专业平行四边形的性质说课稿冀教版(案例18篇)

格式:DOC 上传日期:2023-10-28 20:49:15
专业平行四边形的性质说课稿冀教版(案例18篇)
时间:2023-10-28 20:49:15     小编:HT书生

总结可以让我们从过去的经验中获得智慧。如何培养孩子的创造力和想象力,提高他们的整体素养和综合能力。想了解总结的写作规范和技巧,不妨先看看下面的一些范文示例。

平行四边形的性质说课稿冀教版篇一

二、教法(说教法):

“教学有法,教无定法,贵在得法”,行之有效的教法是取得良好教学效果的保证,按教学论中教为主导,学为主体的原则,教师的任务是制定目标,组织教学活动,控制教学活动的进程,并随机应变、排除障碍,承认和尊重学生的主体地位。为了适应素质教育,培养学生的能力,本节课采用“五点”教学法。具体如下:

1、以“问题”为学生学习的“起点”;

2、以“范式”为学生学习的“焦点”;

3、以“变式”为学生学习的“重点”;

4、以“创新”为学生学习的“难点”;

5、以“评价”为学生学习的“疑点”;

三、学法(说学法)

教学活动是教与学的双边相互促进的活动。在教学活动中,学生始终是学习的主体,为了激发学生自主学习科学的方法,真正做到课堂教学中面向全体学生,针对本课内容和以上教法,采用的学法如下:

四、教学程序(说过程)。

1、设问激趣,导入新课(起点):

首先复习四边形的概念、明确四边形的.性质,然后用特殊化方法设计一问题:若四边形的两组对边分别平行,则该四边形是什么样的四边形?这样导入新课的目的是使学生在已有的知识基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣,并提高学生的发散思维能力,让学生敢于探索和猜想。

2、诱导思维,以诱达思(焦点):

其次通过设问、质疑,进一步引导学生区分平行四边形与一般四边形,进而猜想出平行四边形的特殊性质。同时教师整理出一种推导平行四边形性质的范式,再让学生联想范式,演绎其他推导模式,这样做的目的是让学生去观察、猜想出平行四边形的性质,在教师的范式的有诱导下,达到演绎数学论证过程的能力。

3、变式问题,突出“重点”:

通过具体问题的观察、猜想、演绎出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质。通过投影不同层次的典型习题给不同层次的学生练习,让学生自己去掌握“重点”。

4、引导创新,化解“难点”:

设计“无图形”和“无结论”问题,引导学生读题、审题、画图、观分析、猜想、归纳,然后把问题中所有可能的结论推导出来,通过这种开放式问题的解决,既达到突出“重点”,又化解“难点”的目的。

5、反馈补缺,消除“疑点”:

在学生自主探索学习的过程中,遇到自己无法解决的疑难问题时,教师做适当的评价和提示,以弥补学习不足之处,从而达到消除“难点”的目的。

6、总观全课,找到收获:

教师对此课学生的表现作一小结、评价,特别是对“两头”的学生予以表扬,告诉学生本节是本章及以后学习的基础,要求他们在以后学习中会用平行四边形的性质去解决实际问题。

7、布置做业:

有针对地布置少量重、难、疑点知识的家庭作业,可以把“单一性结论”问题改为“无结论”问题,以巩固知识。

平行四边形的性质说课稿冀教版篇二

本节课的重点内容是:平行四边形的性质3即平行四边形的对角线互相平分。林老师这节的流程是这样的。先复习这个平行四边形的性质1和2。然后在平行四边形上增添一条对角线,问:得到什么?再增添一条对角线呢?引出四对全等的三角形,再由全等得出对应边相等,从而引出平行四边形的性质3。然后通过7道例题或练习来巩固性质3。练习有学生答,老师写,也有直接让学生板书,师生共同批改。

书上的例3讲完之后,进行了变式练习,师问:如果让ef动起来,请问oe=of还成立吗?渗透了从静到动,一题多变,举一反三的思想。教师本节课教学设计比较流畅,板书设计清楚,明朗。

虽说教师本人的教学设计比较流畅,然而因她的上课语速太快,问题与问题之间留给学生思考时间过少,教师自已讲得太多。可能会导致学生方面知识点及书写的能力难以落实。本节课对于性质3本身,我觉得她的解释还不够到位,应该问学生两点:性质中的“互相平分”你是如何理解的?在性质3应用时,应怎样书写即它的几何语言。关于例4的处理,似乎过于匆忙。原因是因为在整堂课中,教师的板书过多,和在学生口答时教师重复学生的话过多而花了一些时间。例4我认为学生基本上还有能力完成的,教师可以直接让学生书写,教师巡视指导。最后教师只要总结性的问:例4用到了哪些知识点?再总结一句话:求对角线的长,可以先求出它的一半。

1、上课语速一定要放慢些,借用姜校长的一名话:“不知道是不是我老了,我听课总跟不上林老师的步伐。”我也是这样的感觉,试问两位数学老师都跟不上,那学生能跟上吗?2、希望林老师自己尽量再少讲,让学生尽量再多练。

平行四边形的性质说课稿冀教版篇三

一、教材分析:

1.本节内容在教材修订之前安排了两册中,其中,平行四边形的性质安排在八年级上册,平行四边形的判定安排在八年级下册,本册书合并成八年级下册的一章.

2.在内容安排上,努力增大学生资助探索的空间,运用动态的变换方法研究静态的几何图形,按照探索--猜想--证明的顺序展开,体现合情推理与演绎推理的有机结合,加强学生推理能力的训练.

3.在本章的后续学习中,对于几种特殊的四边形,其定义均采用的是内涵定义法,并且矩形和菱形的定义,均以平行四边形作为种概念,所以平行四边形的概念作为“核心概念”当之无愧.关于平行四边形的性质,也是后续学习矩形、菱形、正方形等知识的基础,这些特殊平行四边形的性质,都是在平行四边形性质基础上扩充的,它们的探索方法,也都与平行四边形性质的探索方法一脉相承,因此,平行四边形的性质,在后续的学习中,也是处于核心地位.

4.本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识.

5.学生推理能力的培养是一个长期过程,书写表达是培养推理能力的重要方式,按照教材安排,本册教材书写过程的大前提只要求注明该章新得到的重要定理,强化新结论的应用.

6.平行四边形是“空间与图形”领域中最基本的几何图形,它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包含其性质在生产、生活各领域的实际应用.

二、目标分析:

知识与技能:使学生掌握平行四边形的概念,掌握平行四边形的对边相等,对角相等的性质,会根据概念或性质进行有关的计算和证明.

