热门八年级数学教案人教版范文(23篇)

格式:DOC 上传日期:2023-10-28 08:08:17
热门八年级数学教案人教版范文(23篇)
时间:2023-10-28 08:08:17     小编:笔舞

教案是教师根据所教学科和教学内容,按照教学目标、教学内容和教学过程等要求,编写的一种指导教师教学活动,并帮助学生学习达到教学目标的书面材料。教案编写的好坏直接关系到教学质量的高低,所以我们需要认真对待教案的编写工作。教案是一种规范教学行为的工具,它可以帮助教师合理安排教学步骤,提供教学参考,提高教学效果。因此,教案的编写对于教师而言是非常重要的。编写一份好的教案需要教师具备丰富的教学经验和敏锐的教学观察力。多阅读和分析教案可以提高教师的教学能力和创新意识。

八年级数学教案人教版篇一

《图形的位似》这节课内容抽象而且学生以前没接触过,对学生来说接受起来难度很大,因此在教学的过程中,首先由手影这种学生较熟悉的形式让学生感受这种位置关系,然后通过动手操作的形式进一步探究位似图形的相关性质。在教学的过程中,为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识。探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新。

但是,这节课也存在很多不足之处:

1、学生动手操作、探究位似图形的过程都很顺利,但是很多小组在总结位似图形的性质时出项了语言表达的困难。

2、学生对于“每组对应点”认识还是不够,导致在判断位似图形时出现问题。

3、评价形式过于单调。一直是教师“很好”“太棒了”之类的评价,不能更好的调动学生的积极性。

4、小组合作时个别学生没有真正动起来。

5、没有让学生自己感受当位似图形不同时位似中心在位似图形的不同位置这一动态特点。

6、学生证明位似图形时证明过程还是不够严谨。

7、缺少了位似图形在生活中的应用。

改进措施:

1、通过小组合作交流的方式不断提高学生语言表达能力和逻辑思维能力。

2、强调“每组对应点”就是“所有的对应点”,在图上任意取几对对应点,通过连线,也经过位似中心,通过这样的动手实践,让学生印象更深刻。

3、通过各种途径评价学生,让自己的评价活泼多样。譬如:鼓励性眼神、肢体语言、同学们的掌声、定量评价、奖惩措施等等。

4、做好小组长的培训工作,让他们在小组中起到领导和协调的作用,抓住整个小组的节奏,让每个学生都参与进来,同时,多举行小组捆绑评价的活动,让后进的同学为了不拖后腿而不得不参与进来。

5、加强几何画板的学习和利用。信息技术与数学教学有机整合,有利于学生主动参与、乐于探究、勤于动手、动脑,体现了开放式的教育模式,开阔了学生的视野,推动了数学课堂现代化的发展。在这节课中,如果添加几何画板,那么位似中心和位似图形的五种位置关系就很形象的展现在我们面前。

6、加强学生几何题证明的条理性、严谨性的训练。培养学生的逻辑思维能力和语言的组织能力。

7、让学生在课下自己寻找我们生活中位似图形的影子,将数学和生活紧密联系起来。

在今后的教学中,我将牢记这些不足之处,不断改进,不断修炼自己,让自己的教学更进步,更成熟。

今天有关今天小编就为大家精心整理了一篇有关英语口语的相关内容,以便帮助大家更好的复习。

八年级数学教案人教版篇二

平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;

平行四边形的对角相等。

平行四边形的对角线互相平分。

平行四边形的判定

1.两组对边分别相等的四边形是平行四边形

2.对角线互相平分的四边形是平行四边形;

3.两组对角分别相等的四边形是平行四边形;

4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质:矩形的四个角都是直角;

矩形的对角线平分且相等。

八年级数学教案人教版篇三

(1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。

(2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)

(3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。

(4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。

2、教材p145例5的意图

(1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。

(2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)

(3)、例5也反映了众数是数据代表的一种。

八年级数学教案人教版篇四

学习目标:

1、巩固对整式乘法法则的理解,会用法则进行计算

2、在学生大量实践的基础上,是学生认识单项式乘以单项式法则是整式乘法的关键,“多乘多”、“单乘多”都转化为单项式相乘。

3、在通过学生练习中,体会运算律是运算的通性,感受转化思想。。

4、进一步培养学生有条理的思考和表达能力。

学习重点:整式乘法的法则运用

学习难点:整式乘法中学生思维能力的培养

学习过程

1.学习准备

1.你能写出整式乘法的法则吗?试一试。

2.谈谈在整式乘法的学习过程中,你有什么收获?有什么不足?

