优质高二数学心得范文(13篇)

格式:DOC 上传日期:2023-10-29 03:36:15
优质高二数学心得范文(13篇)
时间:2023-10-29 03:36:15     小编:HT书生

总结是一个回首过去、展望未来的过程,可以帮助我们更好地成长和发展。总结是对过去的概括和反思,写一篇完美的总结需要我们准确地把握重点和关键。生活中没有永远的不变,我们应该学会适应变化,保持积极的心态。

高二数学心得篇一

【自主梳理】

1.函数单调性的定义:

(1)一般地,设函数的定义域为a,区间.

如果对于区间i内的任意两个值,当时,都有_______________,那么就说在区间i上是单调增函数,i称为的___________________.

如果对于区间i内的任意两个值,当时,都有_______________,那么就说在区间i上是单调减函数,i称为的___________________.

(2)如果函数在区间i上是单调增函数或单调减函数,那么就说在区间i上具有___________性,单调增区间或单调减区间统称为____________________.

2.复合函数的单调性:

对于函数如果当在区间上和在区间上同时具有单调性,则复合函数在区间上具有__________,并且具有这样的规律:___________________________.

3.求函数单调区间或证明函数单调性的方法:

(1)______________;(2)____________________;(3)__________________.

【自我检测】

1.函数在r上是减函数,则的取值范围是___________.

2.函数在上是_____函数(填增或减).

3.函数的单调区间是_____________________.

4.函数在定义域r上是单调减函数,且,则实数a的取值范围是________________________.

5.已知函数在区间上是增函数,则的大小关系是_______.

6.函数的单调减区间是___________________.

【例1】填空题:

(1)若函数的单调增区间是,则的递增区间是_________.

(2)函数的单调减区间是________________.

(3)若上是增函数,则a的取值范围是_____________.

(4)若是r上的减函数,则a的取值范围是_________.

【例2】求证:函数在区间上是减函数.

【例3】已知函数对任意的,都有,且当时,.

(1)求证:是r上的增函数;

(2)若,解不等式.

1.函数单调减区间是_________________.

2.若函数在区间上具有单调性,则实数a的取值范围是______.

3.已知函数是定义在上的'增函数,且,则实数x的取值范围是_________________________.

4.已知在内是减函数,,且,设,,则a,b的大小关系是_________________.

5.若函数上都是减函数,则上是______.(填增函数或减函数)

6.函数的递减区间是________________.

7.已知函数上单调递减,则a的取值范围是_________.

8.已知函数满足对任意的,都有成立,则a的取值范围是_________.

9.确定函数的单调性.

10.已知函数是定义在上的减函数,且满足,,若,求的取值范围.

错题卡题号错题原因分析

高二数学教案:数的单调性教案(答案)

一、课前准备:

【自主梳理】

1.(1),单调增区间,,单调减区间,

(2)单调,单调区间

2.单调性,同则增异则减

3.(1)定义法(2)图象法(3)导函数法

【自我检测】

1.2.增3.和4.

5.6.

二、课堂活动:

【例1】

(1)(2)(3)(4)

【例2】证明:设

【例3】(1)证明:

(2)解:

三、课后作业

1.2.3.4.

5.减函数6.7.8.

9.解:定义域为,任取,且

10.解:

高二数学心得篇二

在我们的学习生涯中,数学一直都是一个难点。尤其是高中数学,更是难上加难。所以,我很高兴有机会参加了一场新高二数学讲座。在这场讲座中,我学到了很多新的技巧和方法。下面,我将与大家分享我的心得和体会。

第二段:讲座内容

这次讲座内容包含了很多实用的知识点,例如:三角函数、代数式简化、平面几何等。其中,最让我受益匪浅的就是三角函数。老师用简单明了的方式让我们学会了如何解决一些三角函数的难题。而且,老师还带领我们用多种不同的方法求解同一个问题,这让我明白了数学中有很多不同的解法,而且每种解法都有其适用的情境。

第三段:思维方法

在讲座中,老师特别强调了求解问题的思维方法。对于较难的题目,要先将它转化为易于解决的问题,才能够有效地解决它。此外,老师还鼓励我们多做题目,并注重总结归纳。只有这样才能提高我们的数学水平,和解决数学问题的能力。这同样也适用于其他学科的学习上。

