拼音是汉字音节,用以书写语言的一种声、文符号。需要明确的分类标准和准则,以便更好地应对那些特殊情况。如果您对总结写作缺乏灵感,以下是一些总结范文,供您参考和借鉴。
人教版小学数学六年级教学设计篇一
教学目标:
使学生进上步理解和掌握比和比例的意义与性质。
区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。
教学过程:
讲述本课复习课题并板书
基本概念的复习
比和比例的意义与性质。
比和分数、除法有什么联系?
说说比的基本性质的比例的基本性质?
比的基本性质与比例的基本性质各有什么用处?
看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?
完成教材95的“做一做”。
结合第3题让学生说说什么叫做解比例?根据是什么?
示比值和化简比。
独立完成教材96页上的题目。
说说求比值与化简比的区别?
(求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。
看书中的表,总结方法。
完成教材96页的“做一做”
比例尺
问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。
2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?
比例尺除写成数字化形式处,还可怎样表示?
完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)
练习巩固
完成教材十九页第1~4题。
全课总结(略)
人教版小学数学六年级教学设计篇二
正比例和反比例
学习目标
1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例或反比例。
2、使学生初步认识正比例的图像是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的信心。
考点分析
1、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:=k(一定)。
2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。对照图像,能根据一种量的值,估计另一种量相对应的值。
3、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:xy=k(一定)。
4、两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没有上述两种关系,这两个变量不成比例。
典型例题
例1、(正比例的意义)一列火车行驶的时间和路程如下表。这两种量有什么关系?
时间/时123456……
路程/千米120240360480600720……
分析与解:(1)从上表可以看出,表中有时间和路程两种量。
(2)从左往右看,时间扩大,路程也扩大;从右往左看,时间缩小,路程也缩小。所以它们是两种相关联的量。
(3)路程和时间的比值始终不变,=120,=120,=120……这个比值就是火车的行驶速度。
通过观察和计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值(也就是速度)是一定的,有这样的关系:=速度(一定)。
具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例关系;行驶的路程和时间成正比例的量。
点评:判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。不要省去任何一步。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:=k(一定)。
例2、(判断是否成正比例)
练习本的单价一定,买练习本的数量和总价是不是成正比例?为什么?
分析与解:根据正比例的意义,看两个变量的比值是否一定,如果两个变量的比值一定,那么这两个变量就成正比例,反之,则不成正比例。
买练习本的数量和总价是两种相关联的量,它们与练习本的单价有下面的关系:
=练习本的单价(一定)
所以练习本的数量和总价成正比例。
例3、(正比例的图像)磁悬浮列车匀速行驶时,路程与时间的关系如下。
时间/分1234567……
路程/千米7142128354249……
(1)图中的点a表示时间为1分钟时,磁悬浮列车驶过的路程为7千米。请你试着描出其他各点。
(2)连接各点,它们在一条直线上吗?
42
35
28
21
14
7●a
0
1234567时间/分
分析与解:根据提供的各组数据描出图像的许多个点,再依次连成直线。路程和时间相对应的数的比值都是7,即速度一定,路程和时间成正比例,图像是一条直线。对照图像,可以根据时间的值估计出路程的值,也可以根据路程的值估计出时间的值,估计时允许有一定的出入。
(1)描点、连线如图。
路程/千米
42●
35●
28●
21●
14●
7●a
0
1234567时间/分
(2)在一条直线上,因为路程和时间成正比例,正比例的图像是一条直线。
(3)根据图像,列车运行2分半钟时,行驶的路程是17.5千米;行驶30千米大约需要4.3分钟。
例4、(辨析)圆的周长和直径成正比例,圆的面积和半径成正比例?
分析与解:圆的周长和直径成正比例,而圆的面积和半径却不成正比例。
可列表判断。
半径/cm123456……
直径/cm24681012……
周长/cm6.2812.5618.8425.1231.437.68……
面积/cm3.1412.5628.2650.2478.5113.04……
圆的周长和直径的相对应的数的比值都是3.14,所以圆的周长和直径成正比例。而圆的面积和半径的相对应的数的比值是变化的,所以圆的面积和半径不成正比例。
圆的周长和直径成正比例,圆的面积和半径却不成正比例。
例5、(反比例的意义)
每小时加工零件的个数/个2030406080……
加工的时间/时128643……
分析与解:(1)从上表可以看出,表中有每小时加工零件的个数和加工的时间两种量。(2)从左往右看,每小时加工零件的个数扩大,加工的时间反而缩小;从右往左看,每小时加工零件的个数缩小,加工的时间反而扩大。所以它们是两种相关联的量。(3)每小时加工零件的个数和相对应的加工的时间的积都始终不变,如20×12=240,30×8=240,40×6=240……而这个积就是这批零件的总个数。
通过观察和计算,我们发现:每小时加工零件的个数和加工的时间是两种相关联的量,每小时加工零件的个数随着加工的时间变化而变化,但无论它们怎么变化,相对应的积是一定的,有这样的关系:每小时加工零件的个数×加工的时间=零件的总个数(一定)。
所以每小时加工零件的个数和加工的时间成反比例的量,它们之间的关系叫做反比例关系。
点评:判断两种量是不是成反比例,和正比例一样,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的乘积是否一定,进行判断。不要省去任何一步。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy=k(一定)。
例6、(判断是否成反比例)
总产量一定,每公顷的产量和公顷数是不是成反比例?为什么?
