无法匹配正确的数据。在这个问题的背后,政府高层利用白金数据“保护”自己和亲友之间的秘密。在发现此问题后,天才少女研发“猫跳”以应对。然而有些人知道后,不计一切代价摧毁,各方利益冲突而发生一些列凶案。
读完此书后,第一个感受:东叔又开始碰触科幻题材,非常烧脑悬疑推理小说,然而小说的结局在读到一半之后基本上就能预见。最后的凶手登场感觉比较突兀,结尾不是很进奏,有点虎头蛇尾。在东叔这么多的小说中算非常一般的,如果要打分的话,我觉得3.5分吧,刚刚及格,优秀未满。不过还是推荐读一读,应该算东叔科幻推理小说中,结合现实非常紧密的。
数据化决策读后感篇十
毫无疑问,我们正处在一个真正意义上的大数据时代。徐子沛先生的《大数据》这本书给了我们一个很好的启发,面对信息技术的迅猛发展,存储能力的日渐膨胀,网络传输的高效便捷,我们当今时代的每个人都应该认清局势,顺势而为,主动驾驭数据,让数据创造更大价值。
对比《大数据》,结合平时工作和学习的实际情况,我认为我们应该认真思考和解决好以下三个问题:
一、什么是大数据? 以前我们总认为不相关的数据是没有用,但是徐子沛先生却彻头彻尾的颠覆了我们的固有思维,他告诉我们不需要强求每条数据都那么真实准确,从大量的数据中我们就可以得出相对准确的结果。例如:google通过汇总分析某个地区的人们搜索和流感有关的词汇等关键字提前一周准确的预测了这个地区流感的爆发。通过学习,我深刻意识到大数据无处不在,只要我们细心,就可以轻松挖掘出我们身边的那些大数据,并做一些有意义的关联,就像书中说的那样,未来成功的公司必定是是那些拥有大量数据、并使用那些数据为大众提供服务的公司。
二、如何收集数据?
面对信息大爆炸时代的海量数据,我们必须充分利用高科技手段,高效有序地收集整理各种数据,以满足现实工作中越来越广泛的信息需求。为此,建议我们广电系统可以规范文档备案和上传制度,建立统一的文档共享中心。通过互联网、电子计算机等现代技术手段搜集汇总各部门的纵向数据以及部门间的横向数据,通过纵横交错的数据网络,针对特定主题,持续不断地收集相关数据,增加现实工作的高效性和便捷性。
三、怎么利用数据?
收集数据的目的是为了分析利用数据。这里举一个现代财务发展史上的伟大发明,财务三大报表,通过分析财务报表,阅读者可以直观的了解到企业的财务全貌,大大加快了现代公司制企业发展的进步步伐。当今社会,依托于现代计算机技术的高速发展和现有社会结构的深刻变革,我们可以大力引入中介机构,通过培训,定制软件等方式,向员工贯彻新理念,普及新知识,迅速改变落后工作状态,加快提升业务运行效率。
综上,大数据时代是我们信息化社会发展必然趋势,身处其中的我们还有很多知识需要学习,许多思维需要转变。只有紧跟时代潮流,迅速响应调整,才能在新一轮市场竞争中把握主动,脱颖而出。成就更伟大的事业,收获更宏伟的人生。
2015年11月23日
数据化决策读后感篇十一
《数据之巅》读后感这是涂子沛先生关于大数据的第二本书,读了以后可以说是振聋发聩,醍醐灌顶。
第一本书本身就写得很棒了,其主要是从美国现代社会应用大数据成功解决的许多问题入手,说出了大数据的实际用处。而这本书抽丝剥茧从历史上美国对于数据的发展带给我们启迪。
何为民主,何为共和,如何防范多数人的暴政?基于这个问题美国给出了参议院代表的共和与众议院代表的民主,权利与义务统一,即投票与纳税都按所代表的的人口来。
这里就诞生了对精确人口掌控的需求。基于这一点,逐渐养成了按数据说话的传统。并逐渐将单一的人口数量统计扩展到宗教,种族,性别,年龄。
之前是北美大陆种植烟草亟需黑奴,美国解放后烟草行业败落。后来棉花兴起,死灰复燃。北方工业化也需要劳动力。黑人自由就发疯的言论源于统计上的失误,错误稀释原因因基数不同。一项战役向大海进军完全依靠准确数据抢掠补给。谢尔曼格兰特。背后的原因:维护美国的统一,(解放黑奴后其的生计太难),动员黑奴使其转败为胜。