第四段:团队协作

在讲座中,我更深刻地意识到了团队协作的重要性。因为,我们在当中分为了数个小组协作完成题目。这次体验让我们感受到了有效团队协作的力量。在小组讨论的过程中,我们彼此之间拓展了自己的思路,找到了不同的解法。这让我感受到了团队协作的魅力,以及这种协作方式能够激发更多的灵感。

第五段:总结

在这一场讲座中,我不仅学到了很多重要的数学知识,也领悟到了团队协作与解决问题的重要性。这让我更加自信地面对未来的学习和生活。同时,在以后的学习中,我也会更多地运用这些知识和技巧,以达到更好的学习效果。感谢这次讲座,让我受益匪浅。

高二数学心得篇三

高二数学在很多同学的心目中往往是一门比较难的学科,但是经过一年左右的学习和积累,我对数学的认识也渐渐深入了解,不再对它觉得害怕与陌生。在此,我想分享我高二数学的一些心得和体会。

第一段:“练习是关键”

高二数学学习需要做很多的练习,对于练习,我个人感觉记得住公式,理解定理是一方面,真正掌握它,只有不断地去练习,做题才能够达到的。而且,有时候,各种不同的题型和问题思路也会有很大的差异性,只有去多做题,才有机会遇到或者想到不同的思路,从而让我们更好的理解、掌握这堂课。

第二段:“坚定信心”

数学是门有规律、有条理、有逻辑性的学科,但并不代表这门学科对于每个人而言,都简单易懂。可能有些时候,我们会遇上一些很难的问题,自己找不到方法。所以,我深深地理解到,不管遇到什么困难,我们都不能放弃,不能泄气,只有坚定信心相信自己,越克服困难,才能在学习上走得更远。

第三段:“理解是核心”

要对数学有一个更加深入的认识和掌握,理解定理和公式是至关重要的。培养自己对于每个知识点的理解和逻辑思维的训练,才能在做题中迅速定位并解决问题,这也是自己学习好不好的重要一环。数学学科中的很多知识点相互都存在着联系,理解之后我们也能举一反三,各种不同方面的题型做起来就会更加得心应手。

第四段:“难点往往就在平凡之中”

有的时候,看似很简单的问题,用一般的思维方法会觉得很容易,却会忽略掉其中的细节方面,从而导致感性的思维跟不上它的逻辑。因此,对于数学学科而言,我们必需要时刻保持高度集中的精力,正如有些难点往往就隐藏在平凡之中。

第五段:“教学和实践完美结合”

学习是需要一定时间和功夫的,在这个过程中,老师的教学和学生的独立思考,以及实践的结合相辅相成很重要。和老师积极互动,主动向老师请教困惑,加强自己的掌握和理解,是提升自己水平的一个有效途径。同时,多参加各种大大小的数学竞赛及比赛,拓宽知识视野,取得更多成功,也才能更好的进步。

通过这一年的学习和积累,我认识到数学是个有趣的学科,也感悟了成功的喜悦,失败的挫折和艰辛,这些都是人生路上很重要的感悟。我也会在今后的学习中,更加踏实,持之以恒更加努力,去攀登数学知识的高峰,以此来认识自己,在不断进步的过程中去追寻自己的精彩。

高二数学心得篇四

1.掌握二项式定理和性质以及推导过程。

2.利用二项式定理求二项展开式中的项的系数及相关问题。

3.使学生能把握数学问题中的整体与局部的关系,掌握分析与综合,特殊和一般的数学思想。

教学重点;二项展开式中项的系数的计算。

1、复习引入:

1.的展开式,项数,通项;

2.二项式系数的四个性质。

2、例题

1.二项式定理及二项式系数性质的简单应用:

例1(1)除以9的余数是_____________________

(2)=_______________

a.b.c.d.

(3)已知

则____________________

(4)如果展开式中奇数项的系数和为512,则这个展开式的第8项是()

a.b.c.d.

(5)若则等于()

a.b.c.d.

小结1.(1)注意二项式定理的正逆运用;

(2)注意二项式系数的四个性质的运用。

2.二项展开式中项的系数计算:

例2(1)展开式中常数项等于_____________.