分析与解:根据反比例的意义,看两个变量的乘积是否一定,如果两个变量的积一定,那么这两个变量就成反比例,反之,则不成反比例。
每公顷的产量和公顷数是两种相关联的量,它们与总产量有下面的关系:
每公顷的产量×公顷数=总产量(一定)
所以每公顷的产量和公顷数成反比例。
例7、(辨析)和一定,一个加数和另一个加数成反比例。
分析与解:判断两个变量是否成反比例,关键是看两个变量的乘积是否一定。很明显,和一定,两个加数的积是变化的,所以它们不成反比例。
和一定,一个加数和另一个加数不成反比例。因为它们的积不一定。
点评:有些相关联的量,虽然也是一种量变化,另一种量也随着变化,但它们不是积一定,也不是比值一定,它们就不成比例。像这样的还有:人的跳高高度和身高;减数一定,被减数和差等。
例8、(综合题1)
(1)长方形的面积一定,长和宽成反比例吗?为什么?
(2)长方形的周长一定,长和宽成反比例吗?为什么?
分析与解:判断时可以用列表的方式列举数据,也可以根据计算的公式来推导。
(1)因为长方形的长×宽=长方形的面积(一定),所以长和宽成反比例。
(2)长方形的周长=(长+宽)×2,长方形的周长一定,长+宽的和一定,但不是积一定,所以长和宽不成反比例。
例9、(综合题2)
分别说明大米的总千克数、每天吃的千克数和天数这三种量中,每两种量的比例关系。
(1)大米的总千克数一定,每天吃的千克数和天数;
(2)每天吃的千克数一定,大米的总千克数和天数;
(3)天数一定,大米的总千克数和每天吃的千克数。
分析与解:在大米的总千克数、每天吃的千克数和天数这三种量中,当某一种量一定时,另外两种量可能成正比例关系,也可能成反比例关系。可以根据数量关系式来判断。
(1)因为每天吃的千克数×天数=大米的总千克数(一定),所以大米的总千克数一定时,每天吃的千克数和天数成反比例。
(2)因为=每天吃的千克数(一定),所以每天吃的千克数一定时,大米的总千克数和天数成正比例。
(3)因为=天数(一定),所以天数一定时,大米的总千克数和每天吃的千克数成正比例。
人教版小学数学六年级教学设计篇三
课题no.3-4
班级姓名小组小组评价
学习目标:
1、学会用方程解答“已知一个数的几分之几是多少,求这个数”的应用题。会分析除法应用题中的数量关系,学习用线段图表示题中数量关系的方法。
2、通过独立思考、小组合作、展示质疑,在学习过程中,感悟分数除法应用题之间的内在联系,培养推理能力。
3、极度热情,全力以赴,精彩展示,做最好的自己。
重点:会用方程解答“已知一个数的几分之几是多少,求这个数”的实际问题。
难点:根据分数乘法的意义,找到等量关系,正确列出方程。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够学会用方程解答“已知一个数的几分之几是多少,求这个数”的应用题。会分析除法应用题中的数量关系,学习用线段图表示题中数量关系的方法。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。
一、自主学习:
1、自学课本p37-p39页
思考:1)、列方程解应用题的关键。
2)、用算术法解除法应用题的关键。
2、填空。
1)、米是米的();米相当于()米。
2)、自行车的速度是汽车的,把()看作单位“1”。
3)、一个数的是,这个数是()。
4)、一根卅绳长54米,剪去,还剩()米,把()看作单位“1”。
3、解方程。
二、合作探究:
例1、根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,小明体内有28千克的水分,小明的体重是爸爸的。
1)、小明的体重是多少千克?
2)、小明爸爸的体重是多少千克?
要求:(1)、用两种方法解答。
(2)、画出线段图表示题中的数量关系。新课标第一网
小结:(1)、列方程解应用题的关键:
(2)、用算术法解分数除法应用题的关键:
要求:1)、用两种方法解答。
2)、画线段图表示题中的数量关系。
小结:1)、分数连除应用题的解题关键:
2)、分数连除应用题的解题方法:
方程解法:
算术解法:
三、学以致用:
1、画线段图表示下面各数量关系。
1)、鸡的只数是鸭的。
2)、女生人数占全班的。
2、列式计算新课标第一网
1)、一个数的是64,求这个数。
2)、12的与什么数的2倍相等?
3)、加上一个数的,和是1,求这个数。
四、解决问题:
1、小红看一本书,已看了76页,是未看页数的,这本书小红还有多少页未看?