用数据研究社会,普通人的历史。统计学将研究粒度缩小到一个个人。加菲尔德将普查上升到了专业部门。迅速上升的统计内容,不断增加的人口给数据处理提出了挑战。于是技术创新制表机诞生了(数据处理),依靠这个ibm发展壮大,商业模式:只租不卖设备及服务。
量化提高质量。经济发展带来劳资冲突,政治,道德失范。这时候为了改善工人生活又依靠数据兴起了数据分析法,成本收益分析法又在美国水利方面大显身手,继而福特车的风波也加速了成本收益分析法传播同时依靠数据公开使得企业不断提升产品质量,并将人的价值考虑进来。
运用抽样的方法降低数据处理的工作量,省时省力。盖洛普引领的总统预测,乱世佳人的精准预测,准确定位。把数据引入电影工业。质量管理大师戴明将统计方法引入质量管理领域,成就日本经济奇迹。
数据化决策读后感篇十二
一、大数据时代正悄然来临
今年全国两会时,“大数据”(bigdata)第一次出现在政府工作报告中,这表明我国对大数据重要性的认识上升到了国家层面。信息产业发达国家,如美、英、德、日等此前已将大数据作为国家核心竞争力提升为了国家战略。数字主权将是继边防、海防、空防之后,又一个大国博弈的空间。
(一)大数据的定义和特征
大数据并非现在才出现。中国东汉时期人口已达6千多万,这显然是一个大数据,但不是今天讨论的大数据。维基百科对大数据的定义为:“大数据意指一个超大、难以用现有常规的数据库管理技术和工具处理的数据集。”idc(互联网数据中心)报告对大数据的定义为:“大数据技术描述了一种新一代技术和构架,用于以很经济的方式、以高速的捕获、发现和分析技术,从各种超大规模的数据中提取价值。”大数据研究的目的是将数据转化为知识,探索数据的产生机制,进行预测和政策制定。建立在相关关系分析法基础上的预测是大数据的核心,通过找出一个关联物并监控它,我们就能预测未来。
大数据同过去的海量数据有所区别,其基本特征可以用4个v来总结(volume、variety、value和velocity),即体量大、多样性、价值密度低和处理速度快。具体来讲,一是数据体量巨大。数据信息计量的最小基本单位是字节(byte),换言之,byte是计算机信息技术用于计量存储容量和传输容量的一种计量单位,一个字节等于8位二进制数,在utf-8编码中,一个英文字符等于一个字节。数据存储是以“字节”(byte)为单位,数据传输是以“位”(bit)为单位,一个位就代表一个0或1(即二进制),每8个位(bit)组成一个字节(byte)。8bit=1byte,数据存储是以10进制表示,数据传输是以2进制表示,所以1kb不等于1000b,而是1kb=1024b,k是千,m是兆,g是吉咖,t是太拉。按信息量从小到大的顺序,单位分别是:bit、byte、kb、mb、gb、tb、pb、eb、zb、yb、bb、nb、db,除了1byte=8bit而外,后续的计量单位均按照进率1024(2的10次方)来计算。大数据的“大”没有精确的定义,不同的时代对应着不同的大数据规模,当前大数据的数据规模在gb、tb、pb、eb、zb这几个规模尺度上。二是数据类型多样。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。三是价值密度低。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。大数据分析犹如“大海捞针”。四是处理速度快。数据处理遵循“1秒定律”,需从各种类型的数据中快速获得高价值的信息。
(二)大数据的主要成因
大数据的背后推手有哪些?以下三大因素是大数据的主要成因:
第一,人类保持数据的能力增强。
1965年,英特尔的创始人之一戈登·摩尔提出了著名的摩尔定律。该定律认为,同一面积集成电路上可容纳的晶体管数量,一到两年将增加一倍。回顾半个多世纪的历史,硬件技术的发展基本符合摩尔定律。以物理存储器为例,其性能不断上升,与此同时,价格不断下降。1955年,ibm推出第一款商用硬盘存储器,一兆字节的存储量需要6000多美元。到2010年,一兆字节的存储量仅仅需要0.005美分。半个多世纪,存储器的价格下降了1亿倍!