(2)在的展开式中x的系数为()

a.160b.240c.360d.800

(3)已知求:

小结2.(1)局部问题抓通项;

(2)整体系数赋值法。

三、课堂练习

(1)展开式中,各系数之和是()

a.0b.1c.d.

(2)已知的.展开式中的系数为,常数的值是_________

(3)的展开式中的系数为______________-(用数字作答)

(4)若,则

a.1b.0c.2d.

四、课堂小结

五、作业

高二数学心得篇五

作为一名新高二的学生,我有幸参加了学校举办的数学讲座。通过这次讲座,我不仅学到了新的知识,而且也对数学这门学科有了更深层次的理解。以下是我对这次讲座的心得体会:

第一段:引言

数学一直以来被人们认为是一门枯燥乏味的学科。但是通过这次讲座,我发现数学是一门内含着深厚哲学思想的学科。它不仅包含着几何、代数等基础知识,而且也涉及到一些高深的概念和定理。在这次讲座中,我学到了很多在课堂上很难听到的知识,这些知识不仅能够让我更好地理解数学,还能够帮助我更好地应对高二的学习。

第二段:感悟

这次讲座让我最感慨的是老师的讲课方式。他用通俗易懂的语言讲述了数学中的各种概念和定理,使得我这个数学不太好的学生也能够轻松理解。同时,在讲课过程中,老师也穿插了很多生活中的例子,让我真正感受到数学与我们的生活息息相关。这种讲课方式不仅适合我这种数学基础比较弱的学生,也可以帮助其他学生更好地理解数学。

第三段:收获

通过这次讲座,我不仅了解到了数学的基本概念和公式,更重要的是从老师的例子中发现了对数学思维的启发。数学中的定理和公式本身是没有任何意义的,真正重要的是应用它们的方法和思维方式。这种应用方式不仅可以在数学中发挥作用,还能够应用到其他科学领域,从而提高我们的综合能力。

第四段:态度

数学是一门耗费时间和精力的学科,需要我们付出更多的努力。我的体会是,在学习数学时,我们要有耐心和恒心,不断地思考并不断地理解。同时,我们也要把数学学习当作一种乐趣,享受其中的挑战和乐趣。只有如此,我们才能够更好地掌握数学的知识,提高自己的学业成绩。

第五段:总结

总之,这次讲座给我留下了深刻的印象。在未来的学习过程中,我将更努力地学习数学,不断地巩固和扩展自己的知识储备。同时,我也会尝试运用数学中的思维方式,将其应用在其他的学科中。最后,感谢这次讲座给我带来的启发和收获,我会继续学习、探索数学的无穷魅力。

高二数学心得篇六

数学一向被视为是一门难度大、全靠磨练及背诵的科目,但事实上,数学更多的是一种思维方式。自我在高二数学学习的一年中,虽然有些时候会遇到挫折,但不可否认地,我对于数学的热爱也是因为它所激发出的思考与求证的乐趣。在这篇文章中,我将会分享我的数学学习和心得体会,并诉说我在学习过程中的感悟。

第二段:学习过程中遇到的麻烦

曾经,在我学习数学的过程中,遇到了很多意料之外的难题。有时候当我思考题目的时候,会被深奥的公式或是无从下手的题目难倒。有时候看着同班同学很轻松地处理出这些问题,我便会被沮丧感所困扰。这种感受是很正常的,每个人都会遇到,但是,我发现,通过不断的阅读、自我思考或是说出自己对此问题的思考和理解,也能够得到教师或同学的帮助。

第三段:通过挫折中成长

通过不断地反思和同学之间的交流,我逐渐学会了更好的从各个角度来审视问题。例如,在一次模拟考试中,我错过了一题关键的一步,导致解题到最后陷入死循环。当时我兴致尽失,既然都被这道题难住了,还有什么用学。但过后,我回想了这次考试,看到了自己错了的地方,并重新审视了这个问题。后来,我马上就能够解决类似的题目,这让我感到非常的惊喜:原来我的进步可以来自于失败!