人教版小学数学六年级教学设计篇四
教学目标:
1.知识目标:了解储蓄的意义,理解本金、利率、利息的含义。
2.能力目标:注重学生观察、对比、总结能力的培养,并让学生感受数学在生活中的'作用,提高应用意识和实践的能力。
3.情感目标:懂得存款利国利民,并从教育储蓄中感悟国家对少年儿童的殷切希望,树立努力学习的志向。
重点难点:
理解本金、利率、利息的含义,会正确计算利息。理解税后利息的含义,会根据实际情况使用公式。
教学流程:
一、知识扩充
(师出示中国五大银行行标。生根据生活经验,理解银行的业务范围及银行的分类。)
师:(出示一组信息)20xx年12月,中国银行给工业发放贷款18636亿元,给商业发放贷款8563亿元,给建筑业发放贷款2099亿元,给农业发放贷款5711亿元。
(让生思考,从信息中想到了什么?)
设计意图:让学生了解储蓄的意义,感受存款不但利国而且利民。
效果预测:学生可以从信息中感悟到国家用集资上来的存款繁荣经济、建设国家、援助农业,加强储蓄的意识。
二、创设情境
师:老师积攒了1000元钱,把它放在什么地方最安全合理呢?
生:放在银行里,不但安全还可以使自己的用钱更有计划。
师:听从大家的意见,现在老师就想去银行存款,谁想和我一起去?
(生走入老师创设的情境,感受存款的乐趣。)
(生独立完成填存单的任务,遇到问题随时提出,师生共同解决。)
设计意图:给予学生一个想像的空间,让学生身临其境地感悟生活中的数学,把知识、能力、人格有机地融合,让学生的各种因素碰撞后的灵感在实践中得以体现。
效果预测:经过师生互动、生生互补,学生可以掌握存款单的填写方法,并在老师的点拨中,掌握存款的种类、本金等数学概念。
三、合作学习
师:(出示信息)小丽学会存款后,把100元存入银行,整存整取1年,年利率2.25%,到期时可取出人民币102.5元。
(生找出本金、存款种类后,再谈一谈自己有什么新发现。)
出示表格
(生合作学习从表格中发现利息的多少与本金、利率、时间有关,并总结出公式:利息=本金×时间×利率。)
生:1000×3.6%×5=180元。
师:取款时的情况和我们预想的一样吗?和老师一起跳跃时间,来到xxxx年。(出示利息清单。)
利息清单
生总结:税后利息=本金×利率×时间×(1-20%)。
设计意图:为学生营造自我发现、自我总结的空间,让学生从实践中概括公式,在合作中分享自己与他人思考的成果,体会成功的快乐。
效果预测:学生在兴趣的驱使下,主动参与小组合作,在合作中积极思考,得出利息及税后利息的公式,并因为经历了概念的形成过程,为知识的应用做了良好的铺垫。
四、深化练习
1.奉献。
2.理财。
3.帮助。
4.介绍小知识。(教育储蓄)
设计意图:数学来源于生活,服务于生活,为学生设计的三组生活习题,其目的在于让学生感悟数学在生活中的价值,增强应用意识,同时培养了学生乐于助人、勤俭节约的优良品质。
效果预测:学生喜欢智慧的挑战,对学以致用有很强的能动性,所以他们一定会用智慧的眼光解决习题中的生活问题,同时在教育储蓄的感召下,进一步感悟党和人民的期望,树立终身学习的愿望。
人教版小学数学六年级教学设计篇五
一、教学目标:
1、通过搜集诗歌,为自己搜集到的诗歌配插图,增强阅读诗歌的兴趣,提高审美水平。
2、在搜集到的诗歌中选择自己喜欢的,进行个性化鉴赏。初步了解闻一多的诗歌美学主张。
3、练写诗歌,发现生活中的美好事物,感受诗歌的魅力。
二、教学重难点:
1、初步了解闻一多的诗歌美学主张。
2、学写诗歌。
三、教学课时:一课时
四、教学过程:
(一)谈话导入
师:今天就让我们再一次叩响诗歌的大门,与大诗人交朋友,与诗同行,进一步提高我们鉴赏诗歌的能力。(板书:与诗同行)
(二)诗歌鉴赏
师:同学们,我知道你们搜集了很多诗歌,有些同学甚至还把自己搜集到的诗歌背了下来,这种学习热情真令人感动。那么,在你搜集到的诗歌中,你最喜欢哪一首呢?能给大家介绍介绍吗?(生自由答)
你们怎么理解呢?(生浅谈)
师:诗歌,谱上曲便是一首歌,它具有一定的押韵、优美的节奏,读起来琅琅上口。现在,在小组里交换读一读你搜集到的诗歌,你觉得哪一首诗在节奏、押韵方面处理得很好?(小组交换读,自由谈)