预计2020年,1太硬盘的价格将下降到3美元,相当于一杯咖啡的价格。一所普通大学的图书馆,其馆藏量大约就一两个太。也就是说,到2020年,只需要花上一杯咖啡的钱,就可以把一个图书馆的全部信息拷进一个小小的硬盘。正是因为存储器的价格在半个世纪之内经历了空前绝后的下降,人类才可能以非常低廉的成本保存海量的数据,这为大数据时代的到来铺平了硬件道路,打下了坚实的物质基础。
第二,人类生产数据的能力增强。
从2004年起,以脸谱网(facebook)、推特(twitter)为代表的社交媒体相继问世,拉开了互联网的崭新时代—2.0时代。社交媒体的问世,带来以下三大变化:
一是社交媒体把交流和协同的功能推到了一个登峰造极的高度。在此之前,互联网的主要作用是信息的传播和分享,其最主要的组织形式是建立网站,但网站是静态的。进入web2.0时代之后,互联网开始成为人们实时互动、交流协同的载体。2011年8月23日,美国弗吉尼亚州发生5.9级地震,纽约市居民首先在推特上看到这个消息,几秒钟之后,人们才感觉到地震波从震中传过来的震感。社交媒体把人类信息传播的速度,带到了比地震波还快的时代!
二是社交媒体推动数据总量骤然增加。由于社交媒体的横空出世,人类自己开始在互联网上生产数据,例如发推特、微博和微信,记录各自的活动和行为,全世界的网民都是数据的生产者,每个网民都犹如一个信息系统、一个传感器,不断地制造数据,这引发了人类历史上迄今为止最庞大的数据爆炸。2012年,乔治敦大学的教授李塔鲁考察了推特上产生的数据量,他做出估算说,过去50年,《纽约时报》总共产生了30亿个单词的信息量,现在仅仅一天,推特上就产生了80亿个单词的信息量。也就是说,如今一天产生的数据总量相当于《纽约时报》100多年产生的数据总量。
数据量的增长到现在,已经不是以我们所熟知的多少g和多少t来描述了,而是以p(1千t),e(1百万t)或z(10亿t)为计量单位。百度对此给予了更形象的描述。仅其新首页导航每天就要从超过1.5pb的数据中进行挖掘,这些数据如果打印出来将超过5千亿张a4纸,摞起来会超过4万公里高,接近地球同步卫星轨道长度,平铺可以铺满海南岛。而2020年新增的数字信息将是2009年的近45倍。如今,只需要两天就能创造出自文明诞生以来到2003年所产生的数据总量。
三是社交媒体使人类的数据世界更为复杂。数据包含两类数据:结构化数据和非结构化数据。在大家发的微博中,你的带图片、他的带视频,大小、结构完全不一样。因为没有严整的结构,在社交媒体上产生的数据,也被称为非结构化数据。目前全世界的数据大约75%都是非结构化数据。这部分数据的处理,远比结构严整的数据困难。
第三,人类使用数据的能力增强。
大数据之大,不仅在于其大容量,更在于其大价值。最根本的原因,是人类使用数据的能力取得了重大突破和进展。
这种突破集中表现在数据挖掘上。数据挖掘是指通过特定的算法对大量的数据进行自动分析,从而揭示数据当中隐藏的规律和趋势,即在大量的数据当中发现新知识,为决策者提供参考。数据挖掘进步的根本原因是人类能够不断设计出更强大的模式识别算法。正是通过数据挖掘,各大商家谱写了不少点“数”成金的传奇故事。例如沃尔玛通过捆绑“啤酒和尿布”提高销量。阿里巴巴等凭借长期以来积累的用户资金流水记录,涉足金融领域,在几分钟之内就能判断用户的信用资质,决定是否为其发放贷款。
2014年1月,美国的电子零售巨头亚马逊宣布了一项新的专利:“预判发货”。即在网购时,顾客还没有下单,亚马逊就将包裹寄出。这种顾客未动、包裹先行的做法,核心技术还是数据挖掘。发货的根据是顾客以前的消费记录、搜索记录以及顾客的心愿,甚至包括用户的鼠标在某个商品页面上停留的时间。微软纽约研究院经济学家大卫·罗斯柴尔德利用大数据准确预测了2014年第86届奥斯卡24个奖项中的21个奖项。2012年,他正确预测了美国51个行政区中50个总统大选的结果……结果就在大数据中,惊喜已死。
(三)大数据的应用
主要有以下四个方面:
第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。
移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
第二,大数据是信息产业持续高速增长的新引擎。
大数据时代,面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
第三,大数据利用将成为提高核心竞争力的关键因素。
各行各业的决策正在从“业务驱动”转变“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据在促进经济发展、维护社会稳定等方面的重要作用已开始得以发挥。
第四,大数据时代科学研究的方法手段将发生重大改变。
抽样调查是社会科学的基本研究方法。但在大数据时代,不需要通过抽样,而是通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
(四)大数据与反腐倡廉
大数据反腐,是指利用强大的数据库支持反腐的各个环节,实现精准预测和发布。具有以下重要价值:
第一,大数据为网络反腐提供便利的“信息来源”。
中国工程院李国杰院士指出,“数据背后是网络,网络背后是人,研究网络数据实际上是研究人组成的社会网络”。大数据为网络反腐提供了一个非常庞大并且可以便利索取的“数据库”和“信息来源”,这使得网络犹如一个巨大的“信息蓄水池”。尽管这些信息是碎片化并且是无序排列的,但是可以通过设置“关键词”等形式,将大数据变成小数据,从而使得信息有序排列,获取到有价值的信息。在“杨达才事件”中,以“杨达才、安监局”为关键词,就可以获取大量相关的信息。利用搜索、社交网络、网络新闻等互联网服务中的语义分析和关键词分析,掌握各地区腐败轻重程度、廉洁指数、市民抱怨度、市民对政府的满意度等,为反腐败和廉政工作提供数据支撑。
第二,大数据刺激并鼓励网民的“掏粪运动”。
19世纪末20世纪初,美国新闻界以杂志为主体掀起了一场揭露丑闻、谴责腐败、呼唤正义与良心的运动,这就是著名的“掏粪运动”。这一名称源于当时的美国总统罗斯福。在大数据时代,“掏粪运动”有越演越烈之势。正是因为网民围观以及他们的“掏粪运动”,一件普通的事件也容易发生“多米诺骨牌效应”,从而“拔出萝卜带出泥”。“杨达才事件”,是一个微笑引发的腐败案。一张再普通不过的新闻图片,被细心的“信息搬运工”发现,这位官员竟然在车祸现场微笑。旋即引起网民围观,继而被扒出佩戴多款价值不菲的名表,又因回应言辞欠妥陷入诚信危机,再因眼镜、皮带等昂贵饰物被接连曝光催生腐败疑云,直至因涉嫌严重违纪被撤职。
第三,大数据破解信息不对称的监督难题。
反腐败之难,难在信息不对称。运用大数据反腐败,就像开在马路上的汽车,任何行驶的蛛丝马迹都逃不脱电子警察的法眼,从而真正做到全员监控、全程监控、全方位监控,实现可记录、可追溯、可查究。在全民围观时代,现实中再强势的官员也会变成弱势。官员不恰当的言行举止,都有可能引发网络围观效应,瞬间激起网民“拍砖”热情,在虚拟社区形成巨大的舆论漩涡,并投射到现实社会中去。
通过大数据和云计算技术建立全国性的官员资产纪录大数据库。因为贪官可以通过白手套和假的身份文件持有资产,因此可以仿效英国的电子护照,在身份证和户口当中植入记录指纹信息的电子芯片,这样一来资产就和独一无二的指纹对应起来,再加上数据挖掘技术,贪官的财产就无处遁形。
人民币冠字号码记录跟踪系统开始应用于反腐败。该系统是一种atm现金循环保障方案,通过实时监控交易和钞票冠字号码,一方面,可以帮助银行解决自助设备现金循环出现的伪钞纠纷、金额纠纷;另一方面,每个人正常所得工资及收入,其人民币冠字号码都很清楚,那么非法所得就是人民币冠字号码异常,这些人民币是谁的,到了谁手中,谁在哪里使用,都很清楚,因此谁在行贿、受贿,就一目了然,因为有人民币号码作证,人民币就是“跟踪器”,现金行贿就难以进行!