第四段:多种学习方式的探索

学习数学并不仅仅局限于课堂上跟着老师变换符号。在高二的数学课程中,我了解到有许多方法也能够提高我对于数学的理解和掌握。例如在做一些证明题时,我可以从反证法、数学归纳法、演绎法等多种方法中选择。同时,我也学会在班内组织讨论和结伴学习,这有助于我在问题解决中得到同学的互助。

第五段:结语

随着对于数学的探索和学习,我开始意识到数学学习的快乐并不仅仅源于运算和计算,同时来自于它所带来的思考和领悟。在高二的数学学习中,我学习到的不仅是数学的知识和数学的技术,更多的是数学带来的思维方式和学习的方法。我希望这些心得体会也能够帮助到其他正在学习数学的同学们。

高二数学心得篇七

新课程标准的实施,无疑是基础教育的一场革命。新课标下数学教学过程是教师组织和引导学生主动掌握数学知识,发展数学能力,形成良好的个性心理品质的认识与发展相统一的过程,而教师的“教”和学生的“学”的双边活动要以教材为中介,教材把他们紧密地联系在一起。教材的编写在一定程度上决定着教师的“教”和学生的“学”法。

新课程标准的观念强调我们教师要变“教教材”为用“教材教”。在传统教育观念下所编写的旧教材,过于注重知识编写,其逻辑严密、高度抽象概括、知识环环相扣,使学生感到惧怕。在教材的“指引”下教师把知识源源不断地硬塞给学生,然后通过强化训练而达到学生对基础知识的掌握,而过去历来学生数学期末考试平均分均不合格,大大打击了学生学习数学的兴趣和信心。而在新课标的观念下所编写的新教材将数学知识形成的基本过程和基本方法贯穿始终,教师要善于发掘出新教材优点,转变教育观念,培养出适应时代要求的新型人材。

我本人的教学,主要从新教材具有的几个突出的优点着手,进行教学。

“教学课程标准指出,教学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已在的生活经验出发。数学教材每一章开始,都是一个典型的例子引入,体现整章的核心,而每节课开始,也安排生活中的例子。在学习习近平面直角坐标系时,教材创设电影院的情境。在电影院内如何找到电影票上所指的位置?此时学生七嘴八舌地说出自己的意见,有的说先看第几排再看第几号,而有的同学说还要看是几楼(因为有的电影院是两层甚至是多层的)这是每一位同学都很熟悉的',即使平时考试成绩很差的同学也不陌生,能充分引起学生学习的愿望和增强学好数学的信心。此时教师作适当的鼓励,学生的热情就更高了。并顺势引出,在电影票上”6排3号“与”3排6号“中的”6“和含义有什么不同呢?从而导出新知识,如果将”8排3号“简记作(8,3),那么”3排8号“如何表示呢?(5,6)表示什么含义呢?这样的引入学生学起来不容易混淆,应用不着教师费心的讲解了,只需作适当引导,归纳就可,把学习的自主权还给学生。

又如,学习旋转知识中,举出生活中钟、车的方向盘等,观察它们在转动过程中其形状、大小、位置是否发生改变,从而导出旋转的概念,化抽象为直观,教师点出有的知识虽然抽象但有可直观理解,消除学生对几何知识的恐惧心理。

教师按照教材编排上述的内容留给学生思考的时间和空间,充分体现教师组织学生主动获取、掌握数学知识,发展学生的数学家思维能力。如学习习近平行线之间的距离相等时,教材设计了”想一想“在笔直的铁轨上,夹在两根铁轨之间的枕木是否一样长?教师不要急着下结论,给出定理,而是组织学生展开思考。有的学生认为不一样长,因为当铁轨的宽度不一样,那么夹它们之间的枕木就不一样长了;有的同学则反搏说,铁轨是让火车行走的,而火车的两边的铁轮位置是固定不变的,也即它们的距离是不变的,要是铁轨宽度不一样,火车就会出轨造成事故。此时课堂成了学生的辨论台,然而教师作适当引导,题目的前提是在笔直的铁轨上,不用考虑转弯时的变化,学生一点即明。同学们开心的笑了”哦!“,”我早说了吗!“等声一遍,再转入下面的学习就从容多了,也体现了教师组织、引导学生主动获取和掌握知识。

又如”议一议“:举出生活中的几个实例,反映”平行线之间的垂线段处处相等“的几何事实。教师组织学生分组讨论,让学生合作交流,调动学生学习数学的积极性,让每个学生都有机会发表自己的意见,培养学生的创新精神。并且学生举出多种多样的例子,丰富了学生的知识面。