师:今天,老师要向大家推荐的是20世纪30年代的一位著名诗人徐志摩,他曾经于1924年5月陪泰戈尔到日本访问时写过一首诗,这首诗写的是日本的友人与诗人送别的情景,诗人用几句话,抓住最富有日本女性特点的温柔娇羞的神态来描画,表现了对日本女郎的由衷赞美。大家一起读一读这首诗。
最是那一低头的温柔,
恰似一朵水莲花不胜凉风的娇羞,
道一声珍重,
道一声珍重,
那一声珍重里有甜蜜的忧愁,
莎扬娜拉……
----徐志摩
1、你觉得哪一句诗最具音乐美呢?(生答)
2、这首诗的用词非常讲究,娇羞与忧愁就是很巧妙的押韵,同时“道一声珍重”在诗中出现了几次,达到了反复吟咏的效果。在歌曲中,我们也常常唱到某一句歌词,反复唱几次,以表达内心的情感。
3、这么优美这么浪漫的诗,我们要怎么读呢?自己先试试,读出他的音乐美。
4、我要听出“反复叮咛,一遍又一遍的向诗人道珍重”读出依依不舍。
师:闻一多先生认为诗歌所以能激发情感,完全在它的节奏。除了音乐美,诗歌这种体裁与其他文学体裁最大的不同之处是什么呢?对,它的断句分行,所以诗歌也被称为“长短句”。这也就是指诗歌的建筑美。
5、建筑美
师:一首好诗,会在一个恰当的地方分行断句,在你搜集到的诗歌中,读一读,哪一
首诗最具建筑美?(生答)
师:有很多诗人,喜欢追求新奇巧妙,把诗设计成不同的形式,老师这里就有一首宝塔诗,你能读懂吗?试着登山的方法读,就像沿着小路蜿蜒而上。
(读宝塔诗)
开
山满
桃山杏
山好景山
来山客看山
里山僧山客山
山中山路转山崖
6、绘画美
其实,不管建筑美也好,音乐美也好,一首真正的好诗,应该具有优美的意境,这也是闻一多先生所说的“绘画美”。他认为,一首诗的辞藻最重要,要有色彩感,美感。昨天同学们都给自己喜欢的诗歌配上了插图,现在你能说说,那首诗能把你带到诗情画意的境界里?(生答)
(生读《面朝大海,春暖花开》)
面朝大海,春暖花开
海子
从明天起,做一个幸福的人
喂马,劈柴,周游世界
从明天起,关心粮食和蔬菜
我有一所房子,面朝大海,春暖花开
从明天起,和每一个亲人通信
告诉他们我的幸福那幸福的闪电告诉我的
我将告诉每一个人
给每一条河每一座山
取一个温暖的名字陌生人,我也为你祝福
愿你有一个灿烂的前程
愿你在尘世获得幸福
我只愿面朝大海,春暖花开
师:读完这首诗,在你的脑海里留下什么样的画面?(生答)
师:老师也很喜欢海子的这首诗歌,所以读着读着,也忍不住画了一幅画,尤其是这两句:我有一所房子,面朝大海,春暖花开。读这些优美的诗歌,真是一种精神的享受啊!
我们一起把这首诗读一遍好吗?
小结:今天,我们交流了很多诗歌,认识了不少诗人,同时更认识了诗歌的一种审美角度,闻一多的三美主张。如果今后大家还有兴趣,读更多的诗,你们也会形成自己的审美标准。
(三)学做小诗人
生活中,有很多美好的事物,只要我们带着一颗诗心,一双慧眼,就可以发现生活中点滴的美。中国是一个诗的国度,你是否发现,我们一些很有民族特色的事物呢?比如---(取出墨汁,演示墨的变化)你看到它,觉得它象什么?(生答)
看到它,你联想到什么?
我们也可以象大诗人一样,用细腻的语言描绘我们看到的这一切,用诗歌这种文学体裁表达心中的情感现在,就让我们拿起手中的笔,当一回小诗人吧!你可以看视频,写一写“墨”给你来来的想象,也可以写大自然的一阵风,一场雨,一棵树,一朵花。开始动笔吧!(播放墨韵视频,在音乐中练笔)
10分钟练笔。
写完先在小组交流。选出一首较好的,集体评议,提醒学生以三美主张这个角度评。
师出示自己写的诗歌。学生评议。
墨
在古典的深处奔涌
丝丝缕缕浓淡相宜
氤氲在司马迁的竹简
曹雪芹的丝帛
它是
王冕洗砚池上飘来的一瓣梅香
是古老的京剧的一张脸谱
长须伴随着密集的鼓点飞舞
细笔勾画的柳眉
任是无情也动人
渺渺天地
黑白分明
泼墨,泼墨
凝成历史的烟云飞沫
(四)布置作业
今天我们上完了这节课,课后你想做什么?或者说想给自己布置一道怎样的作业呢?(生答)激发学生编辑诗集。
[《与诗同行》教学设计(人教版六年级教学设计)]
人教版小学数学六年级教学设计篇六
思考并回答:
1、在小学里我们学过哪些数?
2、最小的非0的自然数是多少?有没有最大的自然数?自然数的基本单位是多少?
3、小数又可以怎样分类?
4、我们学过的整数和小数的计数单位有哪些?数位的顺序是怎样的?
