最新三年级数学第六单元教学设计(汇总14篇)

格式:DOC 上传日期:2023-10-29 06:33:18
最新三年级数学第六单元教学设计(汇总14篇)
时间:2023-10-29 06:33:18     小编:笔舞

老师是我们心目中的楷模,他们的教诲让我们受益终生。在写总结时,我们可以采用归纳法、演绎法等写作方法,使文章更具逻辑性。希望这些范文可以给大家带来启示和鼓励,鼓励大家勇于尝试和创新。

三年级数学第六单元教学设计篇一

本节课内容是在学生学习了长度单位米和厘米的基础上,学习毫米和分米。《数学课程标准》中明确提出:“教师应根据学生的具体情况,对教材进行再加工,有创造性地设计教学过程(本文来自优秀教育资源网斐.斐.课.件.园)。”

为了给学生提供充分自由的思考空间,敢于放手让他们实践,培养创造性思维,因此,本节课教学中我创造性地安排了一些让学生量一量活动。鼓励学生在活动中充分开展推理和想象,使他们体会到1分米和1毫米有多长,引导学生总结出米、分米、厘米、毫米之间的关系。首先,我拿出准备好的粉笔、铅笔,让学生先估计一下它们的长短,然后实际测量一下,看谁估计得准确。接下来我拿出10厘米长的硬纸条,让学生先估计,再测量,从而引出“1分米”的概念。认识了“1分米”之后,我组织学生开展了“找一找”的活动,看谁能发现身边“1分米”长的东西。孩子参与测量活动的热情特别高,并且在活动中学会了深入地思考问题。

通过今天的这节课,我还充分体验到了“数学教学就是数学活动的教学”,自始至终,学生都在估一估、量一量、找一找,学生的兴致很浓。

在一节课中,比教学任务更重要的是“学生的活动”,是学生参与活动的“热情”;学生在数学活动中的“经历、体验、感受”,在某种程度上要比单纯知识的学习重要得多,“知识易忘,能力永存”;“学生”应当在教师心目中占第一位,学习兴趣、学习能力的培养,应当放在优先考虑的位置。我想,“以人为本”,“以学生的发展为本”,讲的就是这个道理。

三年级数学第六单元教学设计篇二

教学目标:

1.使学生理解和认识公倍数和最小公倍数,能用列举的方法求两个自然数的公倍数和最小公倍数,能通过直观图理解两个数的倍数及公倍数之间的关系。

2.使学生借助直观认识公倍数,理解公倍数的特征;通过列举探索求公倍数和最小公倍数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。

3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心;培养与同伴合作、交流的意识和良好品质。

教学重点:

求两个数的公倍数和最小公倍数。

教学难点:

理解求公倍数和最小公倍数的方法。

教学准备:

小黑板

教学过程:

一、揭示课题

揭题:我们已经学习了公因数和公因数,今天这节课学习公倍数和最小公倍数。(板书课题)

提问:看了这个课题,你有什么想法?你对公倍数有哪些想法?对最小公倍数呢?

引导:大家交流的想法,实际上是联系公因数和公因数进行联想,提出自己的想法。这样的学习方法可以帮助我们学好数学。那刚才大家的想法是不是正确呢?现在,我们一起来研究公倍数和最小公倍数。(板书课题)

二、学习新知

1.认识公倍数。

(1)出示例11,让学生说说知道了些什么,提出的什么问题。

交流:哪个正方形能正好铺满,哪个不能铺满?

说明:6既是3的倍数,又是2的倍数,是3和2公有的倍数。

(2)引导:想一想,这个长方形纸片还能正好铺满边长多少厘米的正方形?为什么?和同桌说说你的想法。

交流:还能正好铺满边长多少厘米的正方形?你是怎样想的?(明确可以正好铺满边长12厘米、18厘米??的正方形)

(3)引导:现在你发现,6、12、18、24??这些数和2、3都有什么关系?说说你的想法。指出:同学们的理解还真不错!大家发现6、12、18、24??这样的数,既是2的倍数,又是3的倍数,也就是2和3公有的倍数,我们称它们是2和3的公倍数。(板书:公倍数)

追问:8是2和3的公倍数吗?为什么不是?

2.求公倍数。

出示例12,明确要找6和9的公倍数和最小的公倍数。

结合学生交流,教师板书用不同方法找的过程和结论,使学生领会。

小结:大家用不同的方法找出了6和9的公倍数有18,36,54??其中’最小的是18。18是6和9的最小公倍数。

追问:有没有的公倍数?为什么?

说明:两个数的公倍数有无数个,没有的公倍数。两个数的公倍数里最小的一个,就是这两个数的最小公倍数。(板书:最小公倍数——公倍数中最小的一个)

3.用集合图表示公倍数。

引导:你也能用圆圈图表示6的倍数、9的倍数和公倍数的关系吗?自己画一画。学生交流,呈现集合相交的图,(图见教材,略)分别标注出“6的倍数”“9的倍数”“6和9的公倍数”,并强调三个部分都有无数个数,都要用省略号表示。

让学生看直观图说说,哪些数是6的倍数,哪些数是9的倍数,哪些数是6和9的公倍数,最小公倍数是几。

指出:从图上可以直接看出,6和9公有的倍数,是它们的公倍数,其中最小的一个,是它们的最小公倍数。

三、巩固深化

1.做“练一练”第1题。

2.做“练一练”第2题。

3.做练习七第9题。

4.做练习七第10题。

四、总结提升

三年级数学第六单元教学设计篇三

1、认识年、月、日。

2、24时计时法。

3、简单的时间计算方法。

认识年、月、日

教材

1、引导学生认识时间单位年、月、日,知道大月、小月的知识,记住各月的天数。

2、使学生会判断大、小月。

3、帮助学生初步建立年、月、日的时间观念,培养学生的观察能力和思维能力,渗透科学的思想方法。

探究发现年、月、日之间的关系。

发现并掌握大月、小月的判断方法。

多媒体各年份的年历卡。

1、填空。

1时=()分1分=()秒

1时=()秒240分=()时

1分25秒=()秒82分=()时()分

2、提问:

(1)时、分、秒都是什么单位?(时间单位)

(2)关于时间单位你还知道哪些?(年、月、日、季度、世纪等)

(3)那么关于年、月、日的知识你想知道些什么?

3、导入新课

讲述:地球绕太阳运转一周经过的时间就是一年,月亮绕地球运转一周经过的时间大约就是一个月,同时,地球自己也在旋转,地球自己旋转一周的时间就是一日。今天我们就来学习有关年、月、日的知识。

1、认识年、月、日。

(1)出示材料。

提问:以前我们用钟、表来研究时、分、秒,那么年、月、日我们可以用什么来研究呢?(年历卡)

(2)观察手中的年历卡,看看这是哪一年的年历。

(3)分别找到10月1日,7月13日,看一看,各是星期几。

提问:10月1日是什么节日?申奥成功是在哪一年呢?

(4)请同学们在年历卡上找出你所知道的纪念日,爸爸、妈妈和自己的生日等,看一看,分别是星期几。

(5)合作探究。

观察:一年有几个月?每个月的天数一样吗?哪几个月是31天?哪几个月是30天?

