热门人工智能论文的参考文献大全(15篇)

格式:DOC 上传日期:2023-10-28 23:31:06
热门人工智能论文的参考文献大全(15篇)
时间:2023-10-28 23:31:06     小编:MJ笔神

总结能够帮助我们从复杂的事物中提炼出最本质的东西。如何通过音乐治疗缓解压力和焦虑情绪?请大家认真阅读以下总结范文,相信会对你的写作有所帮助。

人工智能论文的参考文献篇一

电气自动化控制系统是由计算机控制系统对电气设备的运行进行自动控制,电气自动化控制系统的应用能够大大提高电气设备的工作效率,提高机械设备工作的精确性,为企业带来了良好的经济效益,但是随着电气设备自动化程度的不断提高,要求电气设备自动化控制系统要实现智能化操作。人工智能技术是通过计算机系统模拟人的智能,在计算机的控制下,实现电气设备控制系统的模拟人的智能,例如进行图像分析与处理、语音识别以及专家控制系统等等。可以说将人工智能技术应用在电气自动化控制系统中是电气自动化技术发展的必然趋势。

人工智能技术是以计算机技术为基础,融合多门学科的综合性科学技术,其主要是通过计算机模拟构建人的智能,并且创建机器人系统和专家系统实现对电气自动控制系统的智能化操作。人工智能技术的突出特点是:一是操作性。人工智能技术主要是依托计算机的控制实现对电气设备的控制,因此人工智能技术具有很强的逻辑性,便于控制人员进行操作;二是价值大。人工智能技术不仅融合了计算机技术,而且其还实现了对电气设备的自动化控制与监测,实现了以较小的投入获得更大的经济效益的目的。比如通过人工智能技术可以减少人工操作环节,进而为企业节省相当多的人力资源成本费用;三是准确性比较高。人工智能技术主要是计算机依据人的智能建立计算机控制系统,实现对电气设备的精确性操作,比如利用人工智能技术可以对电气设备的运行情况进行智能检测与处理,避免了人工检测所存在的弊端。

人工智能技术的最大优势就是通过对电气控制系统信息的收集、研究,制定出具体的有效处理措施,从而代替传统的依靠人脑进行操作的模式。将人工智能技术应用到电气自动化控制系统中具有重要的意义:

2.1能够有效解决电气自动化控制过程中存在的病态结构问题

电气自动化控制过程中因为电气设备精密度越来越高,因此在运行过程中所出现的病态结构很难应用传统的方式表达出来,而人工智能技术则可以有效解决此类问题,其完全有能力利用定量与定性相结合的控制方式对控制系统进行计算与分析。

2.2实现自动控制系统的数据采集与处理功能

将人工智能技术应用到电气自动化控制中能够依托专家系统对电气设备进行实时监视,并且对相关信息进行自动收集与储存,一旦发现存在潜在故障或者存在事故的事件,人工智能技术就会自动采取相应的.控制方式,对故障进行自动处理,进而避免了电气系统故障的进一步扩大化。

2.3简化了人工操作过程,降低了人工操作造成的损失

人工智能技术通过计算机设备就可以实现对电气设备的自动化控制,比如电气系统的人工智能化控制系统就可以通过鼠标对控制开关进行自动控制,并且对励磁电流进行调整。同时电气人工智能控制系统还设定了应用管理权限,限制了相应操作人员的权限,实现了专人专岗制度,细化了操作责任制度。

3.1人工智能技术在电气自动化设备中的应用

我们知道电气自动化控制系统属于非常负责的控制系统,其不仅包含复杂的元件,而且还需要操作人员严格按照自动化控制系统的要求进行操作,而将人工智能技术应用到电气设备中可以实现计算机的自动化操作,最重要的就是可以代替传统的需要人工进行设备检测的落后模式,实现了对电气设备的运行状态、故障检测以及维修意见等一体的功能,降低了人工操作的失误性,提高了电气设备的应用寿命,为企业节省了大量的成本。

3.2人工智能技术在电气控制过程中的应用

将智能技术应用到电气自动化控制过程中,是人工智能技术发展的重要动力,通过人工智能化的电气控制系统不仅可以提高电气设备的工作效率,而且还可以降低电气自动化控制中的故障发生率。人工智能技术主要师模糊控制、专家控制以及神经网络控制和集成智能控制。本文以专家控制为例,专家控制就是将专家系统的设计规范和运行机制与电气控制刘楠相结合实现实时控制系统的设计,其主要是对自动控制的知识获取、表示以及推理机制的建立。

3.3在事故和故障诊断中人工智能技术的应用分析

人工智能技术在电气设备故障中的作用是非常大的,尤其是对发动机的故障检修是具有重要作用的,我们知道在电气设备中由于其结构比较复杂,依靠人工很难对其进行深入的检测,因此需要借助人工智能技术实现对设备的检修。我们以变压器为例,将智能技术应用到变压器的故障检修中首先就是先收集电压器油体中分解的气体,然后通过对油体气体的分析,找出故障的原因,进而自动形成解决措施。这样有效避免了人工检测所出现的失误现象。另外人工智能技术在电气设备操作中的应用价值也比较大。通过人工智能技术可以实现电气自动化控制环节的简单化,比如在机床加工中,如果运用人工智能技术则能够有效降低机床操作的复杂性,并且能够对机床的运行信息进行收集与储存,便于日后对相关信息的查询。

总之,人工智能技术在电气化领域中应用,不但能够最大限度的降低人工参与的程度,提升控制系统的数字化、智能化程度,还能够大幅降低企业运营的成本,提高其利润空间,并将生产效率提高到一个全新的层面。因此,相关部门应加强对人工智能技术的研究,使其能够为企业的发展以及社会的进步发挥出更为突出的作用。

人工智能论文的参考文献篇二

1大数据可视化分析的基本概念

随着科学技术的进步,社会逐渐朝着数字化、新信息的方向发展,物联网、互联网以及云计算发展十分迅速,导致社会充满数据,因此,使得数据成为了新的信息资源,需要人们进行适当的利用,以此来满足人们的实际生产生活要求。基于此,导致呈现指数形成增长,并且变的更加复杂化,使得大数据区别与传统的数,增加了内涵。可视分析实际是一种融合了信息可视化、科学可视化、数据挖掘、人机交互、信息论、认知科学等方面的新方向学科。可视化分析实际上是一种能够利用交互式可视化界面来对复杂数据进行分析的技术,可视化基本流程为数据、知识、循环数据,主要包括可视化技术以及自动化分析技术。大数据可视化技术实际上是一种利用自动化分析进行数据挖掘的时候,在使用能够进行分析的人机交互界面和能够进行信息可视化的界面来融入自身的认知能力和计算机的计算能力,从而可以有效地得到观察大数据的能力[1].

2大数据可视化分析

2.1文本可视化

作为大数据时期文本可视化数据的一个典型文本信息,实际上也是最主要的互联网数据信息,与此同时,也是物联网通过一定的传感器收集到的信息类型,在正常的工作和学习以及日常生活中人们使用最多的就是文本形式的电子文档。文本可视化可以在一定程度上直观的体现文本主要优势和特点,例如,逻辑结构、动态演化规律以及主体聚类等。最基本和典型的文本可视化就是标签云,依据词频来合理的把关键词进行排序和归类,然后利用一定的颜色、大小等属性来进行文本可视化。

现阶段,最主要的就是利用字体大小展现的关键词使用在互联网中主题热度的`识别。随着关键词数量的不断增加,如果不能合理的进行设计阀值,就会出现重复覆盖以及局部密集的问题,这样就需要提供一定的交换窗口来操作[2].

2.2网络可视化

在大数据分析中最常见的关系就是网络关联,例如,社交网络和互联网。实际上层次结构在一定程度上属于一种比较特殊的网络信息。依据连接拓扑和网络节点之间的关系,可以非常直观的体现出网络中隐藏的关系。例如节点,实际上是进行网络可视化的重要内容之一。怎样在大规模边和节点的网络中利用有限空间进行一定的可视化,是现阶段大数据研究的重要和难点。除了能够可视化静态拓扑关系,还具有相应的动态流动演化性,所以对动态网络进行一定的可视化也是不容忽视的内容。随着网络中边和节点数目的增多,很容易出现覆盖、重叠以及聚集等问题,不能很好的进行可视化,影响效果。因此处理大规模可视化的主要方式就是图简化。可以分成两类,一类是利用多尺度和层次聚类进行交互,把大规模数据变化为具有一定层次的树结构,然后利用多尺度进行不同的可视化。另一种是对边进行适当的聚集,保证具有清晰的可视化效果。这些都是简化的主要方式,也可以看出引入交互技术,是可视化技术未来发展过程中必不可少的方式[3].