6、写数时应注意什么?用阿拉伯数字写出下面各数:七千零三十八、七亿零三十八万、
三亿零五十万六千、零点零四零六
练习:
1、在数位顺序表里,小数点左边第一位是()位,计数单位是();第五位是()位,计数单位是()。小数点右边第一位是()位,计数单位是();第三位是()位,计数单位是()位。
2、最高位是百万位的整数是()位数;最后一位是百分位的小数是()位小数。
3、5830070420读作()。“8”在()位上,表示();“7”在()位上,表示()。
4、有一个四位数,加上“1”就变成五位数,这个四位数是();有一个四位数,减去“1”就变成三位数,这个四位数()。
5、地球有多大?请读出下面数据。
地球的半径6378.14千米赤道长40073.92千米
地球表面积510067860平方千米地球海洋面积361745300平方千米
思考并回答:
1、3.150=3.15、7.8=7.8000,这是根据什么?
2、一个数的小数点向左移动两位,再向右移动一位,它的值有什么变化?
3、1÷3、70.7÷33,商的小数部分的数字有什么规律?
5、下面的循环小数,如果各保留三位小数取它的近似值,该怎样写?.....
0.720.33.150
6、以85400为例,省略万后面的尾数与写作以万为单位的数有什么区别?
8、三个连续的自然数的和是45,这三个数分别是()、()、()。
练习:
1、9035000以万为单位写作(),省略万后面的尾数写作()。408000000以亿为单位写作(),省略亿后面的尾数写作()。
2、7.85353……写作(),0.346346……写作()。
3、0.04×1000就是将0.04的小数点向()移动()位。
4、25.4÷100就是把25.4的小数点向()移动()位。3.002的小数点左移两位,是原数的(),小数点右移三位,是原数的()倍。
5、两个数相除的商是3.45,如果把被除数的小数点向右移动一位,除数的小数点向左移动一位,商是()。
数的整除
思考并回答:
1、下面的除式,哪些是整除关系?是整除关系的两个数要具备哪些条件?
32÷4、45÷7、12÷0.3、720÷90、2÷4
4、什么叫质因数?什么叫分解质因数?
5、下面各题分解质因数是否正确?为什么?不对的应该怎样改正?
6、求下面各组数的最大公约数和最小公倍数:14和42、24和32、12和18
7、互质的两个数一定都是质数吗?怎样判别两个数是否是互质数?
练习:
1、在16、4、8、32、36、80、84、160这些数中,80的约数有(),16的倍数有()。
2、20的约数有(),32的约数有(),20和32的公约数有(),其中最大的公约数是()。
3、按照下面要求写出互质数:两个都是质数();两个都是合数();一个是质数,一个是合数()。
能被3整除的数
能被5整除的数能被2整除的数
5、求下面各组数的最大公约数和最小公倍数:27和18、39和117、8和15
6、一个数用2、3、5除正好都是整数,这个数最小是();有一个数用它去除30、45、60正好都是整数,这个数最大是()。
7、判断题:
(1)没有约数2的自然数一定是奇数。
(2)一个自然数的约数总比它的倍数小。
(3)两个质数相乘,积一定是合数。
(4)一个奇数加上7,一定能被2整除。
(5)2、3、5都是质因数。
(6)两个合数不能成为互质数。
(7)17的约数都是质数。
(8)因为3、5、6的最大公约数是1,所以它们的最小公倍数是3×5×6=90。
分数和百分数
思考并回答:
1、先填空,在回答:4/5=1÷×、4/5=÷;7/9=1÷×、7/9=÷
什么叫分数?分数的分子、分母个表示什么?分数单位表示什么意思?
2、什么叫百分率?“9/100米”与“9﹪”在意义上有什么区别?
3、什么是分数的基本性质?分数的基本性质与
商不变的性质、比的基本性质有什么联系?
4、什么叫约分?什么叫通分?你能说出约分和通分的方法吗?
5、下面括号里应填什么数?其中哪一个分数是最简分数?为什么?
24/40=()/20=48/()=()/5=()/15=36/()
6、举例说明分数、小数、百分数的互化方法。
8、分数、小数、百分数混在一起,怎样比较它们的大小?比较0.6、2/3、61﹪的大小。
练习:
1、把3米长的钢管平均分成5段,每段钢管是全长的()/(),每段的长度是()/()米,3段占全长的()﹪。
2、生产500吨化肥,计划25天完成,平均每天完成计划的()﹪,每天生产()吨。
3、3里面有()个1/3,2/3里面有()1/12,1里面有11个2/(),100个1/7是()。
4、7/15的分数单位是(),添上()个这样的分数单位等于1,减去()个这样的分数单位等于1/5。
5、5/8的分母加上24,要使分数的大小不变,分子要();6/15的分母减去5,要使分数的大小不变,分子要()。
6、一个分数,它的单位是1/8,它有7个这样的单位,这个分数是(),化成小数是(),化百分数是()。
量和计量
思考并回答:
1、在小学里已经学过哪些量?它们各有哪些计量单位?
各种量基本单位各单位之间的关系
长度1米1千米=()米
1米=()分米
1分米=()厘米
1厘米=()毫米
面积1平方米1平方千米=()公顷
1平方千米=()平方米
1公顷=()平方米
1平方米=()平方分米
1平方分米=()平方厘米
体积1立方米
1升1立方米=()立方分米
1立方分米=()立方厘米
1升=()毫升
质量1千克1吨=()千克
1千克=()克
时间1秒1日=()时
1时=()分
1分=()秒
2、在进行单位之间的换算,或单名数与复名数之间的变换时,要注意什么?