三、教材的实例多、实物图多。化深奥为浅白,化抽象为直观,降低了教师”教“的难度

传统的数学教材即使是学习成绩很好的同学也产生这样的疑问”我们为什么要学习这么深奥的数学呢,它们有用吗?“而现在教材举也很多实际的例子,不用教师费心说,学生看题或在学的过程中已感知到数学在我们生活中发挥着重要的作用。如九年级下册”船有触礁的危险吗“这一节内容,它是利用三角函数知识求路线或物高的内容,本是难度大而又枯燥无味的内容,但因其实例,学生生活中会应用到的知识,学生很感兴趣,并且再加上美丽的实物图,把学生感官也动员起来了,那学的劲就不用说了。而教师也不用把知识”形象化“了才去让学生理解,相对来说教师讲授的时间少了,学生学的时间多了。

”读一读“的内容有的是以问题的形式出现,有的只是介绍知识的由来,不仅扩阔学生的知识面,还培养学生热爱数学的情感等。如有”矩形、正方形“这一节的课后,”读一读“的内容是”侦察兵密码通信游戏“,它是正方形性质应用的游戏,非常有趣,能充分调动学生自学、阅读的情感和兴趣。要是学生弄不明又想知道其因由,教师可以与学生一起探究,和学生一起在知识的海洋里遨游并发展良好的师生关系。

新教材还有许多可利用的优点,让我们一起慢慢去发现并加以应用吧!然而,正如索尔尼雪夫斯基所言:”既然太阳上了有黑点,人世间的事情就更不可能没有缺陷“。因此新教材也有其不足之处,而取其”精“去其”糠“就更能发挥新教材的作用,更好地让教材服务于教师的”教“和学生的”学“。

高二数学心得篇八

一、活动目标:

1、让幼儿知道能两两匹配的数是双数,剩下一个不能两两匹配的数是单数。

2、教幼儿能区别10以内的单双数,学习两个两个地计数。

二、活动准备:

准备磁性教具:1—10的数字卡;一套水果图片。

三、活动过程:

(一)开始部分

教师引导幼儿复习从1正数到10,然后从10倒数到1。

(二)基本部分

1、教师出示水果图片,引导幼儿先说出名称,再数出是几个?最后用相应的数字卡表示出来。

2、教幼儿学习用笔把水果两个两个地圈起来,看看哪几种水果刚好两个两个地圈好;哪几种水果还掉有一个。

3、圈起来后,告诉幼儿像刚好圈起来的水果数字2、4、6、8、10是双数;还剩一个没有圈起来的水果数字1、3、5、7、9是单数。

4、进一步引导幼儿学习区分单双数并理解单双数的含义。游戏:“手拉手”。请数名幼儿到前面来分成两组,然后让每组的幼儿两两进行手拉手,拉手后,看看哪组的幼儿刚好匹配成对,哪组却剩有一人;最后说出哪组是单数,哪组是双数。

5、利用游戏“数字宝宝回家”区别10以内的单双数。

(1)引导幼儿在1—10的数字中分别找出哪些数字是单数,哪些数字是双数。

(2)练习看标记分类摆放单双数。(“·”表示单数,“··”表幼儿园大班数学教案《手拉手》示双数)让幼儿按标记把1—10数字卡送到单双数的家。

(三)结束部分:

启发幼儿到户外找一找哪些东西是单数,哪些东西是双数。

高二数学心得篇九

1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;

2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;

归纳——猜想——证明的数学研究方法;

3、数学思想:培养学生分类讨论,函数的数学思想。

重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;

难点:等比数列的性质的探索过程。

1、问题引入:

前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?

(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(第一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)

2、新课:

1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。

师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

公式的推导:(师生共同完成)

若设等比数列的公比为q和首项为a1,则有:

方法一:(累乘法)

3)等比数列的性质:

下面我们一起来研究一下等比数列的性质

通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。

问题4:如果{an}是一个等差数列,它有哪些性质?

(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:

3、例题巩固:

例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。

答案:1458或128。

例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3…a20=_10____.