(6)讨论交流。

教师根究学生的回答内容,板书:

年月日

一年12个月365天或366天

1、3、5、7、8、10、1231天

4、6、9、1130天

229天或28天

(7)质疑:你们每人手中的年历卡上31天的月份是不是都是这几个月呢?(是)对!不管哪一年,31天的月份都是这几个月。

再看一看,是不是每年的4、6、9、11月的天数都是30天。(是)

(8)认识大月、小月。

讲述:通过同学们认真仔细地观察,我们已经知道了不管哪一年,1、3、5、7、8、10、12这7个月都是31天,4、6、9、11这4个月都是30天,它们是不会发生变化的,我们把每月天数都是31天的这几个月叫做大月,把每月的.天数都是30天的这几个月叫做小月。

年份不同了,哪个月的天数有变化呢?(2月)从这里可以看出,二月的天数比大月、小月的天数要少,所以二月是一个特殊的月份。

2、巩固。

3、记住大月、小月。

(1)出示左拳图。

(2)讲清相应部位所表示的每个月的天数。

(3)根据图,全体一起记忆。

(4)指着自己左拳再次记忆。

(5)再介绍一首儿歌,加强记忆。

七个大月心中装,七前单数七后双。

二月是个特殊月,其他各月是小月。

观察今年的年历。

(1)一、二、三月一共有()天。

(2)六一儿童节是星期()。

(3)四月份有()个星期零()天。

想一想:9月30日的后一天是几月几日?

三年级数学第六单元教学设计篇四

教学目标:1、使学生初步掌握除数是小数的除法的计算法则。

2、提高学生的知识迁移能力

3、培养学生细心做题的好习惯。

复习旧知:

1.把下列各数的小数点去掉,原数扩大了多少倍?

13.84.670.725

2、除数扩大10倍,要使商不变,被除数应怎样怎样变化?

4、把5.34扩大10倍,小数点应怎样移动?要扩大1000倍呢?

5、学生填写括号里的数:

被除数15150

除数550500

商()()3

学生小结运用了什么规律?(商不变的性质)

教学过程:

一、引入新课:

学生做43.5÷5=8.7

然后改题:4.35÷0.5猜一猜得数是多少?为什么?

二、新授:

1、出示例5

(1)教师:图上有那些信息?根据信息分析题意,列出算式:7.65÷0.85

(2)问:想一想,除数是小数怎么计算?(转化成除数是整数的除法来计算。)

(3)问:怎样转化?组织学生分组讨论,把讨论的意见写在纸上,让一个组的学生在视频展示台上展示出来,边展示边讲解,讲解后问台下的学生“你们对我们讨论的结果有什么意见?”台下的学生给台上的学生提建议,从而引发全班讨论.多让几个小组的学生上台讲解自己组的意见。

生讨论得出:把除数0.85扩大100倍变成85,被除数7.65也要扩大100倍,这样商不变。注意:原竖式中除数的小数点和前面的0及被除数的小数点划去。

2、出示例6:12.6÷0.28

学生边讨论边改写,改写完后指名学生到视频展示台上展示自己改写后的算式.并比较出两道题都是除数是小数的除法,这是它们的相同点;而不同点表现在前一道题被除数和除数的小数位数同样多,而这道题除数有三位小数,而被除数只有两位小数.

教师:你们是怎样处理被除数和除数小数位数不同的问题的呢?

引导学生说出在被除数的小数末尾添0,使除数和被除数的小数位数相同以后,再把除数和被除数同时扩大相同的倍数。小数位移不够,在小数末尾添0。

小结:学生说一说学到了什么?教师适当小结。

三、巩固练习:

1、书上第22页“做一做”

2、练习:判断并改错:

1.44÷1.8=811.7÷2.6=4.54.48÷3.2=1.4

3、练习:书上24页的作业

新苏教版五年级下册数学第六单元教案

三年级数学第六单元教学设计篇五

1、口算乘法:

(1)能从具体情境中搜集有用的数学信息,能根据数学信息提出恰当的数学问题,感受数学在实际生活中的应用。

(2)探索并掌握整十、整百、整千数乘一位数的口算方法,体验算法多样化,并能熟练、正确的进行计算。

(3)能完成两位数或三位数乘一位数的估算,培养估算的意识和能力。

(4)能解决相关的实际问题,提高提出问题、分析问题、解决问题的能力。

2、笔算乘法:

(1)在具体情境中进一步理解乘法的意义,感知乘法与生活的密切联系,激发学习数学的兴趣。

(2)能结合具体情景,探索并理解两位数、三位数乘一位数的算理,掌握笔算算法(包括不进位的.、一次进位的、连续进位的、有一个因数的中间或末尾有0的)。

(3)能结合具体情境进行估算,并解释估算的过程,并能用估算结果验证计算结果的正确性。

(4)在正确掌握运算顺序的前提下,能正确完成包含两位数、三位数乘一位数的混合运算。

(5)能解决与本节内容相关的实际问题,提高解决问题的能力。

(6)在探索规律的习题中培养孩子的观察能力、思维能力和表达能力。

三年级数学第六单元教学设计篇六

一、我会填。

1、钟面上一共有个数字,短针是()针。

2、你早上大约()时起床,晚上()时睡觉。

3、一个数从右边起第一位是()位,第二位是()位。

4、10的前面一个数是(),后面一个数是()。

5、两个加数都是10,和是()。被减数是17,减数是7,差是()。

6、20里面有()个十。

二、我会选。

1、()时整,时针和分针完全重合。a、3b、6c、9d、12

2、分针指向(),时针指向几就是几时。a、3b、10c、12d、15

3、11时后1小时是()时。a、8b、12c、10d、11

三年级数学第六单元教学设计篇七

1. 经历观察、分析现实生活实例和典型图案的过程,认识轴对称和轴对称图形培养学生探索知识的能力与分析问题、思考问题的习惯。

2. 会找出简单对称图形的对称轴。 了解轴对称和轴对称图形的联系与区别。

本节课的重点是通过对现实生活实例和典型图案的观察与分析,认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴。找出简单轴对称图形的对称轴与理解轴对称和轴对称图形的联系与区别是难点。

活动准备:收集各类有关对称的图案和各种现实生活中有关对称的实例,作为教学时互相交流的资料。

一、看一看:

1.投影或演示各类具有轴对称特点的图案(如课本上所绘的图象或由学生课前收集的各类具有对称特点的图案)

3. 分析各类图案的特点,让学生经历观察和分析,初步认识轴对称图形。

二、议一议

1.试举例说明现实生活中也具有轴对称特征的物体,发展学生想象能力。

2.让学生感到具有轴对称特征的物体,它们都是关于一条直线形成对称。

三、做一做

1.把具有轴对称特征的图形沿某一条直线对折,使直线两旁的部分能够互相重合

把具有轴对称特征的图形沿某一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

让学生说出以前学习过的轴对称图形,并找出它的对称轴

2.弄清楚轴对称与轴对称图形的区别

对于两个图形,如果沿一条直线对折后,它们能完全重合,那么这两个图形成轴对称,这条直线就是对称轴。

轴对称是指两个图形之间的形状和位置关系。而轴对称图形是对一个图形而言的,轴对称图形是一个具有特殊形状的图形。它们都有没某条直线对折使直线两旁的图形能重合的特征。

小 结: 今天我们经历观察和分析了现实生活实例和图案,了解了现实生活中存在许多有关对称的事例,认识了轴对称与轴对称图形,并能找出一些简单轴对称图形的对称轴。

学生对于判断是否轴对称图形较清楚,但是对轴对称图形和两个图形成轴对称这两个概念较难掌握,在举例的过程中学生的积极性被完全调动起来,上课的气氛较好。

三年级数学第六单元教学设计篇八

1. 经历现实世界中普遍存在的关于轴对称现象的一系列活动,认识轴对称图形的特征,会用自己的语言描述轴对称图形。

2. 在画、折、剪等自主探索的活动中培养学生的观察、表达、思维、空间想象能力,同时进一步培养学生的探索意识和合作精神。

3. 联系生活实际,通过感知、认识、欣赏、制作轴对称图形,体验学习数学的乐趣,感悟学习的价值。

会用自己的语言描述轴对称图形。

多媒体课件、学具、练习纸、剪刀、彩纸。

1. 情景引入 帮小蝴蝶画出镜子里的另一半。(练习纸)