练习:
1、填空:
(1)5米=()分米3.2分米=()厘米5平方米=()平方分米
3.2平方分米=()平方厘米52700平方米=()公顷
(2)4.8升=()毫升1.6千克=()克7.3米=()分米=()厘米
(3)4.2公顷=()平方米0.8平方千米=()公顷
1.05立方米=()立方分米1.45吨=()千克
(4)210秒=()分1/6日=()时1时20分=()分
2、选择:
(1)下列年份中,不是闰年的年份是()a1980年bc21
(2)25厘米×()=1米a1/2b4c40
(3)面积是1平方米的正方形的边长是()a10厘米b100厘米c10000厘米
3、判断题:
(1)第一季度有91天的这一年是闰年。
(2)一水池装了0.3立方米的水,这池水的容积是300升。
人教版小学数学六年级教学设计篇七
教学内容:
课本p10~11例6、例7和试一试、练一练以及练习三的第1-4题。
教学目标:
1.引导学生通过操作活动,初步认识体积和容积的意义。
2.使学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。
3.使学生进一步激发学生探究立体图形的兴趣。
教学重点:
通过操作活动,初步认识体积和容积的意义。
教学难点:
通过操作活动,初步认识体积和容积的意义。
教学准备:
课件
教学过程:
一、激发兴趣、打入新课
谈话:同学们生活中的物体有大有小,看,你能比较这这两个物体的大小吗?(出示一个苹果和一个大枣)你是怎样比较的?今天我们一起学习有关物体的大小的知识——体积和容积(揭示课题)。
二、动手操作、自主探究
认识体积
1.出示两个有同样多水的相同玻璃杯,让学生看清两个杯子里水面同样高。
(1)先在一个杯子里放入一个大枣,让学生说明水面有什么变化。
提问:水面为什么会上升?(大枣占有了水中一块地方)
指出:大枣占有一块地方,我们就说大枣占有一定的空间。
因为大枣占有空间,把水往上挤,所以水面上升了。
(2)在另一个杯子放入荔枝。
(3)提问:现在水面有什么变化?说明了什么?
再比一比,哪个杯子里水面上升得高?为什么这个杯子里的水面会上升得高一些?
指出:因为荔枝大一些,所以这个杯子里水面上升得高一些,说明这一石块所占的空间大。
提问 :谁来说一说,哪一个水果所占的空间大,哪一个水果所占的空间小?
让学生说出,大的水果所占的空间大,小的水果所占的空间小。
指出:从刚才的实验中我们可以看出,物体不仅占有空间,而且占有的空间还有大有小。也就是说,大的物体所占的空间大,小的物体所占的空间小。
板书:物体所占空间的大小叫做物体的体积。
3.说能说说生活中两种物体体积的小。(说完整的话)
认识容积
出示两个大小不同的长方体纸盒,比较一下哪个体积大一些。(例7)
(1)学生比较并说明理由。
指出:书盒能容纳书的体积就是书盒的容积。也就是说容器所能容纳物体的体积,叫做这个容器的容积。
(2)举例说说生活中的两种容器的容积。
三、巩固提升
1.完成练一练
第1题可以让学生直接判断,然后教师可以操作演示,在让学生说说溢出的水的体积分别相当于哪个物体的体积。
2、第2题可以让学生先判断,然后再根据容积的含义进行解释。
3.完成练习五第1题
让学生说明三维饼干的体积为什么相等。使学生明确:因为它们都是有同样大小的8盒饼干堆成的,所以它们所占的空间大小也就一样。
4.完成练习五第2题
5.让学生明白杯子装的多说明容积大,杯子装的少的说明容积小。
6.第3题可让学生按要求操作,让后同桌交流摆的是否正确。
7.第4题可以让学生分别说说体积和容积分别指的是什么,有什么不同,再回答问题,并说明理由。
8.第5题中的三个图形分别表示相应的长度单位、面积单位和体积单位。这是它们的不同点。而1平方厘米是边长1厘米的正方形,1立方厘米是棱长1厘米的正方体,这两个概念都与1厘米有关。这是三个图形的内在联系。
四、全课小结
今天这节课我们学习了什么?你的收获大吗?你觉得学好这些知识有什么用吗?