数据化决策读后感篇十三
有人说生活像一团乱麻,剪不断理还乱;我说生活像一团乱码,尽管云山雾罩惝恍迷离,最后却总会拨云见日雨过天晴。维克托迈尔舍恩伯格就把这团乱码叫做大数据,在他的这本书里,试图给出的就是拨开云雾见青天的玄机。
这玄机说来也简单,就是放弃千百年来人们孜孜追求的因果关系转而投奔相关关系。说来简单,其实却颠覆了多少代人对真理探求的梦想。我觉得作者是个典型的实用主义者,在美帝国主义万恶的压迫下,始终追逐性价比和利益最大化,居然放弃了追求共产主义真理最基本的要求!不像我们在天朝光芒的笼罩下,从小就开始学习和追求纯粹的共产主义唯心科学历史文化知识啦!这或许就是我们永远无法获得诺贝尔奖、永远无法站在科技最前沿的根本原因吧。其实小学时候,我就想过这个问题,相信所有的人都问过类似的问题,例如现在仍然很多人在问,妈的从来没人知道我每天摆摊赚多少钱,你们他妈的那人均收入四五千是怎么算出来的。中国是抽样的代表,因为中国人最喜欢用代表来表现整体,最典型的例子莫过于公布的幸福指数满意指数各种指数永远都高于你的预期,你完全不清楚他是怎么来的,一直到最后汇总成三个代表,真心不清楚它到底能代表了啥。说这么多显得自己是个愤青,其实只是想表达“样本=总体”这个概念在科技飞速发展的今天,在世界的不同角落,还是会体现出不同的价值,受到不同程度的对待及关注。在大数据观念的冲击下,我们是不是真的需要将平时关注的重点从事物内在的发展规律转移到事物客观的发生情况上。
大数据的出现,必然对诸多领域产生极大的冲击,某些行业在未来十年必将会得到突飞猛进的发展,而其他一些行业则可能会消失。这是废话,典型的三十年河东三十年河西的道理,就像三十年前的数理化王子们,现在可能蜷缩在某工厂的小角落里颤颤巍巍的修理机器;就像三十年前职业高中的学生才学财会学银行,如今这帮孙子一个个都开大奔养小三攒的楼房够给自己做墓群的了;当然也不乏像生物这种专业,三十年前人们不知道是干啥的,三十年后人们都知道没事别去干,唯一可惜的是我在这三十年之间的历史长河中却恰恰选了这么一个专业,这也是为什么我现在在这写读后感而没有跟姑娘去玩耍的原因。其实乍一看这个题目,我首先想到的是精益生产的过程控制,比如六西格玛,这其实就是通过对所有数据的分析来预测产品品质的变化,就已经是大数据的具体应用了。而任何事物都会有偏差,会有错误,也就是说,这全部的数据中,肯定是要出现很多与总体反应出的规律相违背的个体,但是无论如何这也是该事件中一般规律的客观体现的一种形式,要远远好过从选定的样本中剔除异常值然后得到的结论。换句话说,也大大减少了排除异己对表达事物客观规律的影响。就好比是统计局统计中国人民的平均收入一样,这些数怎么这么低啊,这不是给我们国家在国际社会上的形象抹黑么,删掉删掉;这些数怎么这么高啊,这还不引起社会不满国家动荡啊,删掉删掉。所以说,大数据至少对反应客观事实和对客观事实做预测这两个方面是有非常积极地意义的。而这个新兴行业所体现的商机,既在如何利用数据上,又在如何取得数据上。
先说数据的利用,这里面表达的就是作者在通书中强调的对“相关关系”的挖掘利用。相关关系与因果关系便不再赘述,而能够对相关关系进行挖掘利用的企业其实缺不多,因为可以相信未来的大数据库就像现在的自然资源一样,必将因为对利益的追逐成为稀缺资源,而最终落在个别人或企业或部门的手中。想想无论当你想要做什么事情的时候,都有人已经提前知道并且为你做好了计划,还真是一件甜蜜而又令人不寒而栗的事情。
而对于数据的获取,我觉得必然是未来中小型企业甚至个人发挥极致的创造力的领域。如何在尽可能降低成本的情况下采集到越多越准确的数据是必然的发展趋势,鉴于这三个维度事实上都无法做到极致,那么对于数据获取方式的争夺肯定将成就更多的英雄人物。