过程与方法:通过有关证明及应用,教给学生一些基本的数学思想方法.使学生逐步学会分别从题设或结论出发,寻求论证思路,学会用综合法证明问题,从而提高学生分析问题解决问题的能力.

情感、态度价值观:

1.通过四边形与平行四边形的概念之间和性质之间的联系与区别,使学生认识特殊与一般的辩证关系,个性与共性之间的关系等.使学生体会到事物之间总是互相联系又相互区别的,进一步培养辩证唯物主义观点.

2.通过对平行四边形性质的探究,使学生经历观察、分析、猜想、验证、归纳、概括的认知过程,培养学生良好的个性思维品质.

三、学情分析:

1.授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学.

2.该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,兼顾效率和平衡.

3.本班为自己任课的班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性.

四、教学手段:

1.使用导学法、讨论法.

2.运用合作学习的方式,分组学习和讨论.

3.运用多媒体辅助教学.

4.调动学生动手操作,帮助理解.

五、教学设计策略:依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:

1. 回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程.

2. 原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性.

3.教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程.

平行四边形的性质说课稿冀教版篇四

1、教材的地位和作用:

平行四边形是在学习了平行线和三角形之后编排的,是平行线和三角形知识的应用和深化。同时又是为了后面学习矩形、菱形、正方形、圆,甚至高中立体几何打基础的,起着承上启下的桥梁作用。

平行四边形在生产生活实践中应用也很广泛,学习他可以把理论和实际联系起来,更好地为实现科技现代化服务。

在前一章《三角形》的学习中,学生对几何"证明"开始入门,通过本章的学习可以使学生的推理论证的能力得到进一步的巩固和提高,对培养和发展学生的逻辑思维能力也有一定的帮助。

为此,根据教学大纲的要求和编写教材的意图,结合学生认知规律和素质教育的要求,确定本课的教学目标和重、难点如下:

2、教学目标:

(1)双基目标:使学生掌握平行四边形的概念和性质,理解平行线间距离,并会运用平行四边形的性质解决简单的问题。

(2)能力目标:培养学生观察、分析、猜想、归纳知识的自学能力和培养学生联想、类比、转化、推导、论证、演绎、抽象知识的数学思维品质。

(3)非智力目标(思想目标):渗透从具体到抽象,特殊到一般,未知到已知的数学思想以及事物之间互相转化的辨证唯物主义观点。

3、教学重点:理解并掌握平行四边形的概念、性质以及性质的应用。

4、教学难点:平行四边形性质的灵活应用。

"教学有法,教无定法,贵在得法",行之有效的教法是取得良好教学效果的保证,按教学论中教为主导,学为主体的原则,教师的任务是制定目标,组织教学活动,控制教学活动的进程,并随机应变、排除障碍,承认和尊重学生的主体地位。为了适应素质教育,培养学生的能力,本节课采用"五点"教学法。具体如下:

1、以"问题"为学生学习?起点";

2、以"范式"为学生学习的"焦点";

3、以"变式"为学生学习的"重点";

4、以"创新"为学生学习的"难点";

5、以"评价"为学生学习的"疑点";

教学活动是教与学的双边相互促进的活动。在教学活动中,学生始终是学习的主体,为了激发学生自主学习科学的方法,真正做到课堂教学中面向全体学生,针对本课内容和以上教法,采用的学法如下:

1、设问激趣,导入新课(起点):

首先复习四边形的概念、明确四边形的性质,然后用特殊化方法设计一问题:若四边形的两组对边分别平行,则该四边形是什么样的四边形?这样导入新课的目的是使学生在已有的知识基础上去探索数学发展的'规律,达到用问题创设数学情境,提高学生学习兴趣,并提高学生的发散思维能力,让学生敢于探索和猜想。

2、诱导思维,以诱达思(焦点):

其次通过设问、质疑,进一步引导学生区分平行四边形与一般四边形,进而猜想出平行四边形的特殊性质。同时教师整理出一种推导平行四边形性质的范式,再让学生联想范式,演绎其他推导模式,这样做的目的是让学生去观察、猜想出平行四边形的性质,在教师的范式的有诱导下,达到演绎数学论证过程的能力。

3、变式问题,突出"重点":

通过具体问题的观察、猜想、演绎出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质。通过投影不同层次的典型习题给不同层次的学生练习,让学生自己去掌握"重点"。

4、引导创新,化解"难点":

设计"无图形"和"无结论"问题,引导学生读题、审题、画图、观分析、猜想、归纳,然后把问题中所有可能的结论推导出来,通过这种开放式问题的解决,既达到突出"重点",又化解"难点"的目的。

5、反馈补缺,消除"疑点":

在学生自主探索学习的过程中,遇到自己无法解决的疑难问题时,教师做适当的评价和提示,以弥补学习不足之处,从而达到消除"难点"的目的。

6、总观全课,找到收获:

教师对此课学生的表现作一小结、评价,特别是对"两头"的学生予以表扬,告诉学生本节是本章及以后学习的基础,要求他们在以后学习中会用平行四边形的性质去解决实际问题。

7、布置做业:

有针对地布置少量重、难、疑点知识的家庭作业,可以把"单一性结论"问题改为"无结论"问题,以巩固知识。

8、板书设计:

平行四边形性质及应用:

1、平行四边形的定义:

2、平行四边形表示方法:

3、平行四边形的性质:

(1)从边看;

(2)从角看;

(3)从对角线看;

平行四边形的性质说课稿冀教版篇五

《数学课程标准》指出:新课程实施的基本点是促进学生全面、持续、和谐发展。而数学教学,则从学生已有的生活经验出发,创设生动有趣的问题情境,引导学生通过观察猜想、实验探究、合作交流,从而获取新知、形成技能、发展思维、学会学习。

二、教材分析与处理

平行四边形的性质是平行线和三角形知识的应用和深化,是学习矩形、菱形、正方形的必备知识,是证明线段相等、角相等的重要依据。本课主要探究平行四边形对角线互相平分这一性质。我创设新颖的故事情境引入新课,来激发兴趣;对例题进行改编,融问题与故事于一体,来应用数学;设置动手操作活动,让学生在教师的指导下自主探究学习,从而感受数学。

因此,通过本节课的学习,力争达到以下教学目标:

知识技能:掌握平行四边形对角线互相平分这一性质,并会用此性质进行有关的论证和计算。

数学思考:经历观察、猜想、实验、验证等数学活动,认识平行四边形的性质,发展学生演绎推理能力和发散思维能力。

解决问题:通过多种方法探究平行四边形的性质,体验解决问题策略的多样性,初步形成评价与反思的意识。

情感态度:培养学生勤于实践、勇于探索、合作交流的精神,增强学生学好数学的勇气和信心。

教学重点:平行四边形的对角线互相平分这一性质的应用。

教学难点:对平行四边形的对角线互相平分这一性质的探究。

三、教学方法与手段

八年级学生几何学习正处在试验几何向论证几何的过渡阶段,对于严密的推理论证,无论从知识结构,还是知识能力上都有所欠缺。因此我采用创设情境―大胆猜想―实验探究―反思评价的课堂活动模式,努力营造自主、合作、探究的学习氛围,结合多媒体辅助教学,生动、直观地反映问题情境,使学生在学习中获得愉快的数学体验。

四、教学过程

(一)激趣设疑

[教师活动]教师利用课件展示问题情境。

[学生活动]此时,学生的积极性将被调动起来,努力试图寻找各种途径来求平行四边形的面积,但可能找不到合适的解决办法。

[教学内容]教师乘机引出课题,明确学习任务。

[达成目标与调控措施]此处创设生动有趣的故事情境,力求更好地激发学生的学习兴趣。

(二)深入探究

[教学内容]请学生观察平行四边形的对角线,并猜想有什么性质。

[学生活动]估计大多数学生能想到对角线平分,但可能忽视互相两字,也有可能会猜到对角线平分每组对角等错误结论。

[教师活动]此时教师不做解答,但一一记录下学生的各种猜想。

[达成目标与调控措施]形形色色的回答,能给他们不同的感受,在锻炼学生的观察及表达能力的同时,并为下一步实验探究指明了方向。

[教师活动]教师将学生分成三组,拿出事先画好的平行四边形,按要求动手探究平行四边形的对角线有何性质。

平行四边形的性质说课稿冀教版篇六

1、教材的地位和作用:

平行四边形是在学习了平行线和三角形之后编排的,是平行线和三角形知识的应用和深化。同时又是为了后面学习矩形、菱形、正方形、圆,甚至高中立体几何打基础的,起着承上启下的桥梁作用。

平行四边形在生产生活实践中应用也很广泛,学习他可以把理论和实际联系起来,更好地为实现科技现代化服务。

在前一章《三角形》的学习中,学生对几何“证明”开始入门,通过本章的学习可以使学生的推理论证的能力得到进一步的巩固和提高,对培养和发展学生的逻辑思维能力也有一定的帮助。

为此,根据教学大纲的要求和编写教材的意图,结合学生认知规律和素质教育的要求,确定本课的教学目标和重、难点如下:

2、教学目标:

(1)双基目标:使学生掌握平行四边形的概念和性质,理解平行线间距离,并会运用平行四边形的性质解决简单的问题。

(2)能力目标:培养学生观察、分析、猜想、归纳知识的自学能力和培养学生联想、类比、转化、推导、论证、演绎、抽象知识的数学思维品质。

(3)非智力目标(思想目标):渗透从具体到抽象,特殊到一般,未知到已知的数学思想以及事物之间互相转化的辨证唯物主义观点。

3、教学重点:理解并掌握平行四边形的概念、性质以及性质的应用。

4、教学难点:平行四边形性质的灵活应用。

“教学有法,教无定法,贵在得法”,行之有效的教法是取得良好教学效果的保证,按教学论中教为主导,学为主体的原则,教师的任务是制定目标,组织教学活动,控制教学活动的进程,并随机应变、排除障碍,承认和尊重学生的主体地位。为了适应素质教育,培养学生的能力,本节课采用“五点”教学法。具体如下:

1、以“问题”为学生学习的“起点”;

2、以“范式”为学生学习的“焦点”;

3、以“变式”为学生学习的“重点”;

4、以“创新”为学生学习的“难点”;

5、以“评价”为学生学习的“疑点”;

教学活动是教与学的双边相互促进的活动。在教学活动中,学生始终是学习的主体,为了激发学生自主学习科学的方法,真正做到课堂教学中面向全体学生,针对本课内容和以上教法,采用的学法如下:

1、设问激趣,导入新课(起点):

首先复习四边形的概念、明确四边形的性质,然后用特殊化方法设计一问题:若四边形的两组对边分别平行,则该四边形是什么样的四边形?这样导入新课的目的是使学生在已有的知识基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣,并提高学生的发散思维能力,让学生敢于探索和猜想。

2、诱导思维,以诱达思(焦点):

其次通过设问、质疑,进一步引导学生区分平行四边形与一般四边形,进而猜想出平行四边形的特殊性质。同时教师整理出一种推导平行四边形性质的范式,再让学生联想范式,演绎其他推导模式,这样做的目的是让学生去观察、猜想出平行四边形的性质,在教师的范式的有诱导下,达到演绎数学论证过程的能力。

3、变式问题,突出“重点”:

通过具体问题的观察、猜想、演绎出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质。通过投影不同层次的典型习题给不同层次的学生练习,让学生自己去掌握“重点”。

4、引导创新,化解“难点”:

设计“无图形”和“无结论”问题,引导学生读题、审题、画图、观分析、猜想、归纳,然后把问题中所有可能的结论推导出来,通过这种开放式问题的解决,既达到突出“重点”,又化解“难点”的目的。

5、反馈补缺,消除“疑点”:

在学生自主探索学习的过程中,遇到自己无法解决的疑难问题时,教师做适当的评价和提示,以弥补学习不足之处,从而达到消除“难点”的目的。

6、总观全课,找到收获:

教师对此课学生的表现作一小结、评价,特别是对“两头”的学生予以表扬,告诉学生本节是本章及以后学习的基础,要求他们在以后学习中会用平行四边形的性质去解决实际问题。

7、布置做业:

有针对地布置少量重、难、疑点知识的家庭作业,可以把“单一性结论”问题改为“无结论”问题,以巩固知识。

平行四边形的性质说课稿冀教版篇七

我是牡丹江市第四中学数学教师—牛龙梅,今天,我说课的内容是选自人教版新课标实验教材《数学》八年级下第十九章第一节第二课时《平行四边形的性质》。我设计的说课共分四大环节。

《数学课程标准》指出:新课程实施的基本点是促进学生全面、持续、和谐发展。而数学教学,则从学生已有的生活经验出发,创设生动有趣的问题情境,引导学生通过观察猜想、实验探究、合作交流,从而获取新知、形成技能、发展思维、学会学习。