(本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)

1、小结:

今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习

我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。

2、作业:

p129:1,2,3

教学设计说明:

1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的.因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。

2、教学设计过程:本节课主要从以下几个方面展开:

1)通过复习等差数列的定义,类比得出等比数列的定义;

2)等比数列的通项公式的推导;

3)等比数列的性质;

有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧

知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。

在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。

在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。

通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。

等比性质的研究是本节课的高潮,通过类比

关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。

高二数学心得篇十

一、教学内容分析

圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

二、学生学习情况分析

我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想

由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.

四、教学目标

1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的`不断引申,精心设问,引导学生学习解题的一般方法。

3.借助多媒体辅助教学,激发学习数学的兴趣.

五、教学重点与难点:

教学重点

1.对圆锥曲线定义的理解

2.利用圆锥曲线的定义求“最值”

3.“定义法”求轨迹方程

教学难点:

巧用圆锥曲线定义解题

六、教学过程设计

【设计思路】

(一)开门见山,提出问题

一上课,我就直截了当地给出——

例题1:(1)已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是()。

(a)椭圆(b)双曲线(c)线段(d)不存在

(2)已知动点m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是()。

(a)椭圆(b)双曲线(c)抛物线(d)两条相交直线

高二数学心得篇十一

教学目标:

1.知识与技能目标:

(1)了解中国古代数学中求两个正整数最大公约数的算法以及割圆术的算法;

(2)通过对“更相减损之术”及“割圆术”的学习,更好的理解将要解决的问题“算法化”

的思维方法,并注意理解推导“割圆术”的操作步骤。

2.过程与方法目标:

(1)改变解决问题的思路,要将抽象的数学思维转变为具体的步骤化的思维方法,提高逻

辑思维能力;

(2)学会借助实例分析,探究数学问题。

3.情感与价值目标:

(2)体会中国古代数学对世界数学发展的贡献,增强爱国主义情怀。

教学重点与难点:

重点:了解“更相减损之术”及“割圆术”的算法。

难点:体会算法案例中蕴含的算法思想,利用它解决具体问题。

教学方法:

通过典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑

结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。

教学过程:

教学

环节教学内容师生互动设计意图

创设情境

引入新课引导学生回顾

人们在长期的生活,生产和劳动过程中,创造了整数,分数,小数,正负数及其计算,以及无限逼近任一实数的方法,在代数学,几何学方面,我国在宋,元之前也都处于世界的前列。我们在小学,中学学到的算术,代数,从记数到多元一次联立方程的求根方法,都是我国古代数学家最先创造的。更为重要的是我国古代数学的发展有着自己鲜明的特色,也就是“寓理于算”,即把解决的问题“算法化”。本章的内容是算法,特别是在中国古代也有着很多算法案例,我们来看一下并且进一步体会“算法”的概念。

教师引导,学生回顾。

教师启发学生回忆小学初中时所学算术代数知识,共同创设情景,引入新课。

通过对以往所学数学知识的回顾,使学生理清知识脉络,并且向学生指明,我国古代数学的发展“寓理于算”,不同于西方数学,在今天看仍然有很大的优越性,体会中国古代数学对世界数学发展的贡献,增强爱国主义情怀。

阅读课本探究新知

1.求两个正整数最大公约数的算法

学生通常会用辗转相除法求两个正整数的最大公约数:

例1:求78和36的最大公约数

(1)利用辗转相除法

步骤:

计算出7836的余数6,再将前面的除数36作为新的被除数,366=6,余数为0,则此时的除数即为78和36的最大公约数。

理论依据:,得与有相同的公约数

(2)更相减损之术

指导阅读课本p----p,总结步骤

步骤:

即,理论依据:由,得与有相同的公约数

算法:输入两个正数;

如果,则执行,否则转到;

将的值赋予;

若,则把赋予,把赋予,否则把赋予,重新执行;

输出最大公约数

程序:

a=input(“a=”)

b=input(“b=”)

whileab

ifa=b

a=a-b;

else

b=b-a

end

end

print(%io(2),a,b)