现在回头从说说作者书中的观点中想到的,p87中关于巴斯德的疫苗的事件,描述了一个被疯狗咬伤的小孩,在接种了巴斯德的狂犬疫苗后成功幸存,巴斯德成了英雄的故事。这是个非常有意思的案例,因为小孩被狗咬伤而患病的概率仅为七分之一,也就是说,本事件有85%的概率是小孩根本就不会患病。那么小孩的生命到底是不是巴斯德救的,而这疫苗到底是有效没效,通过这个事件似乎根本就没有办法得到验证。这就好比某人推出个四万亿计划,但实际上国际经济形势就是好转,哪怕你只推出个二百五计划,gdp都会蹭蹭的往上涨,而且又不会带来四万亿导致的严重通胀、产能过剩、房价泡沫等问题。那你说这四万亿到底是救了国还是误了国?回到我自己的工作领域上来,安全工作,我们一直遵循的方向都是寻找因果关系,典型的从工作前的`风险评估,到调查事故的taproot或者五个为什么,无一不是逻辑推理得到结果的产物。而事实上,如果能做到信息的丰富采集和汇总的话,找出事物之间的相关性,对提高工作环境的安全系数是极为有利的。这个点留着,看看可不可以在未来继续做进一步研究。
p89说了常用的两种因果推理方式,分别是凭直觉的快速推理和经过分析的慢速推理。有意思的是很多时候直觉反而比分析来得成功率要更高。作者是想利用这个例子来说明因果关系是多么的不可靠,也想表达出靠分析试验得到结果的过程成本有多高。其实我是想说,因果关系更多面向的是未来,是没有对新鲜事物发展做出的预测,而相关关系更多的是对已经存在的事物未来发展的预测,侧重点不同而已。
p135里面关于山上小球的描述,它的能量是隐藏的、潜在的。这个观点我很喜欢,也很悲观。这正说明了社会上的一种现象。很多人,虽然没有站在巨人的肩膀上,但是当他们站在亲爹干爹的路虎上保险箱上高背椅上时,就是拥有别人无法企及的力量。最近一直在背马丁老兄的i have a dream,真真切切体会到自由、公正、平等对一个社会,一个国家繁荣发展的重要性。实干兴邦、空谈误国,那就先从建立一个公平的社会秩序开始吧!
p163里面大概讲述了商家是怎么通过大数据获得的信息来进行商业推广的。这里我只想用我的三张信用卡发卡银行做一下比较。首先是交通银行,这张卡最近半年几乎没怎么用,交行也从来都无声无息,我考虑已经可以把这张卡扔掉了;去年因为国航里程申请了一张中信的信用卡,但是今年开始也已基本停用,因为之前一段时间一直使用,中信银行这几个月频繁与我联系,推荐各种业务,多次要给我提供贷款或者提高透支额度,我几次都想要不然就换回来继续用它好了;招商银行的卡也是我用得比较久的一张,近期每月的消费基本都稳定在几千,偶尔也有一万多快两万的时候,当然这不是因为我消费,只是因为出差比较多自己垫钱多而已,但是招商银行从未与我联系给我提升额度,尽管我的月消费额度都已经基本达到信用卡的上限了,有时候甚至不得不使用别家的信用卡。最差的自然是中行,首先是预约了国航金卡的信用卡,结果联系了两次我都在出差,就再也不与我联系了,半年多了我还没有拿到我的卡,而作为工资卡的借记卡,多年来仍然是每天网上付款最多2000,我的使用记录明明经常一个月有好几天都达到2000的顶值,甚至我都主动打过电话要求更改,都给我答复是必须到柜台办理。说完这几个例子,我想中国的银行业与欧美发达国家银行的差距就已经是显而易见了。真的很难以想象这种企业能在世界500强中排名那么靠前,是因为黑了中国人民多少钱。而通过对visa和mastercard的案例描述,则清晰的说明了一个成功的银行是怎么通过对数据收集进行行为预测,最终改变消费者消费习惯的。
然后想说说关于免费导航等应用的使用。天下没有免费的午餐,这是亘古不变的真理。你以为你可以只花点流量费就能舒服方便的使用卫星导航了么,你去过的每一个地方,时间,逗留市场都已经被人家记录下来卖给商家啦,哪天你打车找到一家麦当劳,刚停下车服务员就送上一套板烧鸡腿汉堡套餐可乐换阳光橙不加冰的时候你可千万不要惊讶,因为你已经无时无刻不暴露在别人的监视之下了。
最后想用文中引用的莎士比亚的一句话作为结尾,凡是过去,皆为序曲。
数据化决策读后感篇十四
数据决策作为当今商业发展的重要环节,对于企业的发展至关重要。在这个信息爆炸的时代,我们要学会从海量的数据中提取有用的信息,并将其转化为实现企业目标的决策。通过多年的工作经验和学习,我结合自身情况总结出以下关于数据决策的心得体会。