平行四边形的性质是平行线和三角形知识的应用和深化,是学习矩形、菱形、正方形的必备知识,是证明线段相等、角相等的重要依据。本课主要探究平行四边形对角线互相平分这一性质。我创设新颖的`故事情境引入新课,来激发兴趣;对例题进行改编,融问题与故事于一体,来应用数学;设置动手操作活动,让学生在教师的指导下自主探究学习,从而感受数学。

知识技能:掌握平行四边形对角线互相平分这一性质,并会用此性质进行有关的论证和计算。

数学思考:经历观察、猜想、实验、验证等数学活动,认识平行四边形的性质,发展学生演绎推理能力和发散思维能力。

解决问题:通过多种方法探究平行四边形的性质,体验解决问题策略的多样性,初步形成评价与反思的意识。

情感态度:培养学生勤于实践、勇于探索、合作交流的精神,增强学生学好数学的勇气和信心。

教学重点:平行四边形的对角线互相平分这一性质的应用。

教学难点:对平行四边形的对角线互相平分这一性质的探究。

八年级学生几何学习正处在试验几何向论证几何的过渡阶段,对于严密的推理论证,无论从知识结构,还是知识能力上都有所欠缺。因此我采用创设情境—大胆猜想—实验探究—反思评价的课堂活动模式,努力营造自主、合作、探究的学习氛围,结合多媒体辅助教学,生动、直观地反映问题情境,使学生在学习中获得愉快的数学体验。

(一)激趣设疑

[教师活动]教师利用课件展示问题情境。

[学生活动]此时,学生的积极性将被调动起来,努力试图寻找各种途径来求平行四边形的面积,但可能找不到合适的解决办法。

[教学内容]教师乘机引出课题,明确学习任务。

[达成目标与调控措施]此处创设生动有趣的故事情境,力求更好地激发学生的学习兴趣。

(二)深入探究

[教学内容]请学生观察平行四边形的对角线,并猜想有什么性质。

[学生活动]估计大多数学生能想到对角线平分,但可能忽视互相两字,也有可能会猜到对角线平分每组对角等错误结论。

[教师活动]此时教师不做解答,但一一记录下学生的各种猜想。

[达成目标与调控措施]形形色色的回答,能给他们不同的感受,在锻炼学生的观察及表达能力的同时,并为下一步实验探究指明了方向。

[教师活动]教师将学生分成三组,拿出事先画好的平行四边形,按要求动手探究平行四边形的对角线有何性质。

平行四边形的性质说课稿冀教版篇八

一、教材分析(说教材):

1、教材的地位和作用:

平行四边形是在学习了平行线和三角形之后编排的,是平行线和三角形知识的应用和深化。同时又是为了后面学习矩形、菱形、正方形、圆,甚至高中立体几何打基础的,起着承上启下的桥梁作用。

平行四边形在生产生活实践中应用也很广泛,学习他可以把理论和实际联系起来,更好地为实现科技现代化服务。

在前一章《三角形》的学习中,学生对几何“证明”开始入门,通过本章的学习可以使学生的推理论证的能力得到进一步的巩固和提高,对培养和发展学生的逻辑思维能力也有一定的帮助。

为此,根据教学大纲的要求和编写教材的意图,结合学生认知规律和素质教育的要求,确定本课的教学目标和重、难点如下:

2、教学目标:

(1)双基目标:使学生掌握平行四边形的概念和性质,理解平行线间距离,并会运用平行四边形的性质解决简单的问题。

(2)能力目标:培养学生观察、分析、猜想、归纳知识的自学能力和培养学生联想、类比、转化、推导、论证、演绎、抽象知识的数学思维品质。

(3)非智力目标(思想目标):渗透从具体到抽象,特殊到一般,未知到已知的数学思想以及事物之间互相转化的辨证唯物主义观点。

3、教学重点:

理解并掌握平行四边形的概念、性质以及性质的应用。

4、教学难点:

平行四边形的性质说课稿冀教版篇九

本节课的重点内容是:平行四边形的性质3即平行四边形的对角线互相平分。林老师这节的流程是这样的。先复习四边形的性质1和2。然后在平行四边形上增添一条对角线,问:得到什么?再增添一条对角线呢?引出四对全等的三角形,再由全等得出对应边相等,从而引出平行四边形的性质3。然后通过7道例题或练习来巩固性质3。练习有学生答,老师写,也有直接让学生板书,师生共同批改。

书上的例3讲完之后,进行了变式练习,师问:如果让ef动起来,请问oe=of还成立吗?渗透了从静到动,一题多变,举一反三的思想。教师本节课教学设计比较流畅,板书设计清楚,明朗。

虽说教师本人的教学设计比较流畅,然而因她的上课语速太快,问题与问题之间留给学生思考时间过少,教师自已讲得太多。可能会导致学生方面知识点及书写的能力难以落实。本节课对于性质3本身,我觉得她的解释还不够到位,应该问学生两点:性质中的“互相平分”你是如何理解的?在性质3应用时,应怎样书写即它的几何语言。关于例4的处理,似乎过于匆忙。原因是因为在整堂课中,教师的板书过多,和在学生口答时教师重复学生的话过多而花了一些时间。例4我认为学生基本上还有能力完成的,教师可以直接让学生书写,教师巡视指导。最后教师只要总结性的问:例4用到了哪些知识点?再总结一句话:求对角线的长,可以先求出它的一半。

1、上课语速一定要放慢些,借用姜校长的一名话:“不知道是不是我老了,我听课总跟不上林老师的步伐。”我也是这样的感觉,试问两位数学老师都跟不上,那学生能跟上吗?2、希望林老师自己尽量再少讲,让学生尽量再多练。

平行四边形的性质说课稿冀教版篇十

一、教材分析(说教材):

1、教材的地位和作用:

平行四边形是在学习了平行线和三角形之后编排的,是平行线和三角形知识的应用和深化。同时又是为了后面学习矩形、菱形、正方形、圆,甚至高中立体几何打基础的,起着承上启下的桥梁作用。

平行四边形在生产生活实践中应用也很广泛,学习他可以把理论和实际联系起来,更好地为实现科技现代化服务。

在前一章《三角形》的学习中,学生对几何“证明”开始入门,通过本章的学习可以使学生的推理论证的能力得到进一步的巩固和提高,对培养和发展学生的逻辑思维能力也有一定的帮助。

为此,根据教学大纲的要求和编写教材的意图,结合学生认知规律和素质教育的要求,确定本课的教学目标和重、难点如下:

2、教学目标:

(1)双基目标:使学生掌握平行四边形的概念和性质,理解平行线间距离,并会运用平行四边形的性质解决简单的问题。

(2)能力目标:培养学生观察、分析、猜想、归纳知识的自学能力和培养学生联想、类比、转化、推导、论证、演绎、抽象知识的数学思维品质。

(3)非智力目标(思想目标):渗透从具体到抽象,特殊到一般,未知到已知的数学思想以及事物之间互相转化的辨证唯物主义观点。

3、教学重点:理解并掌握平行四边形的概念、性质以及性质的应用。

4、教学难点:平行四边形性质的灵活应用。

二、教法(说教法):

“教学有法,教无定法,贵在得法”,行之有效的教法是取得良好教学效果的保证,按教学论中教为主导,学为主体的原则,教师的任务是制定目标,组织教学活动,控制教学活动的进程,并随机应变、排除障碍,承认和尊重学生的主体地位。为了适应素质教育,培养学生的能力,本节课采用“五点”教学法。具体如下:

1、以“问题”为学生学习的“起点”;

2、以“范式”为学生学习的“焦点”;

3、以“变式”为学生学习的“重点”;

4、以“创新”为学生学习的“难点”;

5、以“评价”为学生学习的“疑点”;

三、学法(说学法)

教学活动是教与学的双边相互促进的活动。在教学活动中,学生始终是学习的主体,为了激发学生自主学习科学的方法,真正做到课堂教学中面向全体学生,针对本课内容和以上教法,采用的学法如下:

四、教学程序(说过程)。

1、设问激趣,导入新课(起点):

首先复习四边形的概念、明确四边形的性质,然后用特殊化方法设计一问题:若四边形的两组对边分别平行,则该四边形是什么样的四边形?这样导入新课的目的是使学生在已有的知识基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣,并提高学生的发散思维能力,让学生敢于探索和猜想。

2、诱导思维,以诱达思(焦点):

其次通过设问、质疑,进一步引导学生区分平行四边形与一般四边形,进而猜想出平行四边形的特殊性质。同时教师整理出一种推导平行四边形性质的范式,再让学生联想范式,演绎其他推导模式,这样做的目的.是让学生去观察、猜想出平行四边形的性质,在教师的范式的有诱导下,达到演绎数学论证过程的能力。

3、变式问题,突出“重点”:

通过具体问题的观察、猜想、演绎出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质。通过投影不同层次的典型习题给不同层次的学生练习,让学生自己去掌握“重点”。

4、引导创新,化解“难点”:

设计“无图形”和“无结论”问题,引导学生读题、审题、画图、观分析、猜想、归纳,然后把问题中所有可能的结论推导出来,通过这种开放式问题的解决,既达到突出“重点”,又化解“难点”的目的。

5、反馈补缺,消除“疑点”:

在学生自主探索学习的过程中,遇到自己无法解决的疑难问题时,教师做适当的评价和提示,以弥补学习不足之处,从而达到消除“难点”的目的。

6、总观全课,找到收获:

教师对此课学生的表现作一小结、评价,特别是对“两头”的学生予以表扬,告诉学生本节是本章及以后学习的基础,要求他们在以后学习中会用平行四边形的性质去解决实际问题。

7、布置做业:

有针对地布置少量重、难、疑点知识的家庭作业,可以把“单一性结论”问题改为“无结论”问题,以巩固知识。

平行四边形的性质说课稿冀教版篇十一

通过这节课深入的学习,为今后进一步学平行四边行面积计算打下基础。

四年级学生思维活跃,求知欲强,喜欢动手、动脑。有很强的好奇心和探索欲望。因此在教学中我抓住这些特点让他们通过动眼观察、动手操作、动脑分析归纳等来理解所学知识。

1、知识与技能目标

(1)理解平行四边形的概念及其特征。

(2)认识平行四边形的底和高,会画高。

(3)培养学生实践能力,观察能力、分析能力。

2、过程与方法目标

让学生通过动手操作,动眼观察,动口表达动脑思考等方式探究新知。

3、情感态度与价值观目标

让学生感受图形与生活的密切联系,在探索中感受成功的乐趣。

重点:认识平行四边形的特征。认识平行四边形的底和高。

难点:作平行四边形的高,明白底与高的对应关系。

这节课我注重了以教师的导和学生的学为主线,通过教师提问、演示、指导。学生动手操作、观察、分析、讨论、归纳等方法来完成教学。使学生在轻松愉快中获得新知。

教具:三角板、平行四边形纸片、长方形活动框、小黑板等。

学具:三角板、平行四边形纸片、量角器。

活动一:巧用实例,激趣导入。

课件出示一组生活中有平行四边形的图,请学生找有哪些平面图形,当说到平行四边形的地方用红课件闪烁一遍,再让学生说说生活中哪些物体表面是平行四边形的。师生小结后问:“想了解平行四边形的更多知识吗?”教师板书出课题。

(设计意图:用生活中的实例让学生明白数学与生活的紧密联系,用提问的方式激发他们的学习兴趣,产生探新欲望,明白探究内容。)

活动二:动手实践,探索新知。

要求学生用准备的平行四边形纸片用眼先看一看边、角有什么特点,再用尺子、量角器实际量一量,并把发现的结论填入“我的发现”报告单中。然后请学生说自己的发现,对发现多的及时进行表扬,师生共同整理板书出平行四边形的特征。

师接着问:“刚才我们研究了平行四边形的特征,那么怎样定义平行四边形呢?”(同一组小声议一议,师生共同小结,板书出定义。)

(设计意图:让学生亲自动手操作,获得新知,培养了他们的动手、动脑、分析、归纳等能力。且对所学知识加深了印象。)

活动三:教师演示,学生观察。

师用长方形的活动木框,用手捏住两个对角,向内外拉。请学生观察有什么变化,说明了平行四边形具有什么性质。师生小结板书出性质。

(设计意图:用实物演示,让学生更加直观、形象地获得新知。)

活动四:师生共同操作,突破难点。

请学生用手中的平行四边形纸片跟着老师一起操作,师边做边讲折法。然后展开所得折痕就是平行四边形的高。说明与高垂直的边就是底。请学生用笔和三角板画出高并标上。再用同样的方法折几条高,观察高有什特点。然后师生共同小结板书出高与底的定义和特点。

设计意图:在这个环节中,既体现了教师的导和学生的学,又培养了动手、动脑能力。使难点更好的得到了突破。)

活动五:巩固练习(课件出示)

1、下面哪些图形是平行四边形?

2、你能从下图中找出你学过的图形吗?