2. 观察、比较 (媒体展示)仔细观察原来的一半和你画的那一半,你发现了什么? (板书:对称 形状相同 大小相等)

3. 猜测、验证 如果把完整的图对折,请你猜猜会出现什么情况? (媒体演示:重合) (板书:重合 折 叠,合在一起)

1. 尝试分类 (媒体出示数学城堡里的物品,并抽象出各种图形) 小组合作分类。

2. 交流、验证 阐述分类依据,验证分类结果。

3. 揭示课题 在数学上我们称这样的图形为——轴对称图形。 (板书:轴对称)

4. 认识对称轴

(1)观察轴对称图形的特征,直观演示 的对称轴。 (板书:对称轴)

(2)小组活动:寻找另几个图形的对称轴。 (反馈、媒体演示)

5. 独立判断。

哪些图形中的红线是对称轴?(皇冠图、茶壶图、盘子图以及禁止符)

1. 观察、辨析 观察 ,判断是否是轴对称图形。

2. 合作探究 小组合作,寻找长方形、正方形、平行四边形、圆形的对称轴,完成练习。

1. 欣赏、感受 媒体展示“爱心”、昆虫、乐器、千手观音、建筑、京剧脸谱、中国结、剪纸,体验对称美。

2. 设计、创作 运用轴对称原理,自主设计、创作美丽的轴对称图形。

1. 思考 通过今天的学习,小蝴蝶会带回去什么?

2. 延伸 从各个角度观察生活中的雨伞,寻求新的发现。

三年级数学第六单元教学设计篇九

学生在三年级教材里初步认识了分数,其中三年级(上册)教材是一个物体(或图形)的几分之一、几分之几,(下册)教材是若干个物体组成的整体的几分之一、几分之几。本单元继续教学分数的意义,涉及的有关知识比较多,大致分成五部分编排。

第36~37页分数的意义和分数单位。

第38~43页真分数与假分数,用分数表示两个数量的关系。

第44~46页分数与除法的关系,用分数表示除法的商。

第47~50页带分数,假分数化成整数或带分数,分数与小数相互改写。

第51~54页全单元内容的整理与练习。

编排的三道思考题都与本单元教学的知识直接有关,对理解分数意义和发展数感十分有益。

1 教学分数的定义,重点是建立单位“1”的概念。

把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。这是关于分数的描述式定义,单位“1”、平均分、表示一份或几份的数是定义里的三个主要内涵。相对于后两个内涵,单位“1”较难理解,是教学分数意义的关键,是必须突破的难点。

例1的教学分四步进行: 第一步用分数表示一块饼、一个长方形、一根表示1米的线条、一个集合的几分之一或几分之几,并结合图说说写出的每个分数的含义。引起对已有知识的回忆,感受被平均分的对象是非常广泛的,为建立单位“1”的概念积累具体的感性材料。第二步告诉学生,被平均分的一个物体、一个计量单位或一个整体都可以用自然数1来表示,通常把它叫做单位“1”。这里把“自然数1”作为建立单位“1”的台阶,出于两个原因: 首先是被平均分的对象都是“一个”,即一个物体、一个计量单位、一个集合,“一个”用自然数“1”表示,学生容易接受。先理解可以用自然数1表示,再提升成单位“1”,降低了认知的坡度。其次是体现了分数与自然数是有联系的,有利于后面教学假分数。第三步回答“大象”卡通提出的问题,再认各个分数的单位“1”是什么,使抽象的概念回归到具体实例中去。第四步揭示分数的意义和分数单位的含义,由于在前三步的教学中建立了单位“1”的概念,这一步的教学就顺理成章了。

“练一练”和练习六通过写分数和解释分数,进一步体会单位“1”和分数的意义。如“练一练”写分数时,要看懂每幅图里把什么看成单位“1”,平均分成几份,几份涂了颜色。思考和交流都是围绕分数意义展开的。又如练习六第2题在三个图里涂色表示23,从中体会看作单位“1”的对象不同,各次涂色的桃的个数也不同。第3题说分数的意义,是以后分析分数乘、除法实际问题数量关系的基本思路。由第(1)小题作了示范,要求说清楚把什么看作单位“1”,平均分成几份,另一个数量有这样的几份。第5题写成的两个分数有相同的单位“1”,由于平均分的份数不同,所以表示1份的分数也不同。通过这些练习,学生对分数意义的三个内涵会有整体的感受。

2 以分数单位为新知识的生长点,教学真分数和假分数。

在例2之前,学生接触的分数都是分子比分母小的分数。例2和例3陆续引出分子和分母相等以及分子比分母大的分数,然后把以前认识的分数和例题里新认识的分数进行比较、分类,得出真分数和假分数。

例2以分数单位为知识生长点,通过推理表示出假分数。先在三个同样的圆里涂颜色分别表示14、34和44,从已经认识的分数带出44,并通过说说每个分数各有几个14,理解44的意义,初步体会几个14是四分之几;再在图形中涂颜色表示5个14,利用“5个14是几分之几”这个问题,引导学生结合看图写出54,再次体会几个14是四分之几。理解1个圆只能表示4个14,表示5个14需要2个圆非常重要,不仅直观感受54的意义,而且有利于以后认识带分数以及假分数化成带分数的方法。

例3继续教学分子比分母大的分数,先出现三个分母都是5的分数,说说这些分数各有几个15,并在图形里涂颜色表示。这样的安排充分利用例2的基础,紧紧抓住分数的意义,让学生在说和画的活动中主动理解这些分数的意义。而且,学生经历四分之几到五分之几的扩展,对其他分母的分数意义也能理解了。

例2和例3先后出现七个分数,有分子比分母小的、分子比分母大的以及分子和分母相等的各种情况,这就具备了教学真分数、假分数的条件。教材的安排是先比较各个分数分子和分母的大小,再把七个分数分成两类,分别定义真分数和假分数。学生按分子、分母的大小,往往把七个分数分成三类,这是正常的现象。教学时只要把分子比分母大和分子与分母相等这两类分数合并起来,指出它们都是假分数。

练习七第1~4题是配合真分数、假分数的教学编排的。第1题在直线上指出表示各分数的点,是再次体会分数的意义。三小题里的分数分别表示几个12、几个13和几个15。依次读读各组的分数,找出其中的真分数和假分数,能巩固真分数与假分数的概念。看看表示真分数和假分数的点各在直线的哪一段上,初步体会真分数比1小,分子和分母相等的假分数等于1,分子比分母大的假分数大于1,进一步充实对真分数和假分数的认识。在解答第4题时,需要运用这些认识,才能比较每组两个数的大小。

3 用分数表示同类两个数量的关系,扩展对分数意义的理解。

分数的意义表达的是部分与整体的关系。如地球表面有71100被海洋覆盖,地球的表面是整体,把它看作单位“1”;被海洋覆盖的是其中的一部分,占整体的71100。事实上,分数的应用不局限于部分与整体关系的范畴,还经常用来表示两个同类数量之间的关系。让学生体会分数能表示两个同类数量的关系,扩展对分数意义的理解,有利于应用分数知识解决实际问题。这些正是例4、例5的编排意图。

例4利用直观的图画,引导学生把已有的分数概念迁移到新的情境中来。图画里一条红彩带平均分成4份,另一条黄彩带和红彩带中的一份同样长,很容易看出黄彩带的长是红彩带的14。教材要求学生表达得出14的思考,仔细体会其中的推理: 红彩带平均分成4份,其中的1份是它的14;因为黄彩带与红彩带的1份同样长,所以黄彩带的长是红彩带的14。学会思考是这道例题的教学要求,但不要机械套用某种语言模式。要抓住分数的意义,体会黄彩带与红彩带的长度关系。“试一试”是例题的延伸,红彩带仍旧平均分成4份,蓝彩带的长与红彩带里的3份同样长,是红彩带的34。从黄彩带的长是红彩带的14到蓝彩带的长是红彩带的34,学生初步体会到分数可以表示两个长度的关系。