2.3时空数据可视化

时空数据主要是指具有一定时间标签和地理位置的数据。

移动终端与传感器发展非常迅速,因此,使得时空数据逐渐成为大数据发展过程中典型的数据类型。充分结合地理制图学以及数据可视化技术,分析和研究空间和时间对于可视化表征之间的关系,能够很好的展示空间和时间以及规律模式。大数据时代发展模式下,时空数据具有实时性和高维性,同时这也是数据可视化的重点。为了能够更好的体现信息随着空间和时间位置发生一定的变化,一般可以利用信息对象来逐渐实现数据可视化。流式地图是最典型的可视化方式,充分融合地图和时间事件流。为了可以打破二维数据的局限性,出现了时空立体方,是利用三维模式来展现空间、时间、事件[4].

2.4多维数据可视化

多维数据可视化实际上就是说拥有很多个维度的数据变量,在数据仓库以及数据库中具有广泛的应用,例如,商业智能系统、企业信息系统。进行多维数据的主要目的就是不断发现多维数据的模式和规律,合理展示不同纬度之间存在的关系。多维数据可视化具有多种方式,主要包括基于图标、基于图结构、几何图形、基于层次结构、基于像素、混合方式。近年来,随着大数据的不断发展,几何图形是研究多维数据可视化的重点。

最常用的多维数据可视化的方式就是散点图,二维散点图可以适当利用多维度中的两个维度综合的体现映射到两条轴上,利用不同的图形在二维平面内合理反映维度信息。例如,可以利用不同颜色、形状等来表示一定的离线或者连续性。投影是从多维度方面来体现可视化的一种方式。能够很好的体现出维度的属性值的分布情况,还可以体现多维度之间的关系[5].

3结语

总而言之,作为大数据分析的重要方式,可视化分析可以有效的弥补计算机自动化分析过程中出现的不足和缺陷。大数据可视化分析可以很好的融合计算机的分析能力和人们对信息的感知能力,在依据数据挖掘前提下进行的数据分析。

参考文献:

人工智能论文的参考文献篇三

人工智能是一门交叉性的前沿学科,也是一门极富挑战性的科学。人工智能技术和理论在一定程度上代表了信息技术的发展方向,所以对其人才的培养也是重中之重。

人工智能;信息技术;智能教育

人工智能是多种学科相互渗透而发展起来的交叉性学科,其涉及计算机科学、信息论、数学、哲学和认知科学、心理学、控制论、不定性论、神经生理学、语言学等多种学科。随着科技的飞速发展和人工智能技术应用的不断扩延,其涉及的学科领域将愈来愈多,它已和人们的学习、生活息息相关,时代和社会需要此方面的大量人才。在高中信息技术课中开设人工智能初步模块是十分必要的,本文拟从其发展现状、存在问题等几个方面对我国高中信息课程中人工智能教育做一下探讨。

(1)人工智能定义

人工智能(ai,artificial intelligence)是计算机科学的一个分支,己成为一门具有广泛应用的交叉学科和前沿学科。它研究如何用计算机模拟人脑所从事的推理、证明、识别、理解、设计、学习、规划以及问题求解等思维活动,来解决人类专家才能解决的复杂问题,例如咨询、探测、诊断、策划等。

(2)开设人工智能课程的意义

现实世界的问题可以按照结构化程度划分成三个层次:结构化问题,是能用形式化(或称公式化)方法描述和求解的一类问题;非结构化问题难以用确定的形式来描述,主要根据经验来求解;半结构化问题则介于上述两者之间。

将人工智能课程引入到我国现行的教育中,可以让学生在了解人工智能基本语言特征、理解智能化问题求解的基本策略过程中,体验、认识人工智能技术的同时获得对非结构化、半结构化问题解决过程的了解,从而使学生了解计算机解决问题方法的多样性,培养学生的多种思维方式,更好的解决现实问题。

目前,该学科的教育正处于摸索阶段,由于中学信息技术师资水平、学校硬软件设备等条件的制约,我国尚未在中学专门开设独立的人工智能类课程,internet上与人工智能教育相关的中文信息资源也十分贫乏,在教学环境上大致存在以下问题:

(一)教学条件参差不齐

开设好人工智能课程,就要求安排更多的实践课程和活动来增强课程的趣味性,让广大师生切实体会到人工智能对我们生活的影响。这些活动大部分要求上机操作或利用网络资源来学习交流,这就对教学条件提出了较高的要求,尤其是一些偏远农村、条件相对落后的中学在开设人工智能课程上存在很大困难。

(1)对硬件性能的要求

人工智能课程中有较多的实践课程需要老师和学生利用网络资源,使用计算机进行操作。这就需要学校配备计算机网络教学机房,若其性能较差,会延长学生在线进行人机对话的时间,一旦遇到网络堵塞,可能连网页都打不开,这不仅浪费了仅有的'上课时间,而且大大降低了学生的学习兴趣。

(2)对软件性能的要求

为了降低成本,学校可以利用互联网上提供的免费下载软件和免费在线教学网站等进行实践教学,可大大减少自研开发软件和软件维护的费用。但一旦遇到网络不通、网络拥挤或在线网站停止服务等情况,将无法使用网络资源进行教学,可见,软件的依赖性较强也存在很大的问题。

(二)对人工智能科学的认识不足

(1)学生的认识误区

提及人工智能,给大多数学生的感觉是一门神秘、遥不可及的科学。很多学生认为人工智能技术是很高深的科学,离我们现实生活有一定距离,研究和接触这门科学是少数科学家的事情,从而对该科学的关注程度不高。其实,人工智能学科是一门渐渐成长的科学,它将应用在我们生活的方方面面。我们应在教学中让学生多去体验人工智能的魅力所在,吸引更多对该学科感兴趣的人去研究和使用它。

(2)教师对人工智能学科开设存在偏见

一些从事该学科教学的教师没有接触过人工智能方面的知识,在接触过后被其中深奥难理解的知识所吓倒,认为即使开设了这门课程也不易被同学们所接受;而一些在大学接触过人工智能课程的教师则认为,其理论枯燥乏味,知识内容艰深,不适合放在高中开设。

(三)一线教师经验不足

在我国大学教育中,开展人工智能专业课程的大学为数不多,师范类院校更是少之又少。从事人工智能领域的专业人才输出少,所以,缺乏具备一定知识结构、有专业素养的教师来担任高中信息技术课中人工智能课程的教育工作。绝大多数的一线教师并没有接受过人工智能课程的专业培训,在授课内容上的着重点掌握不好,教学目标不够明确;在授课形式上也没有前人的经验可寻,这就给一线教师带来了极大的挑战。

(一)加强软、硬件建设

在学校条件允许的条件下,应加大硬件设施的投入,改善网络传递信息的效率,同时加强软件资源建设。鼓励师生上网搜索更多适合ai教学的网站,教师应整理出和ai相关的趣味小故事、电影、光盘等和教材相关的素材,以便更好的配合硬件教学。

(二)端正认识,增强支持

作为教师要树立对高中人工智能选修课程的正确认识。通过对课标中规定的相关内容的深入了解和学习,克服对人工智能的神秘感或恐惧感,理性而客观的看待人工智能技术及其应用,明确在高中开设该课程的目的。同时,教师也不能因为该课程的“选修”性质,从而轻视该课程的作用。

作为学生不应该仅仅看见这门课程的娱乐趣味性,应把一些重要的技术理论知识重视起来,不能过分的放松自己而偏离了我们的教学目标。家长也应该支持和赞同学生选择该课程,不能应认识不到这门课程的作用、怕耽误学生主干课的学习而反对学生积极参与。

校方领导也不应条件限制就轻易放弃这门课程的开设,应给予积极的配合。社会各界也应加强舆论与正确引导,让更多的人们认识人工智能并予以肯定。

总之,人工智能是一门逐渐成长的科学,开设好该课程需要广大教育工作者和校方领导不断努力,互相交流,共同克服困难。

参考文献:

[1]张剑平.人工智能技术与“问题解决”[j].中小学信息技术教育,2003(10).

[2]段东辉.浅谈信息技术课程中人工智能教育[j].新乡教育学院学报,第19卷第二期2006,6.

[3]教育部.普通高中技术课程标准(实验稿).人民教育出版社,2003年4月.

[4]张家华,张剑平.开展高中人工智能教学存在的问题及对策[j].