首先,对于数据决策,我们必须具备技术与业务知识的双重能力。在这个信息化的时代,运用适当的技术工具来收集、分析和解释数据是必不可少的。掌握数据分析软件,如Excel、SPSS、Python等,能够快速高效地处理数据,提取有价值的信息。同时,了解行业的业务知识,有助于更好地理解数据背后的含义,提供更有针对性的决策建议。因此,不断学习和提升自己的技术与业务能力,是成为一名优秀的数据决策者的必备条件。
其次,数据决策需要深入了解数据的真实性和可靠性。今天,数据被广泛应用于企业管理和决策中。然而,不完整、不准确或不可靠的数据会导致错误的决策,甚至可能给企业带来巨大损失。我们应该始终对数据持怀疑态度,并且通过验证和验证数据的源头,以确保我们所依赖的数据是可靠的。此外,还应考虑数据的时效性,及时更新数据以保证准确性。只有基于可靠的数据进行决策,才能为企业的发展提供支持和保障。
第三,数据决策需要注重数据的分析和解读能力。当面对海量的数据时,我们必须具备分析和解读数据的能力,将其转化为对企业发展有价值的信息。通过对数据进行趋势分析、比较分析、关联分析等,可以发现其中蕴含的规律、趋势和关系。同时,我们还需要将数据与业务目标相结合,以制定实际可行的决策方案。要做到这一点,我们需要培养自己的逻辑思维和学习数据分析的方法和技巧。只有通过深入的数据分析和解读,才能得出准确、有用的结论,为企业的决策提供更加可靠的支持。
第四,数据决策要充分考虑人性化因素。虽然数据决策是基于数据和分析的,但我们不能忽视人性化因素对决策过程的影响。人们在接受并理解数据时具有主观和情感因素,这可能会影响他们的决策偏好。因此,在进行数据决策时,我们不仅要考虑数据和分析的结果,还要了解决策者和相关方的期望、偏好和需求,使决策更加符合实际情况,并获得广泛的接受和支持。关注人性化因素,做到数据与人的有效结合,是成功实施数据决策的关键之一。
最后,数据决策需要持续优化和改进。数据决策并非一劳永逸,而是一个不断完善和改进的过程。我们需要借鉴过去的决策结果,不断总结经验教训,并通过不断的试错来优化和改进决策模型和方法。此外,随着技术的发展和环境的变化,我们还需要不断更新和学习新的数据分析工具和技术,以适应不断变化的商业环境。只有不断优化和改进数据决策过程,才能更好地支持企业的发展,并取得更好的业绩。
综上所述,数据决策作为当今商业发展的重要环节,需要我们具备技术与业务知识的双重能力,关注数据的真实性和可靠性,注重数据的分析和解读能力,考虑人性化因素,并持续优化和改进数据决策过程。只有掌握这些关键要素,我们才能更好地利用数据做出科学、准确、有效的决策,为企业的发展提供有力支持。
数据化决策读后感篇十五
随着信息时代的到来,数据已经成为了我们生活中的重要组成部分。而对于企业管理者来说,数据决策更是成为了推动企业发展的重要途径。在日常的工作中,我也积累了一些关于数据决策的心得体会。以下将从理解数据的重要性、数据收集与整理、分析与解读数据、制定决策和持续改进等五个方面,分享我的心得体会。
首先,理解数据的重要性是进行数据决策的基础。数据是客观存在的,能够反映出事物的真实情况和变化趋势。对于企业来说,通过收集和分析数据,可以更准确地了解市场需求、产品销售情况、竞争对手动态等信息,从而为企业的决策提供依据。只有充分认识到数据的重要性,才能真正发挥数据决策的价值。
其次,数据收集与整理是进行数据决策的重要步骤。数据决策的质量直接依赖于数据的准确性和全面性。在收集数据时,应明确需要收集的数据类型和指标,并选择合适的数据来源。同时,在整理数据时,应注意将数据进行规范化处理,确保数据的可比性和可读性。只有有效地收集和整理数据,才能为后续的数据分析和决策提供准确的基础。
然后,分析与解读数据是进行数据决策的核心环节。通过运用统计学和数据分析方法,可以从大量的数据中提取出有价值的信息和规律。在分析数据时,应使用合适的数据分析工具和方法,如趋势分析、对比分析、相关性分析等,从而对数据进行细致和全面的分析。同时,在解读数据时,应注意将数据与实际情况相结合,辨别出数据中的关键问题和瓶颈因素,为决策提供科学依据。