例5在红彩带的下面画绿彩带,体会“绿彩带的长是红彩带的54”这个关系的含义。以画促思是例题的编写特点,如果让学生先猜一猜画出的绿彩带比红彩带长还是短,并说出理由,既能激起兴趣,又能引发思考。“试一试”把花彩带的长与红彩带的长相互比较,提出了两个问题。体会两个问题不同,辨清各是什么彩带与什么彩带相比,才能正确地用分数表示两个长度的关系。要联系图画,理解前一个问题是花彩带与红彩带比,把红彩带平均分成4份,花彩带的长有这样的7份。后一个问题是红彩带与花彩带比,把花彩带平均分成7份,红彩带的长是这样的4份。

练习七第5~8题配合例5的教学。这些题分别通过线段图、平行四边形、实物图、统计图呈现数量,能让学生感受生活中经常用分数表示数量关系。更重要的是深刻体会,解决一个数是另一个数的几分之几的问题,必须分析谁和谁比,找到作为单位“1”的数量。

4 通过操作活动感受分数与除法的关系。

例6教学分数与除法的关系,在“试一试”“练一练”里应用这种关系,用分数表示除法算式的商和计量单位换算的结果。

分数与除法的关系历来是教学难点。为了有效地突破难点,例题里安排两次分饼活动,让学生充分体验每人分得的块数是饼的块数分饼的人数,从丰富的感性材料中发现规律。第一次分饼活动,把3块饼平均分给4个小朋友。在表现场景的图画里,能清楚看到饼的块数比分的人数少,每人分得的饼不满1块;在列出的算式里,被除数小于除数,商比1小。这些矛盾激起学生动手分一分的愿望。交流两种分法,不仅得出每人分得34块的结论,还要在第一种分法中理解3个14块是34块,在第二种分法中理解3块的14是34块。这些是分饼活动里的数学问题,是两种分法的本质区别。理解数学问题,能使分饼活动在头脑中留下清楚的印象。第二次分饼,把3块饼平均分给5个小朋友。这次活动的特点是“想”出每人分得的块数,要在前一次分饼经验的基础上,通过每人分得3个15块或3块的15得出结果。

让学生观察3÷4=34和3÷5=35,从数学现象里发现规律,用两种形式表达分数与除法的关系。先用语言讲述和用数量关系式表示,在充分的交流中理解新知识。再写成字母组成的等式,并从除数不能是0,推断分数的分母不能是0,建立新知识的数学模型。两种表达形式,前一种具体详细,后一种概括简明,可以看成理解分数与除法关系的两个层次。

“练一练”第1题既用分数表示除法运算的商,又把分数改写成除法算式,使学生对分数与除法关系的理解更完整,掌握得更扎实。“试一试”和“练一练”第2题都是把较小计量单位的数改写成较大计量单位的数,在五年级(上册)教学小数知识时,曾经解决过这些实际问题。现在再次出现这些问题,有两点变化: 一是用分数与除法的关系,把较大单位的数写成分数;二是改写的范围不局限于进率是10、100或1000的长度单位和质量单位,还扩展到时间单位的改写。

练习八配合分数与除法关系的教学而安排,除了分数与除法相互改写的练习外,还结合分数的意义应用分数与除法的关系。第3题从1米平均分成3份到2米平均分成3份,结合图示用填空的形式引导学生理解2米平均分成3份,每份有2个13米,是23米。这样的思路,经常用来解决实际问题。第4题里的两个问题既不相同,又有联系。求每人分得这袋糖的几分之几,要把这袋糖看成单位“1”,平均分成5份,如果写成算式是1÷5=15。求每人分得几分之几千克,可以通过2÷5=25(千克)计算,也可以通过每人分得2个15千克,是25千克的推理得到答案。在分别解答两个问题后,要进行比较,看到它们都是平均分的问题,都用除法计算;由于问题不同,两个除法算式的被除数不同。在解答第5题时,联系已有的经验学生能直接写出得数。题目要求先填出得数,再根据分数与除法的关系列出算式,是让学生体会求一个数是另一个数的几分之几的问题都能用除法计算。在此基础上,第53页第10题就提出了列式求出答案的要求。

5 先特殊后一般,通过改写假分数,教学带分数。

例7和例8主要教学带分数的知识,包括带分数的概念以及假分数化成带分数的方法。假分数等于1或者大于1,分子是分母倍数的假分数都能化成整数,分子不是分母倍数的假分数能写成带分数。例7和例8按这样的思路编排。

例7把44、105和287化成整数,其中的44和105分别在第38页例2和例3认识假分数时出现过。在教学分数与除法的关系后,又可以通过除法4÷4=1和10÷5=2算得它们分别等于1和2。因此,把44和105化成整数学生能够独立进行,而且思路与方法应该是多样的。交流的时候,把貌似不同的方法在本质上沟通起来,如画图形表示105,在里能够看到,5个15是1,10个15是2,从而体会分子除以分母是比较简便的方法。287在教材里首次出现,把它化成整数是在44和105化成整数的基础上进行的,分子除以分母很容易得出等于4。通过三个假分数化成整数的实例,教材引导学生研究这些分数的分子与分母的关系,理解能化成整数的假分数都是特殊的假分数,它们的分子都是分母的倍数。

特殊的假分数都能化成整数,其他假分数呢?这是许多学生的质疑,教材适时教学带分数的知识。先告诉学生,分子不是分母倍数的假分数虽然不能写成整数,但可以写成整数和真分数合成的形式,即写成带分数。然后以43为例,讲了把它写成带分数的思路以及带分数的写法和读法。43写成带分数的思路是把它分成33和13两部分,33是1,1和13合成的数是113。结合数轴有利于学生理解改写的思路,体会43写成113是合理的,它们可以用数轴上同一个点表示。还为例8的教学作了铺垫。

例8教学假分数化成带分数的方法。教学过程分两步进行: 第一步让学生联系带分数的含义,借鉴43化成113的经验进行改写。无论是画图的方法还是推理的方法,都是把114分成84和34两部分,再把2和34合起来写成234。画图的方法比较形象,推理比较抽象,两种方法相结合最适宜多数学生,这一点可以在交流时实现。第二步通过除法计算改写,要在理解的基础上应用这种方法。联系第一步的推算经验,能帮助学生理解算理,11÷4商2表示从11个14里分出2个44(即84),并把它看成整数2;余数3表示还剩3个14。所以114是2和34合成的数,可以写作234。教材里没有讲带分数的整数部分和分数部分,假分数化成带分数的方法只在实例中体会和应用,不需要形成严密的文字形式的法则。

两道例题分别教学假分数化成整数和化成带分数,第47页“怎样把假分数化成整数或带分数”引导学生整理新的认知结构。再通过“练一练”,把123、85等四个假分数分别化成整数或带分数,体会两种情况都要用分子除以分母的计算,最终化成不同形式的数是假分数的分子与分母之间是否存在倍数关系而决定的。