人工智能论文的参考文献篇四

简要地介绍了人工智能科技技术的基本概念。对专家系统、人工神经网络、模糊理论、遗传算法等人工智能技术的含义进行了介绍,并对这些技术在电力系统中的应用和存在问题进行了分析。

人工智能技术(ai artificial intelligence)是一项将人类知识转化为机器智能的技术。它研究的是怎样用机器模仿人脑从事推理、规划、设计、思考和学习等思维活动,解决需要由专家才能处理好的复杂问题。在应用方面,以专家系统、人工神经网络、遗传算法等最为普遍 。

1.1 专家系统(es)

专家系统是利用知识和推理来解决专家不能解决的问题。传统程序需要固定程序和复杂算法,输入数据并得出结果。专家系统集中大量的符号处理,采用启发式方法模拟专家的推理过程,通过推理,利用知识解决问题。它具有逻辑思维和符号处理能力,能修改原来知识,适合于电力系统问题的分析。

1.2 人工神经网络(ann)

人工神经网络是大量处理单元广泛互联而成的网络,是一种模拟动物神经系统的技术。神经网络具有自适应和自学习的能力,能并行处理分布信息。电力系统应用人工神经网络可以进行实时控制、状态评估等。

1.3 遗传算法(ga)

遗传算法是一种进化论的数学模型,借鉴自然遗传机制的随机搜索算法。它的主要特征是群体搜索和群体中个体之间的信息交换。该方法适用于处理传统搜索方法难以解决的非线性问题。

1.4 模糊逻辑(fl)

当输入是离散的变量,难以建立数学模型。而模糊逻辑则成功地应用在潮流计算、系统规划、故障诊断等电力系统问题。

1.5 混合技术

以上各种智能控制方法各有局限性,有些甚至难以处理电力系统实际问题。因此需要结合各个算法的优势,采用人工智能混合技术。其中包括:模糊专家系统、神经网络模糊系统、神经网络专家系统等技术。

2.1在电能质量研究中的应用

人工智能技术可以对电压波动、电压不平衡、电网谐波等电能质量参数进行在线监测和分析。在检测和识别电能质量扰动时能克服传统方法的缺陷。专家系统随着经验的积累、扰动类型变化而不断扩充和修改,便于用户的.掌握[3] 。

此外,专家系统和模糊逻辑可用于培训变电站工作人员。智能软件可以模拟故障情形,有利于提高运行人员的操作技能。

2.2 变压器状态监测与故障诊断专家系统

变压器事故原因判断起来十分复杂。判断过程中,必须通过内外部的检测等各种方法综合分析作出判断。变压器监测和诊断专家系统首先对油中气体进行分析。异常时,根据异常程度结合试验进行分析,决定变压器的停运检查。若经分析发现变压器已严重故障,需立即退出运行,则要结合电气试验手段对变压器的故障性质及部位做出确诊。

变压器监测和诊断专家系统通过诊断模块和推理机制,能诊断出变压器的故障并提出相应对策,提高了变压器内部故障的诊断水平,实现了电力变压器状态检修和在线监测。

2.3 人工智能技术在低压电器中的应用

低压电器的设计以实验为基础,需要分析静态模型和动态过程。人工智能技术能进行分段过程的动态设计,对变化规律进行曲线拟合并进行人工神经网络训练,建立变化规律预测模型,降低了开发成本。

低压电器需要通过试验进行性能认证。而低压电器的寿命很难进行评价。模糊识别方法,从考虑产品性能的角度出发,将动态测得的反映性能的特性指标作为模糊识别的变量特征值,能够建立评估电器性能的模糊识别模型。

2.4 人工智能在电力系统无功优化中的应用

无功优化是保证电力系统安全,提高运行经济性的手段之一。通过无功优化,可以使各个性能指标达到最优。但是无功优化是一个复杂的非线性问题 。

人工智能算法能应用于电力系统无功优化。如改进的模拟退火算法,在求解高中压配电网的无功优化问题中,采用了记忆指导搜索方法来加快搜索速度。模式法进行局部寻优以增加获得全局最优解的可能性,能够以较大概率获得全局最优解,提高了收敛稳定性。禁忌搜索方法寻优速度较快,在跳出局部最优解方面有较大优势。遗传算法在解决多变量、非线性、离散性的问题时有极大的优势。要求较少的求解信息的,模型简单,适用范围广。

2.5 人工智能在电力系统继电保护中应用

自适应型继电保护装置能地适应各种变化,改善保护的性能,使之适应各种运行方式和故障类型。它能够有效地处理各种故障信息,获得可靠的保护。

借助于人工智能技术不但能够提取故障信息,还能利用其自学习和自适应能力,根据不同运行工况,自适应地调整保护定值和动作特性。

2.6 人工智能在抑制电力系统低频振荡的应用

大规模电网互联易产生低频振荡,严重威胁着电力系统的安全。人工智能为电力系统低频振荡的控制提供了技术支持。神经网络、模糊理论、ga等人工智能技术应用于facts控制器和自适应pss的研究,为抑制电力系统低频振荡提供了新的手段。

作为一门交叉学科,人工智能将随着其他理论的发展而进入新的发展阶段。应用新方法解决问题,或促进各种方法的融合,保持简单的数学模型和全局寻优情况下,寻求到更少的运算量,提高算法效率,将是未来发展的趋势。

随着电力系统的发展,电力系统的复杂性不断增加,不确定因素越来越多。随着人工智能技术的不断发展和提高,利用人工智能技术来解决电力系统的问题将会受到越来越多的重视。

随着我国电力系统的持续稳步发展,电力系统数据量不断增加,管理上复杂程度大幅度增长,市场竞争的加大,为人工智能技术在电力系统的应用提供了广阔前景。

但人工智能技术的基本理论还不成熟,只是停留在仿真和实验阶段。人工智能的开发是一个长期的过程,需要不断改进和完善,并在实际应用中接受检验。

人工智能论文的参考文献篇五

(1)著作:[序号]主要责任者。

著作名[m]。

其他责任者。

版本项。

出版地:出版者,出版年:引文页码。

(2)连续出版物:[序号]主要责任者。

题名[j]。

年,卷(期)-年,卷(期)。

出版地:出版者,出版年。

(3)连续出版物中的析出文献:[序号]析出文献主要责任者。

析出文献题名[j]。

连续出版物题名:其他题名信息,年,卷(期):页码。

(4)专著中的析出文献:[序号]析出文献主要责任者。

析出文献题名[c]。

析出文献其他责任者//专著主要责任者。

专著题名。

版本项。

出版地:出版者,出版年:析出文献的页码。

(5)电子文献:[序号]主要责任者。

题名[文献类型标志/文献载体类型标志]。

出版地:出版者,出版年(更新或修改日期)[引用日期]获取或访问路径。

2.参考文献类型及其标志

(1)以单字母方式标志以下各种参考文献类型:

参考文献类型普通图书会议

人工智能论文的参考文献篇六

智能交通系统(intelligent transportation systems,简称its)是将先进的信息技术、数据通讯传输技术、电子传感技术、电子控制技术及计算机处理技术等有效地集成运用于整个地面交通管理系统而建立的一种在大范围内、全方位发挥作用的,实时、准确、高效的综合交通运输管理系统。its能有效地利用现有交通设施、减少交通负荷和环境污染、保证交通安全、提高运输效率、促进社会经济发展、提高人民生活质量,并以推动社会信息化及形成新产业而受到各国的重视。目前已形成世界二十一世纪的发展方向。

交通仿真是智能交通领域的重要分支,它是利用最先进的计算机技术,通过仿真模拟的方法来分析交通问题,辅助交通管理人员做决策。传统上,数学推导、科学实验是进行科学研究、解决科学问题的主要方法。对于交通问题来说,由于参与交通的人很多,影响交通出行的因素也很多,人们很难、甚至无法对交通问题建立精确的数学模型。同时,由于安全、法规,以及开销方面的原因,进行现场交通实验通常也是不可行的。而交通仿真恰恰能够有效地解决上述两个方面的困难。

然而,传统的交通仿真由于设计理念上的原因,并不能从根本上有效地解决交通问题。这是因为,交通系统是一个庞大的复杂系统,必须用对付复杂系统的方法来处理,也就是要用综合的方法,而不是还原分解的方法来处理。

1)城市交通系统是由经济、环境、人口等因素综合作用的结果,必须全面综合地考虑城市交通和这些系统之间的关系。例如,不能为例城市交通问题的解决,而导致城市生态恶化,危害人居环境;不能为了城市交通的畅通,阻碍城市社会经济活动的健康发展。我们必须在已有工作的基础上,突破传统思维,探索研究此类复杂系统的新途径,而基于人工系统的研究方法正是这种有效途径之一。

2)城市交通问题不存在“一劳永逸”的解决方案。城市交通系统涉及人与社会的动态变化,本身也在不断变化和发展之中,不可避免地需要一个不断深化地认识过程,这类系统实际上不存在精确完备的整体解析模型。因此,无法“一劳永逸”地解决城市交通问题,我们需要基于“不断探索和改善”的'原则,研究建立有效可行的计算实验方法体系,为不断地完善城市交通系统的综合可持续发展方案提供科学依据。