接着,制定决策是数据决策的重要环节。通过分析和解读数据,可以为企业决策者提供有效的参考和支持,但最终决策的权力仍然掌握在决策者手中。在制定决策时,应充分考虑到数据分析的结果和企业的实际情况,合理权衡利弊,制定出合适的决策方案。同时,在决策过程中,应注重沟通和协商,确保决策能够被有效执行。
最后,持续改进是数据决策的重要原则。数据决策并不是一次性的活动,而是一个持续循环的过程。在决策执行的过程中,应及时关注决策的效果和结果,通过对数据的监控和评估,发现问题和不足,并及时进行调整和改进。只有不断进行数据决策的迭代和优化,才能实现企业的持续发展。
综上所述,对于企业管理者来说,数据决策已经成为推动企业发展的重要方式。通过理解数据的重要性、数据收集与整理、分析与解读数据、制定决策和持续改进等步骤,可以更有效地进行数据决策。然而,随着数据时代的加速发展,数据决策也面临着新的挑战和机遇。只有不断学习和创新,不断完善数据决策的方法和技能,才能不断提升数据决策的质量和效果,为企业的发展提供坚实的支撑。
数据化决策读后感篇十六
随着科技的发展和数据大爆炸的时代的来临,数据化决策在经济、政治和社会等各个领域发挥着越来越重要的作用。作为管理者,对于数据化决策的理解和运用至关重要。在我的工作实践中,我深刻体会到了数据化决策的重要性并获得了一些宝贵的心得体会。以下是我对于数据化决策的一些思考和感悟。
首先,了解数据本身的价值是数据化决策的基础。数据是客观存在的事实,通过数据我们可以真实地了解到事物的状态和趋势。在进行数据化决策的过程中,首先要做的就是收集和整理数据,并对数据进行有效的分析和解读。只有对数据本身有深入的了解和了解,才能根据数据的规律和趋势进行决策。因此,数据的收集和整理,以及数据分析和解读能力是进行数据化决策的基础。
其次,数据化决策需要多维度和多元化的思考。在进行数据化决策时,我们不能仅仅停留在表面数据上,而是要考虑多个因素和变量的综合影响。通过多维度和多元化的思考,我们才能更全面地了解情况,发现问题,制定出更全面和更有效的决策。同时,数据化决策也需要不断进行反思和改进,不断学习和积累经验,提高数据化决策的准确性和有效性。
第三,合理利用科技工具是数据化决策的关键之一。在现代社会,科技工具为数据化决策提供了很多便利,使得数据的收集、整理、分析和解读过程更加高效和准确。我们可以利用各种数据挖掘、机器学习和人工智能等技术,对大数据进行深度挖掘和分析,从而发现数据背后的规律和关联,并为决策提供更有力的支持。因此,科技工具的合理利用是进行数据化决策的关键之一。
第四,积极推动数据化决策的落地和实施是关键。数据化决策并不仅仅是利用数据进行决策,更重要的是如何将数据化决策真正落地和实施。在实施过程中,我们需要充分调动各方的积极性,加强沟通和协作,确保决策的有效性和可持续性。同时,我们也要善于利用决策过程中产生的数据和反馈信息,进行及时的调整和改进,使决策不断适应现实的变化和需求。
最后,数据化决策需要与人文关怀相结合。数据化决策的目的是为了更好地为人们服务和提高人们的生活质量。因此,在进行数据化决策时,我们不能只关注数据本身,更要关注人的需求和感受。我们需要将数据与人文关怀相结合,关注决策对于人们生活的影响,注重人的主体地位和权益。只有数据化决策与人文关怀相结合,才能真正做到科技发展与人类福祉的有机结合,实现人的全面发展和社会的可持续发展。
综上所述,数据化决策对于管理者来说具有重要的意义和价值。在实践过程中,我们应该不断提高对于数据的理解和运用能力,多维度和多元化思考,并合理利用科技工具,积极推动数据化决策的落地和实施,注重数据化决策与人文关怀相结合。只有这样,我们才能更好地应对复杂多变的社会和经济环境,实现管理的科学化和精细化,为实现可持续发展贡献自己的力量。
【本文地址:http://www.xuefen.com.cn/zuowen/4785403.html】