练习九第1~6题配合例7和例8的教学,其中第2题写出假分数和改写成带分数都要根据图意,一方面体会假分数可以写成整数和真分数合起来的形式,有利于理解带分数的含义。另一方面体会分子除以分母是假分数改写成带分数的方法,从而巩固例8教学的知识。第4题直线上面方框里的假分数,要根据分数单位以及几个13是三分之几的思路填写;直线下面方框里的带分数要根据带分数的概念填写,如1和23合成123、2和13合成213。如果再把各个假分数的分子除以分母,就能使假分数化成相应的带分数或整数。编排这道题是让学生更好地体会假分数和带分数的意义以及相互联系。另外,直线上下的33和1、63和2、93和3、123和4这四组数,要从每组的两个数都用直线上同一个点表示,每组的两个数可以互相改写等方面理解同组的数大小相等。尤其要思考1、2、3、4分别化成3的方法,为独立解答第5题作准备。第6题在比较数的大小时,学生可以联系多种分数知识进行思考。要鼓励策略多样,如56和76可以想分母相同,分子小的分数小;可以想5个16比7个16少;可以想56小于1,76大于1……交流各种思路和方法,有利于知识的融会贯通,发展思维的灵活性。

还有一点需要指出,本单元只教学假分数化成带分数,不教学带分数化成假分数。因为小学教学里不进行带分数的四则计算,不需要带分数化成假分数。更主要的原因是,教学带分数是为了更好地理解假分数,因为假分数化成整数或带分数,容易感受假分数的分数值。体会数值的大小,是建立数概念不可缺少的。

6 优化小数与分数相互改写的教学。

例9教学把分数化成小数,从两个女孩比谁的彩带长的实际问题里提出比较05和34的大小的数学问题。相比较的两个数,一个是小数、一个是分数,联系已有的小数米相比,间接得到05和34的大小关系。这种比较策略在以前是少见的,现在特地选编在例题里。另一种是把34化成小数,先比较两个小数的大小,再得出34与05谁大、谁小。把不同形式的数变成相同形式,也是一种策略。分数化小数的方法是例9教学的数学知识,只要应用分数与除法的关系,把分子除以分母,商写成小数就可以了。这些对学生来说是不困难的。有些分数的分子除以分母的商是循环小数,如“试一试”里的56,教材中有“除不尽的保留三位小数”的指示。“试一试”选择925和56两个分数化成小数,让学生清楚地知道,有些分数能化成有限小数,有些分数只能化成无限小数。至于什么样的分数能化成有限小数,什么样的分数不能,暂时不要深入研究。

例10教学小数化成分数,要应用小数的意义。只要回忆起一位小数表示十分之几、两位小数表示百分之几、三位小数表示千分之几等知识,把小数写成分数是很容易的。教材考虑到小数意义是以前的教材里教学的,*例10的问题情境激活旧知识有困难。所以,安排了“象”帮助学生回忆。先对学生说“一位小数表示十分之几”,并把相应的0.3改写成310。然后让学生继续想两位小数、三位各表示几分之几,把0.13和0.213也改写成分数。

练习九第7~11题配合例9、例10的教学。第7题加强小数的意义,有利于把小数化成分数。第10、11两题都要比较一个小数与一个分数的大小,再解决问题的策略上讲,先把分数化成小数,再比两个小数的大小,或者先把小数化成分数,再比两个分数的大小,都是可以的。要让学生体会哪种方法简便些。一般情况下,把分数化成小数这种方法好些,因为接着比两个小数的大小很容易。如果把小数化成分数,接着比两个分数的大小,经常还要通分。再说,教材里还没有教学通分,采用化成分数的方法,暂时更不可取。与分数的知识,学生会有不同的思考。教材选择了两种典型的方法和学生交流,在教学基础知识的同时,发展解决问题的策略。一种方法是思考0.5米和3.4米的意义,凭数感进行比较。而且分别把0.5米、34米与1米相比,间接得到0.5和3.4的大小关系。这种比较策略在以前是少见的,现在特地选编在例题里。另一种是把3.4化成小数,先比较两个小数的大小,再得出3.4与0.5谁大.、谁小。把不同形式的数变成相同形式,也是一种策略。分数化小数的方法是例9教学的数学知识,只要应用分数与除法的关系,把分子除以分母,商写成小数就可以了。这些对学生来说并不困难。有些分数的分子除以分母的商是循环小数,如“试一试”里的56,教材中有“除不尽的保留三位小数”的要求。“试一试”选择925和56两个分数化成小数,让学生清楚地知道,有些分数能化成有限小数,有些分数只能化成无限小数。至于什么样的分数能化成有限小数,什么样的分数不能,暂时不要深入研究。

例10教学小数化成分数,要应用小数的意义。只要回忆起一位小数表示十分之几、两位小数表示百分之几、三位小数表示千分之几等知识,把小数写成分数是很容易的。教材考虑到小数意义是以前教学的,*例10的问题情境激活旧知有困难。所以,通过“大象”卡通的话帮助学生回忆。先对学生说“一位小数表示十分之几”,并把相应的03改写成310。然后让学生继续想两位小数、三位各表示几分之几,把013和0213也改写成分数。

练习九第7~11题配合例9、例10的教学。第7题加强小数的意义,有利于把小数化成分数。第10、11题都要比较一个小数与一个分数的大小,从解决问题的策略上讲,先把分数化成小数,再比较两个小数的大小,或者先把小数化成分数,再比较两个分数的大小,都是可以的。要让学生体会哪种方法简便些。一般情况下,把分数化成小数这种方法好一些,因为接着比两个小数的大小很容易。如果把小数化成分数,接着比两个分数的大小,经常还要通分。再说,教材里还没有教学通分,采用化成分数的方法,暂时不可取。

三年级数学第六单元教学设计篇十

教材通过创设一个运输蔬菜的情境,将口算除法的内容蕴含其中,十分自然地导出例1要解决的三个问题。教材通过呈现学生的不同算法,让学生在独立思考、合作交流中,互相启发、补充理解它们的算理,掌握口算的基本方法。

三年级班

20xx年月日

1、知识与能力:在实践操作活动中理解掌握一位数除法口算方法。

2、过程与方法:能正确、熟练地口算简单的除数是一位数的.除法。

3、情感态度与价值观:在与他人交流思维的过程中学会倾听与反思。

六、教学重点:能正确、熟练地口算简单的除数是一位数的除法。

七、教学难点:让学生理解、掌握几十除以一位数的口算方法。

八、课的类型:新授课练习

九、教学方法:观察法、交流法、讨论法、指导法、讲解法等

十、教学准备:小棒、口算卡片、小黑板等

十一、教学过程:

(一)、教学例1

1、出示60个小木棍。

观察:这里有几个小木棍?(学生数,并口答。)

2、如果要把这些小木块平均分成3份,你打算怎样分?怎样列式?每份有多少?(学生实践操作,得出结论。)

3、分好后在小组里交流一下自己分法。

4、如果不分小木棍,我们又怎样口算60÷3呢?

结合学生汇报,教师板书:

这样算6÷3=2

60÷3=20

5、试一试(学生独立完成)

80÷460÷2

(1)、口算写出结果。

(2)、说说口算方法。

(二)、教学例1第二个问题

1、出示第二个(2)问题

600÷3你能口算得出结果吗?

先独立思考,然后在组内交流一下口算的方法。

2、结合学生汇报,出图验证并板书:

这样算6÷3=2600÷3=200

3、试一试:

360÷6=640÷8=

(三)、教学例1第三个问题

1、出示第三个问题

240÷3你能口算得出结果吗?

先独立思考,然后在组内交流一下口算的方法。

2、结合学生汇报,验证并板书:

这样算24÷3=8240÷3=80

(四)、巩固练习:

1、口算下列各题,并说说口算的方法。

40÷5=640÷8=30÷3=360÷9=420÷7=

(五)、课堂小结:

在这堂课上你学会了什么?你有什么收获?

(六)、作业设计:

教科书第15页做一做1、2小题

十二、板书设计:

口算除法

(1)、赵伯伯平均每次运多少箱?

60÷3=20(箱)

(2)、王叔叔平均每次运多少箱?