3)城市交通问题不存在一般意义下的最优解,更不存在唯一的最优解。首先,基于解析模型的最优解与假设条件直接相关,具有条件敏感性,但对于城市交通这样的问题,假设条件与实际情况往往存在很大差别。其次,解决这些问题一般不存在单一的优化指标,而多层次多目标优化往往导致多个甚至无数个解决方案,就连采用近似模型的多目标优化也是如此。再者,对于这类复杂系统,有时甚至连确定一个量化的综合优化指标也有困难,特别是由于复杂系统长期行为的不可预测性,试图求解其某一最优化解决方案本身就是不可行的。因此,我们应当接受有效解决方案的概念,而且还要接受一般情况下存在多个有效解决方案的事实。在这种情况下,我们应该利用平行系统方法,追求具有动态适应能力的有效解决方案。

基于以上分析,中国科学研自动化所王飞跃研究员提出了人工交通系统的概念。其基本思想是利用人工社会的理论与方法,把交通仿真推向更高的层次、获得更广的视野。它利用基于代理的建模、面向对象的编程和并行分布式计算等方法和技术,“生长”和“培育”交通系统,即“人工交通系统”。

利用人工交通系统解决问题的思路跟改革开放摸着石头过河差不多,不断探索和改善,使过程、方法更科学化、系统化、综合化,不断改善探索建立城市交通、物流、生态综合发展的理论和方法体系。

三是平行管理运行,虚拟交通系统与实际交通系统相结合,直接采集现实交通数据,进行超前运算,以判断可能发生的交通事件,提前采取预防措施,为交通的高效畅通提供保障。

1)在宏观认识上,人工交通系统不是单纯的讨论交通自身的问题。相反,人工交通系统将交通看作社会整体的一个子系统,与经济、人口、环境、气候等子系统具有平等的地位,并将各个子系统之间的相互衔接、相互联系、相互作用和相互影响作为研究的重点之一。

2)在仿真方法上,人工交通系统属于微观仿真的范畴,但是不局限于研究局部的交通问题。人工交通系统面向大区域的仿真研究,采用复杂性科学中“涌现”的原理,在底层建立单个交通出行元素的代理模型,通过大交通区域内单个代理模型之间的相互作用,“涌现”出宏观的交通现象。

3)在实现手段上,人工交通系统不能在单一、孤立的计算机上进行仿真,要使人工交通系统具备真实交通系统的分散性和社会性,必须采用先进的分布式计算方法,如网格和p2p等,在互联网上建立结构化、分散化的虚拟交通路网系统,并且通过终端界面将网络中的真实人吸引到人工交通系统的运行中来,以使每一个代理模型具有逼近现实的社会属性。

4)在仿真目的上,人工交通系统不是一味的追求逼近现实交通环境和状态。除此之外,人工交通系统可以通过调整参数、添加随机事件等方法产生现实交通系统可能但尚未发生的交通现象,用以制定突发事故的紧急预案、交通控制方案的预评估以及交通参与人员的培训等等。

人工系统说起来有一点抽象,其实说穿了很简单。第一是充分利用计算机技术的发展,第二是仿真与模拟的常态化。仿真不再是一个项目立项前跑一跑看看行不行的手段,仿真要秒秒在、分分在、永远在。它是经验与知识的数字化、动态化和即时化,使人工影响现实,虚拟影响实在。

人工交通系统完善之后,人们可以像玩网络游戏一样,作为一个行人或司机加入到系统中,不必出门即可体验交通;交警同志可以在人工交通系统中学习指挥交通,而不必担心造成拥堵;交通分析人员可以利用人工交通系统研究各种突发事故对交通的影响,而不必担心人民的生命财产受到威胁;交通管理和决策人员可以在人工交通系统试验交通政策和方案,而不必承担决策失败的风险。

人工智能论文的参考文献篇七

【摘 要】随着科学技术以及互联网的发展,数据逐渐朝着爆发方面发展,数据信息数量急剧增加,为了给广大用户提出更合理的幅度,人们开始重视大数据。大数据技术实际上是一种数据挖掘、预测分析、人工智能、统计分析语言处理以及存储数据的综合技术,形成了数据工程新研究领域。可视化技术是大数据分析的重要形式,大数据可视化技术主要是在数据自动分析功能的前提下,利用人们挖掘数据过程中对于可视化技术的分析和认知能力,充分融合人类自身和机器的各自特征,依据交互技术,辅助人们可以更加直观的进行数据分析。

1 大数据可视化分析的基本概念

随着科学技术的进步,社会逐渐朝着数字化、新信息的方向发展,物联网、互联网以及云计算发展十分迅速,导致社会充满数据,因此,使得数据成为了新的信息资源,需要人们进行适当的利用,以此来满足人们的实际生产生活要求。基于此,导致呈现指数形成增长,并且变的更加复杂化,使得大数据区别与传统的数,增加了内涵。可视分析实际是一种融合了信息可视化、科学可视化、数据挖掘、人机交互、信息论、认知科学等方面的新方向学科。可视化分析实际上是一种能够利用交互式可视化界面来对复杂数据进行分析的技术,可视化基本流程为数据、知识、循环数据,主要包括可视化技术以及自动化分析技术。大数据可视化技术实际上是一种利用自动化分析进行数据挖掘的时候,在使用能够进行分析的人机交互界面和能够进行信息可视化的界面来融入自身的认知能力和计算机的计算能力,从而可以有效地得到观察大数据的能力[1].

2 大数据可视化分析

2.1 文本可视化

作为大数据时期文本可视化数据的一个典型文本信息,实际上也是最主要的互联网数据信息,与此同时,也是物联网通过一定的传感器收集到的信息类型,在正常的工作和学习以及日常生活中人们使用最多的就是文本形式的电子文档。文本可视化可以在一定程度上直观的体现文本主要优势和特点,例如,逻辑结构、动态演化规律以及主体聚类等。最基本和典型的文本可视化就是标签云,依据词频来合理的把关键词进行排序和归类,然后利用一定的颜色、大小等属性来进行文本可视化。

现阶段,最主要的就是利用字体大小展现的关键词使用在互联网中主题热度的`识别。随着关键词数量的不断增加,如果不能合理的进行设计阀值,就会出现重复覆盖以及局部密集的问题,这样就需要提供一定的交换窗口来操作[2].

2.2 网络可视化

在大数据分析中最常见的关系就是网络关联,例如,社交网络和互联网。实际上层次结构在一定程度上属于一种比较特殊的网络信息。依据连接拓扑和网络节点之间的关系,可以非常直观的体现出网络中隐藏的关系。例如节点,实际上是进行网络可视化的重要内容之一。怎样在大规模边和节点的网络中利用有限空间进行一定的可视化,是现阶段大数据研究的重要和难点。除了能够可视化静态拓扑关系,还具有相应的动态流动演化性,所以对动态网络进行一定的可视化也是不容忽视的内容。随着网络中边和节点数目的增多,很容易出现覆盖、重叠以及聚集等问题,不能很好的进行可视化,影响效果。因此处理大规模可视化的主要方式就是图简化。可以分成两类,一类是利用多尺度和层次聚类进行交互,把大规模数据变化为具有一定层次的树结构,然后利用多尺度进行不同的可视化。另一种是对边进行适当的聚集,保证具有清晰的可视化效果。这些都是简化的主要方式,也可以看出引入交互技术,是可视化技术未来发展过程中必不可少的方式[3].

2.3 时空数据可视化

时空数据主要是指具有一定时间标签和地理位置的数据。

移动终端与传感器发展非常迅速,因此,使得时空数据逐渐成为大数据发展过程中典型的数据类型。充分结合地理制图学以及数据可视化技术,分析和研究空间和时间对于可视化表征之间的关系,能够很好的展示空间和时间以及规律模式。大数据时代发展模式下,时空数据具有实时性和高维性,同时这也是数据可视化的重点。为了能够更好的体现信息随着空间和时间位置发生一定的变化,一般可以利用信息对象来逐渐实现数据可视化。流式地图是最典型的可视化方式,充分融合地图和时间事件流。为了可以打破二维数据的局限性,出现了时空立体方,是利用三维模式来展现空间、时间、事件[4].