五、布置作业
人教版小学数学六年级教学设计篇八
教学目标:
1.理解利率的含义,体会它在实际生活中的应用。、
2.能应用分数、百分数的知识,灵活解答有关“利息”的问题。3.培养学生认真思考的学习习惯。
重点难点:
理解概念,正确解答有关“利息”的实际问题。
教学用具:
实物投影。
教学过程:
一、学前导入:
人们常常把暂时不用的钱存入银行储蓄起来。储蓄不仅可以支援国家建设,也使得个人钱财更安全和有计划,还可以增加一些收入。
二、展示学习目标:
理解利率概念,学会解决有关利率的实际问题。
三、自学指导:
1.什么是本金?什么是利息?什么是利率?2.利息如何计算?明确:
国家规定,存款的利息要按5%的税率纳税。
四、巩固练习:
出示例题:老奶奶存1000元,两年后可以去会多少钱?(学生板书演示)老师提醒:存期两年,利率是4.68%,还要扣去5%的利息税。1.1000×4.68%×2=93.6(元)
93.6×5%=4.68(元)
1000+93.6-4.68=1088.92(元)2.1000×4.68%×2=93.6(元)
1000+93.6×(1-5%)=1088.92(元)
学生说出自己的解题思路,老师归纳:
第一种方法先算利息,再求利息税,最后用本金+利息-利息税;第二种方法也是先算利息,再用本金+税后利息。都正确。
五、作业安排:
课本练习二十三第6、7题。
人教版小学数学六年级教学设计篇九
知识与技能:
1、理解比的基本性质。
2、正确应用比的基本性质化简比。
过程与方法:
1、利用知识的迁移,使学生领悟并理解比的基本性质。
2、通过学生的自主探讨,掌握化简比的方法并会化简比。
情感态度与价值观:
初步渗透事物是普遍联系的辩证唯物主义观点。
理解比的基本性质,推倒化简比的方法,正确化简比。
正确化简比。
写有例题和练习题的小黑板。
一、导入
1、比与分数、除法的关系。
2、复习分数的`基本性质和商不变的性质。
老师:请大家回忆一下,分数有什么性质?除法又有什么性质?它们的内容分别是什么?
二、教学探究
1、猜想。
汇报时,让学生说说猜想的根据,老师也可引导学生在“分数的基本性质”上进行替换。
引导学生用语言表述,比的前项相当于分数的分子,后项相当于分母,分数的分子和分母同时乘或除以同一个数(0除外),分数的大小不变。因此,比的前项和后项同时乘或除以同一个数(0除外),比值不变。或者比的前项相当于除法中的被除数,后项相当于除数,被除数和除数同时乘或除以同一个数(0除外),商不变。因此,比的前项和后项同时乘或除以同一个数(0除外),比值不变。
2、验证。
以小组为单位,讨论、验证一下刚才的猜想是否正确。
学生汇报。
3、小结。
经过同学们的验证,我们知道这个猜想是正确的,并且经过补充使它更完整了,在比中确实存在这种性质。
板书课题:比的基本性质。
4、化简比。
老师:应用比的基本性质,我们可以把比化成最简单的整数比。
出示例1的第(1)题。
让学生在练习本上写出一小一大两面联合国旗长和宽的比,15:10和180:120
提问:你怎样理解最简单的整数比这个概念?
学生讨论,指名回答,达成共识,最简单的整数比必须是一个比,它的前项和后项都是整数,而且前项和后项应该是互质数。
让学生自己尝试把这两个比化成最简单的整数比,然后集体订正答案。
15:10=(15÷5):(10÷5)=3:2
180:120=(180÷60):(120÷60)=3:2
提醒学生注意两个比化简的结果,并让学生说说结果相同,说明了什么?(说明两面国旗大小不同,形状相同。)
出示例1的第(2)题。
(2)把下面各比化成最简单的整数比。
1/6:2/90.75:2
让学生独立试做,教师巡视指导,请两名学生在黑板上板演。
师生共同讲评。
1/6:2/9=(1/6×18):(2/9×18)=3:4
提问:为什么要乘18?可能会有学生想到不同方法,教师应给予肯定。
0.75:2=(0.75×100):(2×100)=75:200=3:8
或(0.75×4):(2×4)=3:8
老师强调:不管选择哪种方法,最后的结果都应该是一个最简单的整数比,而不是一个数。
三、堂堂清测试
1、完成教材第46页的“做一做”,集体订正。在校对、交流的基础上,引导学生对化简比的方法进行小结。
2、完成教材第48页练习十一的第4
人教版小学数学六年级教学设计篇十
教学目标:
1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。
2、培养学生类比、推理和概括思维能力。
教学重点:
1、理解比的基本性质。
2、运用比的基本性质进行化简比。
一、探究新知
(一)比的基本性质
1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)
(1)4人小组交流(2)全班交流
(3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?
(4)商不变的性质是不是对每个比都适用呢?自己举例试一试。
4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。
5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。
(二)化简比---完成练习题(后附)
1、小组交流
2、全班交流
小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。
结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。
二、巩固练习
1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是。
2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。
3、拓展练习
3:8=(3+6):(8+)
(让学生分小组讨论方法)
三、课堂总结
这节课有哪些收获?师生共同总结。
()年()班姓名
比的基本性质小研究
你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?
人教版小学数学六年级教学设计篇十一
1.使学生在具体情景中理解比例的意义,掌握组成比例的关键条件;能应用比例的意义判断两个比能否组成比例。
2.使学生感受数学知识的内容联系,学会综合运用所学知识,增强分析问题和解决问题的能力。
:在具体情境中理解比例的意义。
运用比例的意义判断两个比能否组成比例,并能正确组成比例。
教学课件。
(一)复习旧知识导入新课。
同学们,我们已经学了有关比的知识,请大家回忆一下什么叫比?什么叫比值?比的基本性质是什么?看来,同学们对比的知识掌握的不错。今天我们一起来学习与比有关的知识,比例的意义。
(二)探究新知识
1.初步理解比例的意义。
请同学们看一组图片,依次出现三面国旗课件。让学生分别说出都是什么地方的国旗?