600÷3=200(箱)

(3)、李阿姨平均每次运多少箱?

240÷3=80(箱)

十三、教学反思:

三年级数学第六单元教学设计篇十一

1.让学生经历发现问题、提出问题、解决问题的过程。学会用两步计算解决实际问题,并能列出综合算式。

2.通过解决具体问题,培养学生自主获取信息和解决问题的能力,初步了解同一问题可以有不同的解决方法,渗透分析问题的两种一般策略,分析法和综合法。

3.培养学生有意识地对解决问题的过程和策略进行回顾反思的意识与习惯。

4.让学生感受数学在日常生活中的应用,激发学习兴趣。

1.学会用连乘的方法解决相关实际问题。

2.初步体验分析问题的两种一般策略分析法和综合法,培养学生有意识地对解决问题的过程和策略进行回顾反思的意识和习惯。

主动获取信息运用数学知识解决问题,并能理清解题思路。

多媒体课件

一、导入。

师:同学们还认识我吗?喜欢数学吗?其实数学就在我们身边,今天李老师就和同学们一起走进生活,走进生活中的数学世界。

大家都逛过超市吧,我们一起去看看超市中有哪些数学问题?

(课件出示几幅超市画面,定格一张。4个信息,每盒有4个蛋挞,有6盒蛋挞,每个蛋挞3元,每个面包5元。)

你看到了哪些数学信息?

出示:每盒有4个蛋挞,有6盒蛋挞,?

1、师:你能根据这两个信息提出一个问题吗?同意吗?怎样解答?

师:为什么用乘法计算?

孩子们真能干!继续

师:如果要解决这个问题(课件出示),买一盒蛋挞多少钱?那必须得知道哪些信息?同意吗?可不可以补充有6盒蛋挞,每个面包5元这两个信息?为什么呢?(解决问题时要选择与问题相关联的、有用的信息)

根据学生回答把信息补充完整出示,(每盒有4个蛋挞,每个蛋挞3元)

那么我们补充的这个问题怎样解决?

为什么这样列算式?

学生答:因为是求4个3是多少,所以用乘法计算。

因为每个的钱乘以个数就能够得到总的价钱。是的,每个的价钱是物品的单价,个数是数量,一共的钱就是总价,我们通常用单价乘数量就可以得到总价。

师:同学们,你们真能干,已经能解决求几个几是多少的一步计算的乘法问题了,今天这节课我们继续来解决生活中的数学问题,板书:解决问题。

二、新授。

师:回忆一下,解决问题一般分哪几个步骤呢?(学生回答,师贴板书,

3个步骤阅读与理解,分析与解答,回顾与反思。)

师:接下来我们就按这个步骤来解决超市中售卖保温壶的问题吧。(课件出示题目)。请同学们拿出学习任务单,自主学习。

1.自主学习。

(老师巡视指导时追问,你为什么先求这个问题?方法的不同。对比它的分步列式和综合算式有什么不同呢?)

2.汇报交流。

师:哪位同学来把你的方法展示一下。

阅读与理解。(预设,学生说,在阅读理解这里我知道了已知信息是……,要求的问题是……)老师立即贴黑板。

师:12箱这个信息是在哪里找到的?我们在阅读理解时就要从文字或者图片中去寻找信息,图文结合。

分析与解答。

方法一:学生汇报,先算每箱卖了多少钱?

列式:12x45=540(元)

再求5箱一共卖了多少钱?

540x5=2700(元)

综合算式:12x45x5

=540x5

=2700(元)

答:一共卖了2700元钱。

同意他的做法吗?你有什么问题问问他呢?

师:你是根据怎样想到先算每箱卖多少钱的?

生答:我根据每个保温壶是15元,每箱有12个想到的,老是迅速贴思路图。师:又是怎样算到一共多少钱的?贴。

师:和他一样,想到这种方法的同学请举手,真棒。(学生回位,单子留下。)

师:同学们,看这个思路图,我们一起来说说这种方法是怎样解答的。根据已知信息每个45元,一箱12个,用乘法可以求出每箱多少钱(添乘号),然后再用每箱价钱和卖出了5箱这两个信息,又用乘法就能求到了一共卖了多少钱?(添乘号)

师:按照这样的思路好多同学用了分步计算解答和列综合算式解答这个问题,比较这两种解答方式有什么相同和不同?生答。

(相同:解答思路相同,都是先求一箱卖了多少钱,再求5箱一共卖了多少钱。不同:分步计算时用了2个算式来解答,综合算式解答是由两个一步计算的算式合并成一个两步计算的连乘的.综合算式。板书“用连乘”今天我们就是用连乘来解决问题的)

方法二:

师:除了先算每箱卖了多少钱这种方法外,还有其他方法吗?

学生汇报:先算一共有多少个?

列式:12x5=60(个)

再求5箱一共卖了多少钱?

60x45=2700(元)

综合算式:12x5x45

=60x45

=2700(元)

答:一共卖了2700元钱。

师:也想到这种方法的同学请举手。谁能照黑板上的方式介绍一下这种方法的思路吗?学生说老师贴,用每箱12个乘一共有5箱这两个信息可以求到一共有多少个保温壶,再用求到的数量乘每个保温壶的单价,就求到了一共的价钱。

1.这个题我们解答正确了吗?还要怎么办?(生:检查------)你是怎么检验的?(重算一遍)

我们做的第一种方法的结果和第二种的结果一样,可以互为检验。用两种方法都算出来,一共卖了2700元,证明做的结果是正确的。在解决问题时,我们可以用不同的方法来解决同一个问题。全班口答。

(课件出示两种方法)

2.师:刚才我们用了两种方法来解答这个问题,比较这两种方法有什么相同和不同呢?请在小组内说一说。学生小组讨论。

(相同:结果相同,综合算式都是用连乘来解决的。都用到了单价乘数量等于总价这个数量关系。第一种方法的第一步是用单价乘数量求到每箱一共卖的总价;第二种方法的第二步也是用单价乘数量求到5箱一共卖的总价)

不同:解题思路不相同。方法一是先算每箱卖了多少钱?方法二是先算一共有多少个?

解题思路不同找到中间问题就不同。解决问题时找准中间问题是关键,确定先算什么,再算什么,同一个问题可以用不同的方法来解答,用一个成语来说就是……殊途同归)

解决问题的方式方法多种多样,我们一起看看有关问题解决的微课。

看了微视频你想说点什么?

三、巩固练习。

1.小红坚持锻炼身体,每天跑2圈,跑道每圈长400米,他一个星期(7天)跑多少米?学生独立完成再汇报。

2.开放题。补充一个信息和一个问题,让它变成用连乘计算的问题,并解答。

张庄小学新盖16间教室,。每扇窗子安装8块玻璃,

老师巡视。汇报。

师:适时表扬,真能干,同学们真棒,今天学了新知识的连乘问题就知道运用了,我太佩服你们了。

四、全课总结。

师:通过这节课的学习你学到了什么?还想学什么?