2.4 多维数据可视化

多维数据可视化实际上就是说拥有很多个维度的数据变量,在数据仓库以及数据库中具有广泛的应用,例如,商业智能系统、企业信息系统。进行多维数据的主要目的就是不断发现多维数据的模式和规律,合理展示不同纬度之间存在的关系。多维数据可视化具有多种方式,主要包括基于图标、基于图结构、几何图形、基于层次结构、基于像素、混合方式。近年来,随着大数据的不断发展,几何图形是研究多维数据可视化的重点。

最常用的多维数据可视化的方式就是散点图,二维散点图可以适当利用多维度中的两个维度综合的体现映射到两条轴上,利用不同的图形在二维平面内合理反映维度信息。例如,可以利用不同颜色、形状等来表示一定的离线或者连续性。投影是从多维度方面来体现可视化的一种方式。能够很好的体现出维度的属性值的分布情况,还可以体现多维度之间的关系[5].

3 结语

总而言之,作为大数据分析的重要方式,可视化分析可以有效的弥补计算机自动化分析过程中出现的不足和缺陷。大数据可视化分析可以很好的融合计算机的分析能力和人们对信息的感知能力,在依据数据挖掘前提下进行的数据分析。

参考文献:

[3] 刘法建 , 张捷 , 章锦河等 . 旅游流空间数据获取的基本方法分析--国内外研究综述及比较 [j]. 旅游学刊 ,,27(6):101-109.

人工智能论文的参考文献篇八

随着新型科技的持续更新,工程中逐渐应用新科技,这也是科技朝着应用式与开放式方向发展的开始。电子工程在传统工程基础上的革新,随着人工智能化发展,逐渐转换为信息化产业链接。这一智能化技术机械生产明显减少,经济效益与产量提升,我国逐渐进入到智能化阶段。

(一)发展历程

在机械电子工程发展初期,主要体现为手工制作,生产力水平较低,资源技术等对其发展产生制约。为了提升生产效率,逐渐朝着机械工业方向发展。

在生产线阶段,机械工程已逐渐发展到流水线生产,实现标准化大批量生产,这一生产模式使劳动力得到解放,生产力水平大大提升,同时生产效率也得到提高。但是仍然存在一些不足,比如,部分生产仍就以进口为主,生产成本较大,在市场方面缺少适应力;灵活性较差,难以满足不断变化的市场需求。

在机械电子产业发展阶段中,产品生产能够适应市场的需求,对于不断变化的产品需求产业化发展能够满足。

(二)机械电子工程主要特征

机械电子工程是复杂综合性学科,同各类学科之间都有着密切的联系。机械电子工程发展要以计算机、电子以及机械为基础,结合其他学科做出合理、科学的设计。在设计的过程中,要求每一个模块都能够实现有机结合,进而使得各个模块都能将其最大优势发挥出来。机械电子产品内部结构简单明了,并不复杂,无需复杂原件的投入,这样能在一定程度上使产品性能得到提升,进而扩大消费市场。

人工智能是一门复杂,并且综合性较强的学科,所涉及到的学科比较多。也可以说,21世纪人工智能是最伟大学科之一。人工智能实现了对人的智能模拟,并且能通过计算机使认得智能化得到进一步的延伸,人工智能这门学科有着较好的发展潜力。人工智能在发展的过程中主要经历下列几个阶段。

初步阶段。人工智能在17世纪开始发生萌芽,法国在这一阶段成功诞生世界上的第一部计算机,这一计算器只是单纯的能进行加法简单运算,但是仍就轰动世界,进而在世界范围内,对这项技术开始进一步研宄。在最初阶段,人工智能并没有明显的进展,主要是在实践的过程中积累与总结知识,这为今后人工智能发展奠定坚实的基础。

发展初始阶段。美国人在二十世纪首次提出人工智能专业用语。在这个发展阶段,人工智能主要以证明与阐释为主要体现,在这一时期对于人工智能的研宄就是首要任务。

发展起伏阶段。随着人们对于人工智能的不断深入研宄,人工智能也处于持续的发展阶段,但是在实践过程中发现,要想使人工智能模仿和人类思维同步是非常困难的。大部分对于人工智能的科学研宄仅仅是停留于简单映射层面,对于逻辑思维的研宄仍就没有突破性进展。不论怎么说,在发展的起伏阶段,人功能智能也在发展中得到了技术创新,特别是在系统方面、计算机机器人以及语言掌握方面取得了较大的成就。

起伏阶段发展以后。在这一阶段,人工智能的相关研究得到了发展,尤其是第五届国际人工智能联合会议的召开,人工智能逐渐朝着知识层面的方向发展,大部分的人工智能研都会结合相应的知识工程,在这个阶段中,人工智能发展的高度是前所未有的,在一定程度上促进了人工智能应用于实际工程中。

稳步发展阶段。随着互联网技术的快速发展,对于人工智能研宄方向发生重大转变,由原本的单一主体朝着集中统一主体的方向发展。关于人工智能在实际中的运用以及研究,受到了互联网技术的影响。网络的普及与快速发展,在一定程度上促进了信息化的发展,信息在传送方面发生率重大性变革。在人们逐渐进入信息化社会后,在信息有效处理方面人工智能的发展到了重要的作用,在模拟设计方面,机械电子工程的发展需要人工智能的大力支持。

随着我国社会经济的持续发展,社会不断的进步,对于信息人们越来越重视。在21世纪,互联网技术得到快速发展,同时信息的传递也逐渐注入新鲜血液。互联网应用的普及说明人们正朝着信息时代的方向迈进,在社会逐步信息化以后,更加需要有人工智能这一技术的支持,特别是机械电子工程发展中有着重要作用,机械电子系统本身缺少一定的稳定性,这样在机械电子工程设计方面就有着较大阻碍存在。在现代社会中,信息的处理量持续增大,并且较为复杂,有些时候需要同时对不同类型的信息进行处理,所以需要采取人工智能的.支持才能完成信息处理。人工智能主要包含模糊推理系统、神经网络系统这种两种方法。神经网络系统倾向于对人脑结构的综合分析,模糊推理系统更加重视对于语言信号的分析与理解。随着现代社会的发展,仅仅采取单一的人工智能方法,明显已经无法适应目前社会中不断变化的市场需求,所以,对于人工智能相关问题的研宂正逐渐朝着多方位、全面的人工智能方向转变。多方位全面人工智能系统通过模糊推理系统和神经网络系统相互统一的方式,扬长补短,将二者有效的结合起来,使得二者的优势得到最大程度的发挥。

智能同机械电子工程之间在相互影响的过程中,逐渐产生崭新的行业。首先通过现代科技逐渐,将人工智能融入到机械电子工程中,使机械工业发展潜力得到充分挖掘。其次随着机械电子工程发展难度的加大,对于人工智能也就提出来新的要求,这从某种程度上来推动了人工智能发展。在将机械电子工程与人工智能有效结合的基础上,促进社会生产力发展,同时也能促进有关经济产业的快速发展,这种效应将会对整个社会产生一定影响,使我国经济得到全面发展。

人工智能论文的参考文献篇九

一、参考文献类型少

文献资料是多类型的,包括是学术著作、期刊论文、学位论文、研究报告、研讨会论文、政府部门的资料与数据汇编、国家政策文件等。

当前,很多毕业生写论文参考的文献主要集中在期刊论文、学术著作和学位论文,对国家政策文件、研究报告、研究会论文等关注不够,因此参考的文献类型较少,出现比较片面、或研究不典型的情况。

从学术研究上来说,这两者是同等重要的,但是对于一些特殊专题来说,研究后者可能更有价值。

比如国家政策不仅包含过去的研究成果,也包含目前研究的热点、前沿问题,是研究中不可忽视的文献。

所以,文献综述要尽可能参考不同类型的文献资料,做到全面有力。

二、过度依赖已有的研究成果

学术研究是渐进的过程,新的研究要依赖于过去已有的'研究成果,但是,过度依赖就成为一种简单的重复。

目前,不少研究生写文献综述时,很难跳出别人的研究思路框架,不自觉的重复别人的观点,或者用目前已有大量参考文献的研究领域作为选题,这些都是对已有的研究成果过度依赖的表现,这也导致很难有学术创新成果。

所以,写文献综述时,我们首先要明白一点,文献综述是为了找到的研究起点。

在文献综述写作过程中,不能过度依赖已有的研究理论或观点,大胆的做出突破。

三、否定已有研究成果

有些研究者在表达自己观点时,热衷于否定已有研究成果,并以此来凸显自己研究的原创性。

要知道,文献综述要坚持全面性原则,批判与肯定同时进行,当方面的批判或肯定都是不理性的,也是不客观的。

目前,很多毕业论文总是喜欢说自己的研究填补了空白,对别人的研究不能给予客观的评价。

然而,其所谓的空白不外乎两种情况:一是研究意义重大但实在太难没人研究;二是研究没有意义或价值所以没人研究。

其实,从根本上来说,这样的研究空白是有风险的,更何况,为了凸显自己而极力否定他人研究这种行为本身就是不理性的,没有价值的。

所以,我们在写文献综述时,应该客观的评价已有的研究成果,避免对其局限性大做文章,这是对研究者的尊重,也能保证自己研究的客观性。

四、简单罗列文献

文献综述应该是通过寻找各种文献的内在关联来实现学术增值,而不是对已有文献的简单罗列。

有些研究者在写文献综述时,会不自觉的将文献罗列在一起,将各种没有关联的文献罗列在一起确实会比较容易,但这只能是一种低水平的描述型文献综述,很难获得审稿人的认可。

由于文献繁多,很多原始文献是比较凌乱无序的,所以,作者写文献综述时,首先要对原始材料进行整理,即订正那些错误的材料,补充那些缺漏的材料,区分哪些材料是有用的,哪些是没用的,哪些是过时的。