学生阅读课本内容,分析研究,独立的解决问题。

教师巡视,加强对学生的个别指导。

由学生回答求最大公约数的两种方法,简要说明其步骤,并能说出其理论依据。

由学生写出更相减损法和辗转相除法的算法,并编出简单程序。

教师将两种算法同时显示在屏幕上,以方便学生对比。

教师将程序显示于屏幕上,使学生加以了解。数学教学要有学生根据自己的经验,用自己的思维方式把要学的知识重新创造出来。这种再创造积累和发展到一定程度,就有可能发生质的飞跃。在教学中应创造自主探索与合作交流的学习环境,让学生有充分的时间和空间去观察,分析,动手实践,从而主动发现和创造所学的数学知识。

求两个正整数的最大公约数是本节课的一个重点,用学生非常熟悉的问题为载体来讲解算法的有关知识,,强调了提供典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。为了能在计算机上实现,还适当展示了将自然语言或程序框图翻译成计算机语言的内容。总的来说,不追求形式上的严谨,通过案例引导学生理解相应内容所反映的数学思想与数学方法。

高二数学心得篇十二

一、抓好基础。

数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。反之,会使解题速度慢,逻辑混乱、叙述不清。

那么如何抓基础呢?

1、看课本;

2、在做练习时遇到概念题是要对概念的内涵和外延再认识,注意从不同的侧面去认识、理解概念。

4、归纳全面的解题方法。要积累一定的典型习题以保证解题方法的完整性。

5、认真做好我们网校同步课堂里面的每期的练习题,采用循环交替、螺旋式推进的方法,克服对基本知识基本方法的遗忘现象。

二、制定好计划和奋斗目标。

复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。可以说,每天的习题可以少做,但这些归纳、反思、回顾是必不可少的。望你在制定计划时注意。

三、严防题海战术,克服盲目做题而不注重归纳的现象。

做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。

因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。

四、常做高考题,揭开高考试题的神秘面纱。

高考题是的习题,它在考查知识点时的切入点新而不俗,它正确地控制了对所考查的知识点的难度。解答一定的高考题,有助于把握高考对该知识点的难度要求;有助于判断高考题目与平时常见题目的异同,增强判断题目信度的能力,防止做偏题、怪题。

特别在排列组合二项式定理、复数、立体几何、极坐标、三角部分的高考题,难度不大,而平时所见的复习资料中,有相当的习题已超出高考难度,其实,高考题目中这几部分的习题复习时都能做,并不是很难,更不可怕,可见常做高考题,会克服对高考题的恐惧感。增强将来决胜高考的自信心。

五、归纳数学大思维、大策略。

数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。在平时听课时,一个明知的学生,应该听老师对该题目的分析和归纳。但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。

听课是认真,但费力,听完后是满脑子的计算过程,支离破碎。老师的分析是引导学生思考,启发学生自己设计出处理这些问题的大策略、大思维。当教师解答习题时,学生要用自己的计算和推理已经知道老师要干什么。另外,当题目的答案给出时,并不代表问题的解答完毕,还要花一定的时间认真总结、归纳理解记忆。要把这些解题策略全部纳入自己的脑海成为永久地记忆,变为自己解决这一类型问题的经验和技能。同时也解决了学生中会听课而不会做题目的坏毛病。

六、打好最后阶段复习这一仗,促成数学学习的飞跃。

最后阶段的复习是专题讲座,老师讲对重点知识、重点解题方法、重点数学思想的详细讲座和强化训练。在这一阶段的复习,要相信老师,淡化各种复习资料,认真地、保质、保量地完成老师布置的强化训练题,集中精力,突破试题中的立体几何、三角、复数、二项式定理、极限等部分的常考知识点,这几部分的习题难度不大。尽的努力多解决解答题目中的函数、解析几何、数列等压轴题。如果在这一阶段能及时训练,会使你感到个立竿见影的感觉,使数学学习成绩大幅度提高,促成数学学习的第二次飞跃。

七、积累一定的考试经验。

本学期每月初都有大的考试,加之每单元的单元测验和模拟考试有十几次,抓住这些机会,积累一定的考试经验,掌握一定的考试技巧,使自己应有的水平在考试中得到充分的发挥。其实,考试是单兵作战,它是考验一个人的承受能力、接受能力、解决问题等综合能力的战场。这些能力的只有在平时的考试中得到培养和训练。

高二数学选择题的解题方法

方法一:直接法

所谓直接法,就是直接从题设的条件出发,运用有关的概念、定义、性质、定理、法则和公式等知识,通过严密的推理与计算来得出题目的结论,然后再对照题目所给的四个选项来“对号入座”.其基本策略是由因导果,直接求解.