3、标出下图中平行四边形的底和高。

平行四边形的性质说课稿冀教版篇十二

平行四边形是我们在初中数学学习中遇到的一个重要的几何概念,它具有独特的性质和特点。通过学习平行四边形的性质,我深刻地体会到了它的重要性和应用价值。下面我将结合自己的学习体验,从平行四边形的定义、性质及证明、相关定理的运用、实际应用以及对我的启示等五个方面展开。

首先,平行四边形的定义是我们认识它的基础。根据定义,一组平行四边形的对边互相平行,对角线互相相等。这个定义对于我们研究平行四边形的性质起到了基本的指导作用。通过这个定义,我们可以确定平行四边形的基本特征,并由此展开进一步的研究。

其次,平行四边形的性质及证明是我们理解它的关键。平行四边形具有许多重要的性质,如对角线平分、对角线互相垂直、相邻角互为补角等。这些性质对于我们解决问题和证明定理时起到了重要的作用。通过对平行四边形性质的探究和证明,我们不仅加深了对它的理解,而且培养了我们的逻辑思维和推理能力。

第三,我们在学习中实际应用了相关的定理。在求解实际问题中,我们经常需要运用平行四边形的相关定理。比如,在证明两条直线平行时,我们可以根据定理来判断它们构成了平行四边形,从而得到结论。这些定理为我们解决问题提供了有效的思路和方法,帮助我们更好地理解和应用平行四边形的性质。

第四,在实际生活中,平行四边形的应用也是广泛的。平行四边形的性质在建筑、工程、设计等领域有着重要的实际应用。比如,在建筑设计中,我们常常利用平行四边形的对角线相等性质来确定墙面对立面的相似关系,从而保证建筑物的稳定性和美观性。通过对平行四边形的实际应用,我们深刻地认识到了它的实用性和重要性。

最后,对我个人来说,学习平行四边形不仅仅是为了应对考试,更是培养了我解决问题的能力和思维方式。在学习过程中,我学会了用逻辑思维和证明方法来解决问题,学会了拓宽思维和运用知识。同时,我也感受到了数学的美妙和智慧,它不仅是一门学科,更是一种思维方式和解决问题的工具。

综上所述,学习平行四边形的性质给我带来了很多的收获和新的体验。通过对平行四边形的定义、性质及证明的学习,我深刻地认识到了它的重要性和应用价值。同时,平行四边形的相关定理和实际应用也为我们解决问题提供了便利和思路。我相信,在今后的学习和生活中,平行四边形的知识将继续为我们提供帮助和启发。

平行四边形的性质说课稿冀教版篇十三

平行四边形是我们中学数学中一个常见的几何图形,它具有很多独特的性质和特点。通过学习和研究平行四边形,我深刻认识到了它的性质与特征,对于几何学的理解也更加深入。在这篇文章中,我将分享我对平行四边形的一些心得体会。

首先,平行四边形有明确的定义,即四边形的对角线互相平行。这个定义让我意识到平行四边形具有一种独特的对称性。无论是它的边长、角度还是对角线,都存在一种对称关系,这使得平行四边形在几何学中有着重要的地位。通过这个定义,我可以更好地理解其他与平行四边形相关的概念和定理。

其次,平行四边形具有等腰性质。在研究平行四边形时,我发现它的对边是相等的,对角线的中点也是对称的。这表明平行四边形中的各个部分都具有某种程度的平衡和均衡。无论是四边形的周长还是面积,都与其对角线的长度相关。通过推导和证明,我了解到平行四边形的等腰性质是由其对角线互相平行的性质所决定的。

第三,平行四边形有着独特的角度性质。平行四边形的内角互补,即相邻内角之和为180度。这个性质让我对平行四边形的角度关系有了更深的理解。通过观察和推导,我发现平行四边形中的角度关系与对边的长度关系密切相关。通过这种关系,我可以通过已知的角度信息推导出其他未知的角度,从而更好地解决一些与平行四边形相关的题目和问题。

第四,平行四边形的对角线有着特殊的性质。研究平行四边形的对角线时,我发现它们互相平分。这一性质让我认识到平行四边形的对角线具有一种特殊的等分作用。通过这个性质,我可以更方便地计算平行四边形对角线的长度,也可以更容易地推导出其他相关的性质和定理。这种对角线的等分性是平行四边形独特的特点之一。

最后,通过学习平行四边形的性质,我意识到在解决几何问题时需要灵活运用这些性质和定理。平行四边形是多个几何知识的综合应用,它的性质和特点经常与其他图形的性质相结合。在解决问题时,我需要灵活地使用平行四边形的性质,同时结合其他图形的性质,以便更好地解决问题。这样的思维方式让我在几何学习中更加深入和全面。

综上所述,通过学习和研究平行四边形的性质,我对它的特点和特性有了更深入的了解。平行四边形具有明确的定义和特点,具备等腰性质、特殊的角度性质和对角线的等分性。通过灵活运用这些性质和定理,我可以更好地解决与平行四边形相关的几何问题。通过对平行四边形的研究,我不仅提高了自己的几何学习水平,也提高了解决问题的能力和思维的灵活性。

平行四边形的性质说课稿冀教版篇十四

《认识平行四边形》是苏教版小学数学教材四年级下册内容。在此之前,学生已经直观认识平行四边形,初步掌握了长方形、正方形、三角形的的特征以及认识了平行与相交,这为过渡到本节课的学习起着铺垫作用。同时,这部分内容为以后认识梯形、探索平行四边形的面积公式奠定基础。

具体来说,本课包括两个例题、1道试一试、6题想想做做以及“你知道吗?”。

例1呈现了三幅生活场景图,通过让学生根据已有生活经验和所学过的知识找一找、说一说哪里有平行四边形使之充分地感知平行四边形。接着教材要求学生想办法做出一个平行四边形并相互交流,使学生在用小棒摆、在钉子板上围、在方格纸上画或沿着直尺边画平行四边形这些具体操作及交流中探索平行四边形的基本特征。在此基础上,教材抽象出平行四边形的图形,引导学生通过观察、测量等的活动自主发现并总结平行四边形的边的特点并发展学生的空间观念。

例2通过让学生量出平行四边形两条对边间的`距离,引导学生认识平行四边形的底和高,揭示底和高的含义。

随后的“试一试”让学生量出每个平行四边形的底和高以此体会底和高相互依存的关系。

此外,“想想做做”安排了实践性很强的练习,让学生在观察、操作、比较和交流中巩固对平行四边形的认识。

最后,“你知道吗”介绍了平行四边形易变形的特性及其应用,有利于学生感受平行四边形的应用价值,培养数学应用意识。

教学目标:

1、知识目标:联系生活实际探索平行四边形的基本特征,认识平行四边形的底、高,能正确画出或测量它的的高。

2、能力目标:在观察、操作、分析、概括和判断等活动中,发展学生的空间观念和数学思考的能力。

3、情感目标:感受数学与生活的密切联系,积累认识图形的经验,培养数学应用意识,发展学生学习几何知识的兴趣。

教学重难点:

根据教学内容在全教材中的重要地位和学生学习地难易程度,我将认识平行四边形的基本特征,能正确判断平行四边形,认识平行四边形的底和高作为教学重点。能正确测量或画出平行四边形的高作为教学难点。

古人强调:“善诱者,善导。”根据本课教学内容的特点以及学生思维活动的特点,我采用谈话法、讲解法、实验法、练习法等教学方法。

在合理选择教法的同时对学生进行指导,学生不止要学会,而且要会学。所以,学生的学习方法主要有认真听讲、动手操作、自主探究与合作交流。

按小组准备小棒、钉子板、方格纸、直尺、三角尺、七巧板、吸管等,多媒体课件。

基于对新课标和本课教材的理解,我设计了如下的教学过程:

(一)联系生活,导入新课

美国心理学家布鲁姆说过:“学习的最大动力,是对学习材料的兴趣。” 因此,课一开始,先利用多媒体出示教材中的三幅生活场景,并说:“同学们,请先欣赏几幅图片,从图中你看到了什么?你能找到其中的平行四边形吗?”引导学生找出每幅图片中的平行四边形,再要求学生说一说生活中哪些地方能看到平行四边形,在学生充分感知平行四边形的基础上说:“同学们对平行四边形了解的真不少,今天我们将继续认识平行四边形。(板书:认识平行四边形)”

(二)自主探索,学习新知

课标指出,学生的学习不仅要掌握数学的结果,也要理解数学结果的形成过程和数学思想方法。因此,我将这个环节分为三个层次进行教学。

第一层次:动手操作,感知特征。先让学生利用手中的材料想办法做出一个平行四边形,然后在小组里交流讨论。在学生活动时,教师要参与活动中并进行必要的指导。最后,教师根据学生的汇报,通过多媒体展示出用小棒摆、在钉子板上围、在方格纸上画、沿直尺边画四种做法,利用多媒体技术逐一隐藏小棒、钉子板、方格纸和直尺,抽象出平行四边形的图形,渗透由具体到抽象的过程。

第二层次:猜想验证,总结特征。教师根据刚才抽象出来平行四边形图形,板演一个标准的平行四边形图形,并提问:“你能结合之前的操作过程想一想,平行四边形的边有什么特点呢。”学生可能会有两组对边相等,两组对边平行等猜想。接着教师鼓励学生通过测量、比较等方式验证自己的猜想,共同总结出平行四边形的基本特征:两组对边分别平行且相等。之后,出示“想想做做”第一题,让学生利用这一基本特征判断平行四边形,其中说说第二个四边形为什么不是平行四边形,利用反例揭示平行四边形的外延,进一步认识平行四边形的本质属性;三、四两个图形改变平行四边形的位置,通过变式图形揭示平行四边形的本质属性。

123

第三层次:在初步认识平行四边形特点的基础上,认识平行四边形的底和高。先通过课件出示一个平行四边形,提问:这个平行四边形中上下两条边之间的距离是多少?你能量一量吗?请学生板演如何量出平行四边形一组对边之间的距离,并画出相应的线段。教师相机告诉学生,像这样从平行四边形一条边上的一点到它对边的垂直线段,是平行四边形的高,这条对边是平行四边形的底。(教师进行板书,并标出底和高) 随后教学“试一试”,指导学生在图中指一指需要测量的线段后再分别测量三个平行四边形的底和高,之后就其中的一个平行四边形追问:“如果把另一条边看作底,你还会测量出它的高吗?你认为一个平行四边形的高最多有几个不同的数值?”让学生巩固对底和高的认识同时体会它们相互依存的关系。最后,出示“想想做做” 第五题让学生画出每个平行四边形底边上的高。教师要根据实际情况适当指导画法,并提醒学生把高画成虚线并标上直角标记。

(三)巩固练习,应用提高

新课标强调,基本技能的形成,需要一定量的训练。因此,我通过“想想做做”帮助学生及时巩固所学知识并加以提高。

第2题让学生探索用两块以及用四块完全一样的三角尺拼出一个平行四边形的拼法。在小组合作完成后全班汇报不同的拼法,进一步内化平行四边形的特征。

第3题是动手操作题。先请学生与同桌合作完成,再汇报方法,最后教师课件演示改拼的方法,目的是为了让学生初步感知平行四边形可以转化成长方形。

第4题要求学生把一张平行四边形纸剪成两部分拼成一个长方形。在学生独立思考完成后小组交流自己的是怎么剪拼的,使学生知道把平行四边形沿一条高剪开,再把其中的一个图形沿合适的方向平移就可以拼成一个长方形。从而为以后自主探索平行四边形的面积公式作孕伏。

第6题可以请学生小组合作完成,再请小组派代表汇报成果。最后总结归纳长方形与平行四边形的相同和不同点,引导学生发现在将饮料管做成的长方形拉成平行四边形的过程中什么变了,什么没变(角变,边没变,所以周长没变)。进而引出平行四边形有易变形的特征。

在此基础上,请学生阅读“你知道吗?”,通过举生活中的例子来感知平行四边形易变形的特性。有利于学生感受平行四边形的应用价值,培养数学应用意识。

(四)全课小结

课的末尾,提问学生:“今天我们学习了什么内容?你有了哪些新的收获?”引导他们归纳总结本课主要内容,培养概括与评价的能力。

(五)板书设计

好的板书是撬开学生智慧的杠杆。本课采用的是纲要式的板书设计,具有提纲挈领的作用,层次分明突出重点。

认识平行四边形

平行四边形的性质说课稿冀教版篇十五

认识“平行四边形”是人教版义务教育课程标准实验教科书小学数学三年级上册的内容。按照新课改的理念,我在教学这一知识时,重点调整了师生之间的课堂角色,当好向导,尽量让孩子自己去操作、发现、归纳、表达,整堂课学生学习热情高涨,生动活泼,充满童趣。

在整个教学过程中,学生学得积极主动,不仅参与面广,热情高,而且培养了学生独立探讨问题的能力和全面观察问题的思维方式。反思整个教学过程我认为教学的精彩之处在于有效地引导了学生在活动中享受到学习的乐趣,体验到学习的成功,从而大大提高了教学效果。