其次,要对原始材料进行强有力的关联论证,即找出这些原始材料之间的内在关联,诸如今天的研究跟过去的研究有什么关联,未来的研究同今天的研究有什么关联。

最终在它们之间的内在关系引导下来写文献综述。

人工智能论文的参考文献篇十

人工智能(artificialintelligence,ai)一直都处于计算机技术的最前沿,经历了几起几落……

----长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(mit)、卡内基-梅隆大学(cmu)到ibm公司,再到日本的本田公司、sony公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着ai技术的实验。不久前,着名导演斯蒂文·斯皮尔伯格还将这一主题搬上了银幕,科幻片《人工智能》(a.i.)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领域的兴趣。

----在本期技术专题中,中国科学院计算技术研究所智能信息处理开放实验室的几位研究人员将引领我们走近人工智能这一充满挑战与机遇的领域。

计算机与人工智能

----“智能”源于拉丁语legere,字面意思是采集(特别是果实)、收集、汇集,并由此进行选择,形成一个东西。intelegere是从中进行选择,进而理解、领悟和认识。正如帕梅拉·麦考达克在《机器思维》(machineswhothinks,1979)中所提出的:在复杂的机械装置与智能之间存在长期的联系。从几个世纪前出现的神话般的巨钟和机械自动机开始,人们已对机器操作的复杂性与自身的某些智能活动进行直观联系。经过几个世纪之后,新技术已使我们所建立的机器的复杂性大为提高。1936年,24岁的英国数学家图灵(turing)提出了“自动机”理论,把研究会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为“人工智能之父”。

----人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了“人工智能”(artificialintelligence,ai)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的ibm的“深蓝”在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。

----当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的ai软件,而且现在的ai具备了更多的现实应用的基础。90年代以来,人工智能研究又出现了新的高潮。

----我们有幸采访了中国科学院计算技术研究所智能信息处理开放实验室史忠植研究员,请他和他的实验室成员引领我们走近人工智能这个让普通人感到深奥却又具有无穷魅力的领域。

----答:ai研究出现了新的高潮,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的3个热点是:智能接口、数据挖掘、主体及多主体系统。

----智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显着成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。

----数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱:数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。

----主体是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自治地、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。目前对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习以及多主体系统应用等方面。

----答:我国开始“863计划“时,正值全世界的人工智能热潮。”863-306“主题的名称是”智能计算机系统“,其任务就是在充分发掘现有计算机潜力的基础上,分析现有计算机在应用中的缺陷和”瓶颈”,用人工智能技术克服这些问题,建立起更为和谐的人-机环境。经过十几年来的努力,我们缩短了我国人工智能技术与世界先进水平的差距,也为未来的发展奠定了技术和人才基础。

----但是也应该看到目前我国人工智能研究中还存在一些问题,其特点是:课题比较分散,应用项目偏多、基础研究比例略少、理论研究与实际应用需求结合不够紧密。选题时,容易跟着国外的选题走;立项论证时,惯于考虑国外怎么做;落实项目时,又往往顾及面面俱到,大而全;再加上受研究经费的限制,所以很多课题既没有取得理论上的突破,也没有太大的实际应用价值。

----今后,基础研究的比例应该适当提高,同时人工智能研究一定要与应用需求相结合。科学研究讲创新,而创新必须接受应用和市场的检验。因此,我们不仅要善于找到解决问题的答案,更重要的是要发现最迫切需要解决的问题和最迫切需要满足的市场需求。

----问:请您预测一下人工智能将来会向哪些方面发展?

----答:技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展:模糊处理、并行化、神经网络和机器情感。

----目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来人工智能应用的新领域,未来智能计算机的构成,可能就是作为主机的冯·诺依曼型机与作为智能外围的人工神经网络的结合。研究表明:情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。

----人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的`生活、工作和教育等带来更大的影响。

什么是人工智能?

----人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。

ai理论的实用性

----在一年一度at&t实验室举行的机器人足球赛中,每支球队的“球员”都装备上了ai软件和许多感应器,它们都很清楚自己该踢什么位置,同时也明白有些情况下不能死守岗位。尽管现在的ai技术只能使它们大部分时间处于个人盘带的状态,但它们传接配合的能力正在以很快的速度改进。

----这种ai机器人组队打比赛看似无聊,但是有很强的现实意义。因为通过这类活动可以加强机器之间的协作能力。我们知道,internet是由无数台服务器和无数台路由器组成的,路由器的作用就是为各自的数据选择通道并加以传送,如果利用一些智能化的路由器很好地协作,就能分析出传输数据的最佳路径,从而可以大大减少网络堵塞。

----我国也已经在大学中开展了机器人足球赛,有很多学校组队参加,引起了大学生对人工智能研究的兴趣。

未来的ai产品

----安放于加州劳伦斯·利佛摩尔国家实验室的asciwhite电脑,是ibm制造的世界最快的超级电脑,但其智力能力也仅为人脑的千分之一。现在,ibm正在开发能力更为强大的新超级电脑--“蓝色牛仔”(bluejean)。据其研究主任保罗·霍恩称,预计于4年后诞生的“蓝色牛仔”的智力水平将大致与人脑相当。

----麻省理工学院的ai实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为。该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。

----/报道,比利时的starlab正在制造一个人工猫脑,这个猫脑将有7500万个人造神经细胞。据称,移植了人工猫脑的小猫能够行走,还能玩球。预计它将于制作完程。

人工智能论文的参考文献篇十一

1.1工程前期对环境的影响

长期以来,公路的规划、设计人员没有对于公路的环保问题如何解决给予足够的重视。在工程可行性研究阶段也要求对环境影响进行分析评价并提出相应的环保措施,但由于公路工程施工对沿线土地资源、水资源、森林资源、野生动物资源、景观资源等造成的影响和破坏程度大多没有量化指标,因而在实际操作过程中,从管理层到设计人员,往往忽略工程建设与使用对环境造成的负面影响,从而导致公路规划与设计在环保方面的不足。

1.2工程施工期对环境的影响

施工期主要包括施工放样、场地清理、征地及拆迁安置、建立施工驻地等施工前期准备工作和正式组织施工两大活动。

施工期间拟建项目由于挖土填土、借土弃土、改移河道、清理表土、开采料场等活动会造成地表植被破坏、地形改变、沟谷大量消失,恶化生物栖息的生态环境,加速地表侵蚀,增大地表径流,增加水土流失,改变自然流水形态,加剧水质恶化,从而直接导致对自然环境的破坏。

1.3项目营运期对环境的影响

营运期开始意味着项目巨大的经济效益和社会效益开始发挥作用,同时也意味着对沿线环境产生长期负面影响的开始。随着交通量的与日俱增,噪声和汽车尾气及粉尘污染逐渐加剧,噪音对沿线居民、学校和机关单位的学习、工作和休息产生长期的不利影响。

2.1工程前期环保措施

2.1.1珍惜自然环境,规划好公路用地范围

1)保护土地、水体、空气和生物资源,珍惜现有资源价值。合理产生新的生产用地,保护和增强现有土地的利用。

2)路线应与城镇规划相协调,促进城镇更新及改善环境。一方面尽量减少项目与城镇规划相干扰,又要有利于城镇的发展;另一方面又要方便车辆进出城镇,尽量保持项目与城镇的合理间距———“靠而不近,离而不远”。

3)避开环境敏感性区域。如学校、工厂、医院、名胜古迹、自然保护区、湿地和鸟类栖息地、精密仪器基地和军事设施等。

2.1.2设计要结合自然地形

1)平面线形:在满足规范要求的情况下采用较低技术指标是使路线顺应地形的一个好办法,采用各种类型的曲线也会取得较好的效果。

2)纵面线形:合理设置纵坡和竖曲线使纵面线顺应地形成渐变、顺滑的纵坡线,避免大填大挖。深开挖路段要多考虑隧道方案,可避免山体开挖,保护森林植被和水土资源。

3)边坡设计:在确保稳定的情况下,边坡的形状要尽可能与周围的景观协调,并用植物进行绿化(可结合各种土工防护结构和其它绿化基础工程综合实施)处理,坡脚、坡顶、坡面相交处等处的棱角要进行弧形整理,既可产生自然美感又可防风蚀。