师:是的,解决问题的方法多种多样,只要认真分析,理清思路,就能解决更多的其他问题,成为解决问题的高手。

三年级数学第六单元教学设计篇十二

教学课题:

《长方形和正方形的周长》

教材内容:

教学目标:

知识与能力:

经历探索长方形和正方形周长的计算过程,并掌握长方形和正方形的周长计算方法。

过程与方法:

使学生通过观察.测量和计算等活动,在获得直观经验的同时发展空间观念。

情感态度与价值观:使学生在学习活动中体会现实生活中的数学,发展对数学的兴趣,培养交往.合作的探究的意识与能力。

教学重点:

探索掌握长方形和正方形的周长的计算方法。

教学难点:

运用周长计算方法解决具体问题。

教具学具:

多媒体课件、不同形状的卡片、尺子等测量工具。

教学方法:

教法:遵循“激-----导----探---放”的原则创设教学情境,通过课件演示,交流感受、互动合作等方式教学。

学法:“玩中学”、“趣中练”,以小组合作的形式贯穿全课,充分应用分组合作,共同探究的学习模式。

教学过程

一、设疑激趣,引入新课。

在动物王国里,有对有趣的好朋友。它们是小灰兔(显示)和小黄狗(显示)。它们俩都说自己跑得快,这不今天就来比赛来了。小灰兔围着这个花坛跑一圈(动画演示),小黄狗则围着这片宁静的湖面跑一圈(动画演示)。结果小黄狗跑得慢,可是它却不服气,说:“不公平,因为我跑得路远”。小灰兔却说:“不对,不对,我跑得路才远呢!因为长方形还比正方形长呢!”小黄狗说:“我跑的正方形还比长方形宽呢!” 它们吵了起来。

揭题:你想得真快!老师非常欣赏你对数学的敏感。今天我们就来研究长方形与正方形的周长问题。(揭题出示)

二、合作学习,探索新知。

(一)长方形的周长。

1.提问:什么是周长?周长指的是哪里?举例说明。

你们有什么好办法能知道这两个图形的周长?

(生可能回答:用绳子绕一圈,量一量绳子的长度;先量出每一步的长度,看看走了多少步,一乘就知道了;量出长.宽各是多少,再计算。)

2.提问:老师采用了你们的办法,量出了长方形的长是 8米(显示),宽是4米(显示),请你们帮它来算一算这个长方形的周长是多少。可以独立思考,也可以小组讨论完成。

3.学生用自己的方法计算。

4.引导:从同学们的脸上,我可以看出你们肯定有成果了,谁愿意来展示一下。

5.学生利用实物投影展示。要求说清这样做的道理。

教师利用课件形象直观的演示可能有这三种:

(1)8+4+8+4=24(米)这是把长方形的四条边一条一条加起来。依次相加求周长。

(2)8×2=16(米),4×2=8(米),16+8=24(米)。根据长方形对边相等的道理,用2条长的和加2条宽的和 求周长。

(3)8+4=12(米)12×2=24(米)。根据一条长加一条宽的和就是长方形的一半,那么两个(长+宽)的和就是长方形的周长了。

有的学生还想出了第4种,第5种方法……

6.比较这几种不同的算法。

接着,我让学生比较这几种算法,哪种方法最简单?通过比较,找出区别,暗示性的让学生注意策略的最优化。

7.举例应用知识:黑板4.1 课桌100.40 打印纸30.20等。

(二)正方形的周长

长方形的周长已经解决了,那正方形游泳池的周长该怎么算呢?我们来看,当长方形的长与宽相等时,就变成了正方形,(件演示长方形变为正方形)正是小黄狗跑的游泳池的图形。已知正方形的边长是6米,四条边都相等,那算出他的周长就很容易了。

学生汇报。说说道理,四边都相等,可以快速的求出6×4=24米,运用 边长×4来求正方形的周长。

(三)小节

通过开始的猜想,然后我们用多种方法验证,最后得出结论,原来,两人走得一样多。

三、知识应用、深入研究。

利用课件出示一系列丰富多彩的活动:

活动一、计算小兔子长方形奖状框的周长。巩固了学生对长方形周长计算的应用能力。

活动二、计算小兔子正方形手帕的周长。巩固了正方形周长的计算方法。

活动三、求菜地篱笆的长。一块长方形菜地,一面靠墙,三面围篱笆,求篱笆的长。课件出示长方形菜地图。

活动四、求不规则图形的周长。领奖台正面这样一个不过则的图形该怎样求它的周长呢?学生思考交流,让学生注意看,好好想,课件演示图形变化过程。当图形变成长方形的时候,学生们计算图形周长。

四、知识拓展、动手实践。

动手测量.计算长方形的周长必须知道长和宽的长度,那正方形呢?这儿有几个长方形和正方形的卡片,现在请你用量一量、算一算的方法先动手量出需要的数据,再计算出它的周长。

(生拿出准备好的长方形卡片、铅笔、记录纸、尺子或三角板等进行操作)

五、总结回顾,评价反思。

谈话:今天这节课你学得开心吗?能把你今天的收获与大家一起分享吗?

六、布置作业,课外延伸。

回家后请选择你喜欢的物体,比如数学课本,测量并计算出它的面的周长。

三年级数学第六单元教学设计篇十三

教学目标:

使学生在理解算理的基础上,初步学会一位数除两位数,商是两位数的笔算方法;

进一步培养学生的计算能力,动手操作能力和初步概括能力。

引导学生根据具体情境合理进行计算,培养学生良好的思维品质和应用数学的能力。

教学重点:

一位数除两位数,商是两位数的笔算方法。

教学难点:

让学生理解算理,掌握除法算式的演算格式。

教学过程:

一、创设情景,导入新课

1.沟通旧知,建立联系。从树上摘苹果,课件出示苹果树图,看谁摘得最快?

600÷627÷3240÷8160÷43)99)37

[设计意图]:通过回忆旧知,沟通旧知,建立联系自然引入本节内容。

2.师:同学们,现在是什么季节?春天万物复苏,春暖花开,这是一个植树的好季节。(课件出示春天图,再出示同学们举着队旗走在山坡上去植树的情境图),让学生说图意。

3.引导观察:图中告诉我们哪些信息?根据这些信息可以提出什么问题?怎样列式?(根据学生的回答师板演)

生:三年级平均每班植树多少课?42÷2=

4.师:42÷2等于多少(生:42÷2=21)

你是怎么想的?

生:分小棒的方法,摆好42根小棒,把四个十和两个一平均分成两份。出示图片:

生:口算40÷2=202÷2=120+1=21

同学们会口算出答案,那么怎样用竖式计算呢?(揭示课题)板书:一位数除两位数。

[设计意图]:从学生熟悉的、感兴趣的植树情景引出新课,让学生感受到数学来源于生活,数学与生活有着密切的联系,从而激发学生学习数学的兴趣,体会到学习数学的价值,进而树立起学好书学的信心。

二、自主探索,领悟算法

(1)探索竖式:用竖式计算,你们会吗?试试看学生独立计算后,反馈

第一种第二种

2121

2)422)42

424

02

2

(2)比较一下,你喜欢哪一种算法?说说理由。

学生发表意见:(学生多数会喜欢第一种算法,简单、竖式短,很少有学生喜欢第二种也就是课本例题的形式)

师:其实第二种方法有自己的优势,它能让大家很清楚地看出计算过程。

(3)师边用电脑演示边讲解:笔算除法的计算顺序和口算一样,要从被除数的最高位除起。请哪位用第二种方法做的同学上来讲解一下。(师配合补充)

[设计意图]:通过学生自主提出问题,解决问题,让学生经历与他人交流各自算法的过程,感受学数学、用数学的乐趣,同时,树立选择最优方法的意识。同时在一定程度上发展了学生提出问题和解决问题的能力。在设计时本着“教为主导,学为主体”的原则,操作形成表象,动脑想算理,动口说算法,及时规范竖式的写法、总结算法,从而突出重点,突破难点。这样安排既体现知识的产生过程,又符合学生的思维特点。利用操作、演示、归纳、概括等方法揭示具体到一般的规律,完成由形象到抽象思维的过程。

三、应用新知,解决问题

1、p20做一做

2、请你当小法官,别判错。

14221

2)283)694)84

2684

890

89

00

3、买作业本:小红去买了3本同样的作业本,一共花了3元6角,每本作业本多少钱?