在本节课的教学中,我首先让学生自己选择解决问题的方法,并让他们了解到同一个问题可以有不同的解决方法,让每个学生都有观察、操作、分析、思考的机会,提供给学生一个广泛的、自由的活动空间。当学生通过动手动脑,在探索中初步发现平行四边形的特征,产生一种直觉而又朦胧的感性认识时,我引导学生说一说他们的发现,把自己的发现用语言表达出来。如提问引导“拉一拉、看一看,这个长方形框架发生了什么变化?”。学生发现了长方形框架的形状、角、名称都有了变化。这些发现,对于小学生来说则是他们利用自己已有的知识经验,在独立操作、独立观察、测量、思考以及相互讨论的基础上得出的“新发现”,这就是他们的创造。教学到这里,我接着引导他们去验证,对“全新发现”作出积极的评价。通过说一说,让学生不仅深刻理解平行四边形的特征,使感性认识上升为理性认识,而且进一步激发学生探索、研究的欲望,通过大胆尝试、探索,感受数学的乐趣,激起学习的热情。

本节课的教学,我力图通过适当的引导,启发学生自己去主动探索和发现知识,在此过程中体验成功的喜悦,增强学习知识的自信心。在整个教学过程中,平行四边形的特征是学生自己动手、动脑,探索和发现获得的,而不是我教给他们的。我先让学生“拉一拉——看一看——说一说”来感知平行四边形的特征,然后以一句提问“是不是所有的平行四边形都有这样的特征呢?”为学生创设了继续探索的空间,接着,学生通过折一折、量一量、比一比去发现平行四边形边角的关系,通过“画一画、剪一剪”加深对平行四边形特征的理解。纵观这堂课,学生的表现力和创造力得以充分发挥,成就感和自信心得到良好的培养。

让学生快乐地学数学,自信地学数学,是每个小学数学教师的光荣使命!也是一项需要付出创造性劳动的教学任务!我应该为此继续努力!

平行四边形的性质说课稿冀教版篇十六

平行四边形是初中数学中常见的图形,具有一些独特的性质和特点。在学习过程中,我深入探究了平行四边形的性质,并从中获得了一些体会和心得。下面我将分别从平行四边形的定义、性质、应用、证明以及对学习的影响等方面展开,希望能对大家对平行四边形有一个更深入的了解。

首先,我们需要明确平行四边形的定义及其基本要素。平行四边形是四边形的一种特殊形式,它的四边都是平行的。此外,平行四边形的对边相等,对角线互相平分,并且其内角和为360度。这些基本要素为我们后续探究平行四边形的性质奠定了基础。

其次,我们需要了解平行四边形的性质。平行四边形的最基本的性质是它的对边相等,通过这一性质我们可以推导出很多其他的性质。例如,平行四边形的邻边互补,也就是相对的内角互补,相对外角互补。此外,平行四边形的对角线互相平分,这使得我们可以通过对角线的长度来研究平行四边形的其他性质。这些性质的探究让我对平行四边形的特点和规律有了更深入的理解。

其次,平行四边形在日常生活和工程中有着广泛的应用。例如在建筑设计中,平行四边形的性质可以被用来保证建筑物的结构稳定。另外,平行四边形的使用还可以简化一些计算过程,例如在测量土地面积时,我们可以利用平行四边形的对角线来计算四边形的面积,而不需要进行复杂的计算。通过应用平行四边形的性质和特点解决实际问题,我深刻体会到数学的实用性,也增强了对数学的兴趣。

此外,证明是数学学科中非常重要的一部分,平行四边形的证明也是数学学习过程中的重要环节。证明平行四边形的性质有着自己的一套方法和技巧,例如我们可以通过使用平行线的性质、使用对角线以及使用向量等多种方法进行证明。通过进行证明,我培养了逻辑思维能力和严谨的证明方法,并提高了自己的数学推理能力。

最后,学习平行四边形对我个人学习的影响是深远而重要的。通过学习平行四边形的性质,我对图形有了更加全面的认识,掌握了多种解题方法,并且提高了自己的数学能力。同时,学习平行四边形也培养了我对数学的兴趣和热爱,激发了我的数学思维和创造力。这对我未来的学习和发展都起到了积极的推动作用。

综上所述,平行四边形是一个具有特殊性质和特点的图形,通过学习平行四边形的定义、性质、应用和证明等方面,我对它有了更深入的了解。通过研究平行四边形,我不仅加深了对数学知识的理解,同时也提高了个人的数学能力和数学思维。学习平行四边形的过程中,对我个人学习和日常生活都产生了积极的影响。所以,我们应该保持好奇心,积极探索,不断学习平行四边形的性质和特点,将其应用于实际问题中。

平行四边形的性质说课稿冀教版篇十七

平行四边形的性质是从边、角、对角线三个方面研究的,所以,我将判定方法也从这三个方面入手。在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,不把思路局限在某一判定方法上。

一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西———核心问题。本课的.核心问题就是,平行四边形的判定方法的选择。

一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。本课中,典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。

本课从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。

平行四边形的性质说课稿冀教版篇十八

听了孙老师和白老师执教的'《平行四边形的面积》一课,两节课都层次清晰,尊重学生在学习过程中的主体地位,通过学生的数、剪、拼、摆等系列操作活动,着重培养了学生主动探究新知的意识与运用知识解决实际问题的能力。

孙老师一开始以比较长方形和平行四边形两个花坛的大小引出本课,激发学生的探究欲望,思考解决的方法。白老师是先回忆了以前学过的平面图形及其面积,并在一开始就渗透了平行四边形相对应的高和底。

整个教学过程孙老师先让学生猜测平行四边形的面积,然后通过拉动长方形使之变成平行四边形,发现周长没变面积变小了,从而否定了面积等于邻边相乘。两位老师都给足时间让学生动手操作,对于面积公式的推导都是建立在学生的数、剪、拼、摆的操作活动之上的,教师只是引导,而不是包办,让学生在独立思考和交流的基础上进行操作,学生也通过活动,发展学生的空间观念,培养动手操作能力。白老师在学生用割补法之前在上出示了具体要解决的问题,让学生带着问题操作,要求明确,便于学生操作。

。孙老师的练习贴近生活,体现了数学与生活的紧密联系,说明生活中数学的重要性。白老师设计的自我检测很好,简单梳理了平行四边形面积的推导过程,使学生对于这个转化的思路更加条理。

孙老师的练习中学生的独立练习少,应该让学生亲自体验解决问题的步骤,这样印象会更深刻。白老师在独立练习时,如果叫两名学生板演,在讲解时会更直观,便于学生观察记忆,也便于发现问题。

【本文地址:http://www.xuefen.com.cn/zuowen/4465231.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档