2.2施工阶段环保措施

1)减少水土流失。根据实际填挖土质合理设置边坡坡度;合理设置土石方填挖施工现场临时排水系统,及时疏导雨水,以减少雨水对挖填土坡坡面的冲蚀;填方坡面应及时夯实并进行边坡绿化;合理确定借土弃土位置,合理开采砂石料场,注意料场弃土弃渣分离处理。

2)减少噪音污染。禁止噪音超标机械进入施工现场,平时注意机械维修保养;合理安排施工组织计划,尽量减少施工活动对沿线居民集中点的干扰。

3)防止大气污染。材料堆放应采取必要挡风措施,减少扬尘。组织好材料和土方运输,防止材料散落造成环境污染。材料运输宜采用封闭性较好的自卸车运输或采用覆盖措施。对施工场地、材料运输及进出料场的道路应经常洒水防尘。

4)防止水质污染。加强对施工队伍的生活污水处理,严禁将其直接排入河道水流中;对路基清除淤泥表土应回收到路上处理或运到指定地点堆弃;弃石弃土应运到合理地点,不得任意堆放,更不能淤塞河道;对桥梁围堰施工,应注意围堰土在施工结束后的清除工作,避免阻塞河道。

2.3营运期环保措施

1)加强公路管养工作,对路面和边沟应定期清理。加强边沟、边坡、涵管、急流槽、导流坝和路田分界墙的养护维修工作。对沿线收费站和服务区的垃圾及污水要进行环保处理。

2)加强公路绿化及其养护工作,既创造良好的视觉景观,又可降噪防尘。

3)加强交通管理,控制不符合环保和技术规定的车辆上路行驶,路线靠近或穿越居民区应限制鸣笛,完善交通标志、标线,保持良好的交通运输服务状态。

1)加强环保意识和宣传力度。公路工程必然要对环境产生负面影响,而环境保护工作已越来越受到重视,因此,在公路工程全过程中应加强环保工作。必须加大公路环境保护工作的力度,从宣传教育方面入手,切实提高公路施工人员的环保意识。

2)规范施工全过程,使工程项目可持续发展。公路施工环保工作要从源头抓起,首先要有环保观念,在公路设计阶段就应重视环保措施,并在公路工程开工前,制定一套完整环保制度,在营运期间加强可持续发展养护工作,将环保落到实处,将公路施工对环境的负面影响降低到最低。

3)完善监督制度,使环保措施有效实施。只有建立切实可行的监督机制,将环境保护与工程质量考核相结合,落实责任到人,才能使环保措施得以有效长期的实施。加强对公路环境问题的深入研究,促使我国公路建设、公路环境治理水平早日达到发达国家水平。

[1]张跃峰.公路工程环境保护措施研究[j].交通世界,2007.

[2]何林,魏援.公路环境保护与环境影响评价[j].青海交通科技,2007.

[3]彭淑清,钟坚勇.公路建设与环境保护探讨[j].华东公路,2008.

[4]郭发忠.公路工程设计中环境保护的实践[j].重庆交通学院学报,2008.

[5]刘纯青,龙春英.高速公路路堑边坡景观营建艺术模式初探[j].安徽农业科学,2007.

人工智能论文的参考文献篇十二

我国矿产资源丰富,因此矿产资源的开发和利用对我国经济发展有着重要意义,然而自从矿产资源开发以来就暴露出一些问题,尤其是不合理的矿山建设对环境产生了破坏作用。而我国对环境保护问题的重视还处于发展阶段,迫切需要对前期建设中的失误进行弥补,对问题进行修补。

矿山建设;环境保护;保护措施

伴随着我国经济的快速发展,而又同时作为一个最大的发展中国家,对资源的需求量正在逐步增大。国家发展规划一再强调,经济的发展要又好又快,不能走西方国家发展的老路,不能重复先破坏后修复的经济发展道路,在资源开发的同时就注重环境的保护。矿山建设也一样,它所造成的问题主要造两个大的方面,一方面是开采方法不够合理规范,另一方面是对开采后的废料处理不当,对环境造成了污染。因此,工作单位与工作人员必须响应国家的号召,在开采过程中提高对环境保护的重视程度,努力做到既能取得良好的经济效益,又能保护环境。

1.1目前矿山建设中的破坏性影响

矿山开采主要采用地上和地下两种方式,然而这两种开采方式都存在一定的弊端,都会对环境造成一定的破坏作用。矿山开采会对地表的生态环境造成破坏,会改变原有的地表地貌特征,严重影响植被覆盖率。而地表植被的破坏对其他生态环境有着重要的影响,有可能引起生物多样性的减少,水土流失等问题。不恰当的开采行为严重时可能会造成地表坍塌也就是塌方的危险,地下水位也可能会因此受到影响。对矿石开采后的产生的废石、尾矿等固体污染物的处理不当也会严重影响环境,主要体现在对土壤环境和大气环境的影响上。其中,有一部分废石所含有的化学成分会引发自燃现象,并释放出对环境或人体产生伤害的气体。除此之外,挖矿井所产生的废水也是重要的污染源。

1.2对其重要程度的分析

环境是人类赖以生存的基础,与人类生存密切相关,甚至起着决定作用。环境保护不仅仅是我们一个国家更是全世界共同面临的问题,如果没有处理好环境问题将使我国的经济发展面临严峻的挑战。就目前来看,我国已经重视环境保护问题,保护环境已经成为我国的一项基本国策。矿山建设中产生的环境问题无疑是环境问题中的重要组成部分,它对环境的影响是多方面的,不仅影响人们的日常生活和生活环境,也影响了经济。环境不仅仅是针对当下时代生活的人,更是对几十年乃至几个世纪后的人类而言,他们的生活环境取决于我们现在的所做所为。矿山建设所面临的不仅仅是资源枯竭的问题,对地表环境,对土壤、大气等都会产生重要的影响,几乎影响到整个生态环境。

2.1合理处理废水,防治水源破坏

由于我国人口基数大,淡水资源十分有限,工业用水需求量大,每个人所占有的淡水资源量很有限,远远落后于世界平均水平,水资源匮乏的现象在矿区就更为严重了。我国矿山酸性水污染普遍较为严重,主要分布在有色金属、化工矿山和部分含硫冶金矿山。处理酸性水总的原则是:在生产过程中减少酸性水的产生,在排放前加以必要的处理以及对酸性水进行重复利用。生产过程中的工程技术需要不断地改进,将用水洗净矿产的过程尽量减少,减少所需要的净水用量,有足够技术支持的可以采用封闭净化的技术。对于酸性废水和碱性废水同时存在于矿山,可以进行酸性水和碱性水中和处理,节省环保费用。

另外,可以采用其他物理方法对治理酸水。废水处理方法也应该得到改善,尽可能地减少废水的排放,或对废水进行再处理后再进行排放。处理后的废水可以重复使用,既减少了浪费,也对环境的不利影响最小化。无论是排放还是再利用都需要对废水进行一定的处理,这就要求废水处理技术的不断提高。最重要的原则就是保护水源,矿山往往接近于水源,污染了水的源头就意味着污染了一条河,一片区域,对人们的生产生活造成巨大的影响。建造封闭性高的工厂,严格控制,严格把关,提高管道的防渗透能力,定期检查管道的破损情况,避免管道中的废水泄漏造成污染的现象。在矿山建设中,要提高对水的重要性的认识,减少水资源的使用,合理处理废水,杜绝水资源的浪费。

2.2对大气环境污染物的治理

在矿山建设中对大气产生污染的主要是粉尘和废气,粉尘和废气中的有害成分对工作人员的身体健康有危害。在工作开展过程中,空气中弥漫着粉尘,通过人类的呼吸进入呼吸道,引发呼吸道感染,容易诱发多多种疾病,粉尘更被称作人类健康的天敌。粉尘和废气不仅影响人类的健康,对大气的污染也是极为严重的。由此看来,粉尘和废气的治理也是矿山环保建设中重要环节。对于废气的治理方法是多样的。首先,可以优化动力结构,采用污染小,环保的动力资源,如使用电力、天然气等对环境影响较小的动力资源,也可依靠科学技术开发使用新型能源,将新能源技术运用到矿山建设中。

另外,可以采用尾气排放相对较少的,符合国家制定的尾气排放标准的柴油机。这两种方法的治理原则是从污染的源头进行治理,也可以安装净化尾气的装置,使尾气的排放能够安全,无污染。就粉尘治理而言,通过对粉尘产生的原理的分析,提出相应的方法加以应对。在作业过程中采用静电除尘,使用旋风式除尘器,或者脉冲布袋除尘器捕集作业过程中产生的岩粉,不使岩粉扩散和污染作业场地。除次之外,在作业中还可以配合水的使用,可在场地中建设水道,并适当地喷洒,增加空气湿度,以达到使粉尘潮湿,难以在空中飞扬的目的。粉尘和废气的适当处理是对工作人员身体健康的一种保障,也是对保护环境的责任的履行。

环境保护是矿山建设的重要课题,环境污染往往比环境治理要简单得多,因此在矿山建设过程中就应该注意环境保护,将污染降到最低。哪怕是市场经济占主导地位的今天,也不能只顾经济利益,忽视道德问题,经济的发展要遵循可持续发展战略,竭泽而渔的思想应该抛弃。需要加强环境保护教育工作,提高环境保护意识,深入贯彻落实科学发展观与可持续发展战略,以适应现代社会对环境标准的新要求。国家、地方出台的标准也会越来越严格,对污染物的排放严格限制,减少矿山建设中对环境的迫害。国家、地方、工作单位、工作人员、公众都应该站在自己的角度采取相应的措施来保护环境。

[1]郑红,董影卓,安冬梅,等.矿山环保现状与防治对策的思考矿[j].业快报,2001.(4).