方法二:特例法

特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中,所谓特例法,就是用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.

注意:

在题设条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的较佳策略.近几年高考选择题中可用或结合特例法来解答的约占30%.因此,特例法是求解选择题的好招.

方法三:排除法

数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.

注意:

排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中占有很大的比重.

方法四:数形结合法

数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的支持作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.

方法五:估算法

在选择题中作准确计算不易时,可根据题干提供的信息,估算出结果的大致取值范围,排除错误的选项.对于客观性试题,合理的估算往往比盲目的准确计算和严谨推理更为有效,可谓“一叶知秋”.

方法六:综合法

当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.

高二数学心得篇十三

高二下学期数学教师工作总结20××(一)高二下学期我继续担任高二(x)班的数学课教师。这学期以来,我努力改进教育教学思路和方法,切实抓好教育教学的各个环节,认真引导学生理解和巩固基础知识和基本技能,无论从学习态度还是学习方法上都有了明显的进步,取得了应有的成绩。现将本学期的教学工作总结如下:

一、备课

分备教材和备学生两部分,二者相辅相成,互相影响。备教材就是根据所学内容设计课堂教学情景,力争做到深入浅出,生动活泼,方法灵活,讲练结合,真正体现学生的主体作用和教师的主导作用;备学生指的是全面掌握学生学习数学的现状,依据学生的学习态度、水平设计合理恰当的教学氛围,充分考虑学生的智力发展水平,扩展学生的认知领域,为学生提供思维训练的平台,创设熟悉易懂的学习情景,为学生的心理发展和知识积累提供可能。备课中一定要注意从学生的实际出发,从教材的实际内容出发,这样二者兼顾才能提高备课的针对性、有效性。

二、上课

上课是教学活动的主要环节,也是教学工作的关键阶段。上课要坚持以学生活动为中心,面向全体学生授课,以启发式为主,兼顾个别学生,从听讲、笔记、练习、反馈等环节入手,引导学生积极参与学习活动,理解和掌握基本概念和基本技能,使学生在学习活动过程中不仅获得知识还要提高解决问题的能力,不光获得应有的智慧,也应掌握思考问题的思想方法。

对概念课采用启发引导式,引导学生理解和掌握新概念产生的背景,发生发展的过程,展示新旧知识之间的内在联系,加深对概念的理解和掌握;对巩固课坚持“精讲多练”,精选典型例题,引导学生仔细分析问题的特点,寻求解决问题的思路和方法,提出合理的解决方案,力争使讲解通俗易懂,使方法融会贯通,并让学生在练习中加以消化,真正提高学生分析问题解决问题的能力。

三、作业

包括课本上的练习、习题、以及课外作业,针对学生的不同层次提出不同的要求:练习题要求全体学生尽量当堂完成,并及时进行讲解;习题中的a组题挑选有针对性的题目作为书面作业,要求学生课后独立完成,全批全改,深入了解学生对新知识新概念及新方法的掌握情况,b组题适当地对学有余力的学生提出要求,并及时给与提示,以求进一步提高;课外作业则根据实际情况灵活把握,精选题目,不求数量而求质量,加强和深化学生对概念公式的理解和掌握,特别是对学生作业中出现的错误及时予以纠正,以积累学生的解题经验,提高认识。

四、辅导

主要是指导学生及时旧课,预习新课,特别是对学生中存在的问题或集中讲解,或个别答疑,以求真正地使学生的数学学习保证持续性,建立知识网络的联系,引导学生从系统的高度,整体上把握数学知识,概念和方法。尤其是在课后辅导中更多地关注学习基础薄弱的学生,帮助他们树立了学习数学的信心,使他们得到了应有的进步。

总之,教学工作不仅仅要落实常规,还要因地制宜,与时俱进,针对学生的具体情况采取相应的措施与办法,有计划有落实有检查,关注每一个学生,关注每一个课堂,关注每一个环节,从小处着眼,从细处着手。只有这样才有利于教学质量的提高,有利于学生身心的健康发展。

【本文地址:http://www.xuefen.com.cn/zuowen/4603484.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档