请仔细观察这三面国旗有哪些相同的地方和不同的地方?(这三面国旗形状相同,大小不同。)
师:不同场合的国旗大小是不一样的,但是他们是按一定的比制作的,在制作过程中,每面国旗长与宽存在有趣的比,你想知道吗?那就让我们算一算吧。
请大家根据国旗下面的数据,分别算出每面国旗长与宽的比值。
让一名学生在黑板上计算,其余学生写在练习本上。
提问:通过计算你发现了什么?(每面国旗长与宽的比值相等。)
根据这三个比,从中任意选两个比能不能组成一个等式。
让学生分别说出三个等式:0202
5:10/3=3/25:10/3=2.4:1.6
2.4:1.6=3/2=5:10/3=60:40
60:40=3/22.4:1.6=60:40
提问:这些等式有什么相同点?(都有两个比,并且两个比的比值相等。)
像这样的等式,叫做比例?
谁能用自己的话说一说什么叫比例?学生
引导学生看课本40页教材上是怎样定义的?学生齐读。
教师板书:表示两个比相等的式子叫做比例。
在这句话中有哪些字或词最关键:两个比相等。
师:根据比例的意义让学生举一些比例的例子。
生:a:b=c:d或a/b=c/d
2.深化了解比例的意义
刚才我们通过计算发现,国旗长与宽的比值相等。
所以每两面国旗的长与宽可以组成比例。
除此之外,还有哪些比可以组成比例?分别写出来,根据国旗下面长与宽的数据小组合作交流:
师:根据学生汇报,将组成的比例板书。
宽:长=宽:长长:长=宽:宽
10/3:5=40:605:2.4=10/3:1.6
10/3:5=1.6:2.45:60=10/3:40
1.6:2.4=40:602.4:60=1.6:40
老师这里有两个比它们是否相等?强调:只有对应的量之间的比比值才相等。才可以组成比例。板书:第一面的长:第一面的宽和第二面的宽:第二面的长。学生发现不相等,师:为什么不相等。师结合板书归纳(出示课件)师根据学生们找的结果,我们看到这三面国旗的长与宽的比值都相等,所以每面国旗的长与宽的比都可以组成比例。同样,宽与长的比值也都相等,所以每两面国旗宽与长的比可以组成比例。
每两面国旗长与长的比可以和宽与宽的比组成比例。
(三)练习巩固
做一做。
(1)6:10和9:15
(2)20:5和1:4
(3)0.6:0.2和3/4:1/4
(4)4:3和2:1.5
两名同学板书,其他同学写在练习卡上,让学生讲解并纠错。
(四)请同学们看一看比例,比和比例有什么联系和区别?根据学生回答教师课件出示表格。
意义:两个数相除叫做两个数的比。表示两个比相等的式子。
项数:两项四项
联系:比例是由两个比组成的。
(五)当堂训练:
(六)课堂总结:
今天我们学习了比例的意义,你有什么收获?
人教版小学数学六年级教学设计篇十二
《有的人》这篇课文的教学要让学生们学习鲁迅的伟大精神,引导学生树立正确的人生观。以下是百分网小编精心为大家整理的小学六年级《有的人》教学设计,希望对大家有所帮助!想了解更多相关信息请持续关注我们应届毕业生考试网!
1、理解诗歌深刻的内涵,了解诗歌中对比手法的运用。
2、学习鲁迅的伟大精神,引导学生树立正确的人生观。
3、指导学生有感情地朗诵这首诗。
鲁迅的诗《自嘲》。
导入新课,揭示课题
学生举例,教师评析、小结。
2、根据本课内容,介绍鲁迅的《自嘲》和散文诗集《野草》。
初读诗歌,整体感知诗歌的基本内容
3、听录音带,或者教师范读全诗。
?学生自读诗歌。把握主要内容,理清诗歌的'写作思路,分清诗歌的结构层次。(诗的第一节写了两种“生”和“死”,是全诗的总纲;第二、三、四节写了两种人对人民的不同态度,它们之间是并列关系;第五、六、七节分别与上面三节对应,写出了两种人的不同结局)
小组合作,阅读研讨
1、找出哪些诗句写出了诗人对鲁迅的纪念?(每节诗的后两行)
2、诗歌的首节中“活”与“死”的含义有什么不同?
学生自由朗读诗歌。注意体会每节诗歌中感情。
指名朗读诗歌,读出各节的真情实感。(对学生把握不准的地方,可以引导学生反复朗读,或者变化语气、语调使学生真正把握住诗歌的内在感情)
对比是常用的一种艺术手法,在诗歌中使用对比,能产生强烈的感情冲突。这首诗每一小节都使用了对比的手法。细读诗歌,体会诗歌对比的写法。
【本文地址:http://www.xuefen.com.cn/zuowen/4269301.html】