[2]管荣根,顾玲,陈静,等.矿山机械环保问题的探讨矿山机械[j].矿山机械,2001(8).

人工智能论文的参考文献篇十三

人工智能和数字地球是计算机科学及信息科学发展中的重要领域。本文简述了人工智能的概念及其在计算机上的实现方式,并提出了人工智能技术在数字地球发展中几个方面的应用,最后总结了人工智能技术为数字地球的发展带来的好处。

1前言

,美国副总统阿尔.戈尔在加利福尼亚科学中心作的演讲中提出了“数字地球”这一新概念,并对其作了比较全面和通俗的说明[1]。演讲中戈尔总统给出数字地球可能的无比广阔的应用前景,人们可以通过数字地球技术指导仿真外交,打击和监测犯罪,保护生态多样性,预测气候变化,增加作物产量等。

在数字地球中非常重要的一点是如何使海量的地理空间数据变得有意义,即让它们能过被人们所理解。但是,在面对这些海量的数据时,我们处理的手段却是有限的。而且这些数据都是由计算机来处理的,在面对大量数据中的无用数据时,计算机是很难将其识别出来的。所以我们需要让计算机具有人类一样的智慧,将这些数据进行有效的处理。如今,人工智能技术在数字地球中有着广泛的应用。通过这一技术,人们可以高效的处理和分析这些海量数据。

2人工智能的实现方式

人工智能在计算机上有两种不同的实现方式。一种是采用传统的编码技术,使系统呈现智能的效果,而不考虑所用的方法是否与人或动物机体所用的方法相同。另一种是模拟法(modelingapproach),它要求实现方法也和人或动物机体所用的方法相同或相似。模拟法有两种实现的算法:遗传算法和神经网络算法。

遗传算法借鉴生物进化论,将要解决的问题模拟成一个生物体,通过复制、交叉、突变等操作产生下一代解空间[3],并通过适应函数度来淘汰那些不良的个体,这样迭代进化几代之后就很有可能得到适应度函数值较高的个体。遗传算法通常用在求解问题最优解的情况下,如函数优化、组合优化等。

神经网络算法通过模拟人或动物的神经网络传递和处理信息的行为特征,进行分布式并行信息处理的算法数学模型[4]。使用神经网络算法使系统具有像人一样学习的特征。初始时,系统模块跟初生婴儿一样什么也不懂,而且会经常犯错,但是它可用通过学习,从错误中吸取教训,下一次运行时就可能改正。

3人工智能技术在数字地球中的应用

人工智能能够使我们的计算机具有人能解决问题的能力,使得计算机工作起来更加的高效。而且通过人工智能的学习机制,降低其出错的几率。人工智能在数字地球中可以有以下几个方面的应用:

3.1智能导航

当前我们主要使用gps技术来做定位和导航的。但是gps只能在室外及卫星信号不被遮挡或反射的地方才能使用。因此,在室内、茂密的树木覆盖处和高层建筑地下gps就很难使用了[5]。

使用人工智能技术进行智能导航,当不能获得gps卫星信号时,系统会智能的使用基于通信基站定位、互联网定位等来提供导航。同时,人工智能系统还可以实现最优路径规划,周边信息搜索等功能。

3.2智能的人机交互

数字地球的建设依赖于互联网、虚拟现实等技术,但是现在我们能做的仅仅是通过这些技术将我们所获得的海量数据展现在人们面前。而显示信息的形式主要是以浏览器、虚拟头盔等,这些工具存在着不能与人友好交互的问题。我们通常是通过人肢体来交互,而不能像现实生活中人们通过对话的形式交互。

3.3专家系统

计算机较人强的地方在于它的计算速度快,将计算机的高运算速度和人的智慧集成起来构成专家系统。专家系统使用人类专家推理的模型来处理现实世界中需要专家作出解释的复杂问题,并得出与专家相同的结论[6]。

在气象预测中,我们要处理大量的气象数据。使用传统的计算机处理方式,我们还要对计算机的处理结果做大量的分析。但是通过专家系统,不仅给出处理的数据结果,还可以给出分析的结果,以便研究人员辅助研究使用。这样可以减少大量的人力耗费。

总结

戈尔总统所提出的数字地球,不仅仅是数字化的地球,其未来的发展跟应该是在数字化的基础之上的智慧地球,正如20xx年ibm所提出的“智慧地球”。未来,电子设备将会更加智能化,人机交互将会更友好化。

同时在面对海量的地理空间数据时,使用人工智能技术可以拓宽我们队这些数据的处理能力。加快数据的处理速度、精确性等。通过智能搜索,可以快速精准的找到我们所需要的信息。就像google公司所做的智能周边搜索一样,当人们走在城市街道上的时候,系统可以搜索并显示周边我们感兴趣的一些商店、景观、饭店等信息。并且人工智能技术还能提供智能导航、人机自然语言交互、专家系统等。未来人工智能技术将在数字地球的发展中起到更大的作用。

人工智能论文的参考文献篇十四

文献综述的格式与一般研究性论文的格式有所不同。这是因为研究性的论文注重研究的方法和结果,而文献综述要求向读者介绍与主题有关的详细资料、动态、进展、展望以及对以上方面的评述。因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言、主题、总结和参考文献。撰写文献综述时可按这四部分拟写提纲,在根据提纲进行撰写工作。

前言部分,主要是说明写作的目的,介绍有关的概念及定义以及综述的范围,扼要说明有关主题的现状或争论焦点,使读者对全文要叙述的问题有一个初步的轮廓。

主题部分,是综述的主体,其写法多样,没有固定的格式。可按年代顺序综述,也可按不同的问题进行综述,还可按不同的观点进行比较综述,不管用那一种格式综述,都要将所搜集到的文献资料归纳、整理及分析比较,阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述,主题部分应特别注意代表性强、具有科学性和创造性的文献引用和评述。

总结部分,与研究性论文的小结有些类似,将全文主题进行扼要总结,对所综述的主题有研究的作者,最好能提出自己的见解。

参考文献虽然放在文末,但却是文献综述的重要组成部分。因为它不仅表示对被引用文献作者的尊重及引用文献的依据,而且为读者深入探讨有关问题提供了文献查找线索。因此,应认真对待。参考文献的`编排应条目清楚,查找方便,内容准确无误。

人工智能论文的参考文献篇十五

由于文献综述的特点,致使它的写作既不同于“读书笔记”“读书报告”,也不同于一般的科研论文。因此,在撰写文献综述时应注意以下几个问题:

1、搜集文献应尽量全。掌握全面、大量的文献资料是写好综述的前提,否则,随便搜集一点资料就动手撰写是不可能写出好多综述的,甚至写出的文章根本不成为综述。

2、注意引用文献的代表性、可靠性和科学性。在搜集到的文献中可能出现观点雷同,有的文献在可靠性及科学性方面存在着差异,因此在引用文献时应注意选用代表性、可靠性和科学性较好的文献。

3、引用文献要忠实文献内容。由于文献综述有作者自己的评论分析,因此在撰写时应分清作者的观点和文献的内容,不能篡改文献的内容。

4、参考文献不能省略。有的科研论文可以将参考文献省略,但文献综述绝对不能省略,而且应是文中引用过的,能反映主题全貌的并且是作者直接阅读过的文献资料。

总之,一篇好的文献综述,应有较完整的文献资料,有评论分析,并能准确地反映主题内容。

【本文地址:http://www.xuefen.com.cn/zuowen/4520433.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档