[设计意图]让学生在获得新知识的基础上,获得成功的体验。好的学生能力得到充分的发展,学习相对差一点的同学也能够掌握本节课的重点知识。辨析练习有利于突破教学难点,预防学生计算时出差错,让学生运用刚学到的计算方法来分析、判断和推理。安排自选练习,既培养和提高学生的竞争意识,又使大多数学生有自我表现的机会,增强练习兴趣,提高教学效率。

四、梳理知识,总结升华

同学们,这节课你学得开心吗,你都有哪些收获?

[设计意图]对本节课学习的知识进行简单的回顾整理,形成基本的知识网络,整理学习思路,掌握用除法竖式计算的方法,为后面的学习打好基础。

三年级数学第六单元教学设计篇十四

本节课是部编版小学三年级下册第六单元例8的教学内容《归一解决问题》。本节课是在学生已经学习了连乘、连除的基础上,进一步提高学生分析,解决问题的能力,为更好的学习解决问题打下基础。

根据学生已有的生活经验,通过观察情境图,画出数量关系,弄清数量间的关系,找到解题办法。因为之前的学习,学生已系统学习了两位数乘两位数和两、三位数乘一位数或除以一位数的计算方法,为本节内容奠定了基础。在此基础上利用所学知识解决问题,一方面可以巩固已学的知识,另一方面能将所学的知识进行综合、运用、解决问题,提高学生综合能力。

1.学会用乘除两步计算解决含有“归一”数量关系的实际问题,进一步提高用综合算式解决两步计算问题的能力。

2.经历用图形表征题意、分析数量关系的过程,能沟通图形与算式的联系,增强画图策略的意识和能力。

3.通过对比辨析初步建立归一问题模型,增强比较归纳能力,感受数形结合思想、函数思想和模型思想。

教学重点

经历用图形表征题意、分析数量关系的过程,能沟通图形与算式的联系,增强画图策略的意识和能力。

教学难点

通过对比、辨析,初步建立归一问题模型,增强比较、归纳能力,感受数形结合的思想和模型的思想。

自主探究、合作学习法;答疑引导法;数形结合法。

(一)导入新课

1.一个面包4元,我要买8个面包,一共需要多少元?

2.先出示:我有56元钱能买几个水杯?

谁能算出来?为什么不能算出来?

预设:缺少一个条件。

再出示(一个水杯8元)

(二)创设情境

1.出示超市图片,引入情境

a:从图上知道了哪些数学信息?

(3个盘子18元,要买8个盘子)

b:你能把问题补充完整吗?

(买8个这样的盘子需要多少钱?)

c:抽学生把题目完整的说一遍。

2.课件出示题目:3个盘子18元,我要买8个这样的盘子,需要多少钱?

3.质疑:要买8个盘子,能直接算出来吗?

(三)合作探究

学法指导:

1.独立尝试用画图等方式表示题目中的数学信息和数学问题。

2.这道题能一步解决吗?如果不能,应先算什么?再算什么?请写出算式。

3.完成后和小组成员交流你是怎么画图的,怎么列算式的。

【学情预设】

预设1:画的实物碗的示意图。

预设2:画圆圈图。

预设3:画线段图。

1.展示圆圈图。

师:你们能看懂他画的是什么意思吗?他的这幅图有没有把数学信息和数学问题表达完整呢?那你对他的图有没有建议。

师:那你能说一说他的算式是什么意思吗?

2.展示线段图

师:为什么每一段都画的同样长?你能在题中找到对应的话吗?

教师相机提问:18÷3=6(元)求的是什么?

提问:为什么要先求出一个盘子的价格呢?

学生:问题要求8个盘子的价格,所以必须先求出一个盘子的价格。

3.教师相机将学生的意图总结成板书。优化解题思路。

师:结合图示,怎样能表示清楚题目所要求的问题呢?

生:(板书)

18÷3=6(元)一个碗的价钱?着重提问!

6×8=48(元)求多个碗的价钱。

师:我们把一个碗的价钱也叫作“单价”,8个碗叫数量,最后算出的是“总价”。

师:还有没有不同的列式方法?

预设:列综合算式来解答。

18÷3×8

=6×8

=48(元)

师:第一步先算的是什么?再算什么?

生:先算一个碗的价钱。这件事很重要!

师:分步计算和综合算式有什么相同点和不同点?

师生共同总结:分步计算和综合算式虽然形式不一样,但是表达的意思是一样的。

4.(反归一)想一想:

18元可以买3个碗,30元可以买几个同样的碗?

(1)学生自主解答。

(2)交流展示。

【学情预设】预设1:先求出一个碗的价格,再算30元可以买几个同样的碗(分步列式)。

18÷3=6(元)

30÷6=5(个)

预设2:先算出一个碗多少钱,再算30元可以买几个同样的碗(列综合算式)。

30÷(18÷3)

=30÷6

=5(个)

师:为什么18除以3要加小括号?(要先算一个碗多少钱,也就是先算18÷3,而18÷3在右边,所以要加小括号。)

对比一下这个问题与刚才的问题,有什么相同的地方和不同的地方呢?

学情预设:

生1:相同点,第一步都是用除法求出每个碗的价钱。

生2:不同点,求总价要用乘法,求单位数量就要用除法

(四)拓展延伸

对比

1.课件展示对比两个问题的解法。

讨论提示:4人小组讨论。

a:仔细观察两题的解题方法,有什么相同的地方?有哪些不同的地方?为什么会不同?

b:这两个问题都用了两步来计算,你觉得哪一步最关键?

2.学生汇报。学生边说,边课件出示。(2-3人说清楚即可)

(引导学生观察发现两种问题所用的解决方法的区别)

3.总结:这两个问题都用了两步来计算,你觉得哪一步最关键?(第一步,先算出1份是多少)

课件出示:这样的题关键是要先算出一份是多少。

预设:知道了3个碗是18元,但不知道一个碗的价格,都是要先算出一个碗的价格,才能计算后面的问题,这就是含有“归一”数量关系的实际问题问题。

预设:第一道题是在求“买8个同样的碗,需要多少钱”也就是求8个6是多少?是求“总价”。而第二道题是在求“30元可以买几个同样的碗”也就是在求30里面有几个6?是求“数量”。但不管我们要解决 什么问题,都要先求出一个碗的价钱。

4.买6个碗需要多少钱?

生1:一个碗6元,6个碗36元。

生2:3个碗可以看成“一份”,6个碗就是有这样的2份!所以18+18=36元。

预设:着重点出“1”可以是一个,也可以是一些。

(1)一个碗6元,买9个同样的碗需要多少钱?

(2)一个碗6元,买10个同样的碗需要多少钱?

(3)一个碗6元,买20个同样的碗需要多少钱?

(4)一个碗6元,买100个同样的碗需要多少钱?

预设:无论条件如何改变,只要我们知道了“一个碗多少钱”,我们就可以求出9个、10个、20个、100个……甚至更多个碗需要多少钱?(知道了“1”,就能知道更“多”)

(买到的碗越多,总价越多,但不变的是什么?单价、一个碗的价钱)

(五)检测达标

1.学生独立完成。并汇报。

小林读一本故事书,3天读了24页。

(1)照这样的速度,7天可以读多少页?

(2)照这样的速度,全书64页,几天可以读完?

2.分别抽4名学生上台投影汇报自己的做法。其它同学做裁判。

(1)和(2)哪个题最好算?为什么?

(六)总结全课

1.通过今天这节课你学到了什么新的知识?

这样的题关键是要先算出一份是多少,接着,如果让我们算几个几是多少就用乘法,如果让我们算一个数里面有几个几就用除法计算。

2.把一个、一条,一天看做一份,就是先求先求一份是多少,再求几份是多少。像这些问题就是我们数学上常说的归一问题。(板书:归一问题)

【本文地址:http://www.xuefen.com.cn/zuowen/4664797.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档