利用课下时间和同学交流一下,能解决吗?

2.合作探究

1.练习

(1)(-5a2b)(2a2bc)(2)(-ax)(-bx3)

(3)(2x104)(6x105)(4)(x)•2x3•(-3x2)

2、结合上面练习,谈谈在单项式乘单项式运算中怎样进行计算?要注意些什么?

3、练习

(1)(-3x)(4x2-x+1)(2)(-xy)(2x-5y-1)

(3)(2x+3)(4x+1)(4)(x+1)(x2-2x+3)

4、结合上面练习,体会单项式乘多项式、多项式乘多项式运算中,都是以单项式乘单项式为基础、运用乘法分配律进行计算。

3.自我测试

1、3x2•(-4xy)•(-xy)=

2、若(mx3)•(2xn)=-8x18,则m=

3、一个长方体的长、宽、高分别为3x-4,2x和x,它的体积是

4、若m2-2m=1,则2m2-4m+的值是

5、解方程:1-(2x+1)(x-2)=x2-(3x-1)(x+3)-11

6、当(x2+mx+8)(x2-3x+n)展开后,如果不含x2和x3的项,求(-m)3n的值.

7、计算:(y+1)(y2-y+1)+y(1+y)(1-y),其中y=-.

8、(北京)已知x2-5x=14,(x-1)(2x-1)-(x+1)2+1的值。

9、某公园要建如图所示的形状的草坪(阴影部分),求铺设草坪多少m2?若每平

方米草坪260元,则为修建该草坪需投资多少元?

八年级数学教案人教版篇五

采用教材原有的引入问题,设计的几个问题如下:

(1)、请同学读p140探究问题,依据统计表可以读出哪些信息

(2)、这里的组中值指什么,它是怎样确定的?

(3)、第二组数据的频数5指什么呢?

(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。

八年级数学教案人教版篇六

5.在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是()

a、矩形 b、菱形 c、正方形 d、梯形

答案:b

知识点:等边三角形的性质;菱形的判定

解析:

解答:用两个边长为a的等边三角形拼成的四边形,它的四条边长都为a,根据菱形的定义四边相等的四边形是菱形.根据题意得,拼成的四边形四边相等,则是菱形.故选b.

分析:此题主要考查了等边三角形的性质,菱形的定义.

6.用两个边长为a的等边三角形纸片拼成的四边形是()

a、等腰梯形 b、正方形 c、矩形 d、菱形

答案:d

知识点:等边三角形的性质;菱形的判定

解析:

解答:由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形.由题意可得:得到的四边形的四条边相等,即是菱形.故选d.

分析:本题利用了菱形的概念:四边相等的四边形是菱形.

八年级数学教案人教版篇七

一、教学目标:(1)熟练地进行同分母的分式加减法的运算.

(2)会把异分母的分式通分,转化成同分母的分式相加减.

二、重点、难点

1.重点:熟练地进行异分母的分式加减法的运算.

2.难点:熟练地进行异分母的分式加减法的运算.

3.认知难点与突破方法

进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,,然后按同分母的分式加减法的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:(1)取各分母系数的最小公倍数;(2)所出现的字母(或含字母的式子)为底的幂的因式都要取;(3)相同字母(或含字母的式子)的幂的因式取指数的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.

异分母的分式加减法的一般步骤:(1)通分,将异分母的分式化成同分母的分式;(2)写成“分母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式.

三、例、习题的意图分析

1.p18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的.这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.

2.p19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.

第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.

(4)p21例7是一道物理的电路题,学生首先要有并联电路总电阻r与各支路电阻r1,r2,…,rn的关系为.若知道这个公式,就比较容易地用含有r1的式子表示r2,列出,下面的计算就是异分母的分式加法的运算了,得到,再利用倒数的概念得到r的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.

四、课堂堂引入

1.出示p18问题3、问题4,教师引导学生列出答案.

引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.

2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?

3.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?

4.请同学们说出的最简公分母是什么?你能说出最简公分母的确定方法吗?

五、例题讲解

(p20)例6.计算

[分析]第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.

(补充)例.计算

(1)

[分析]第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.

解:

=

=

=

=

(2)

[分析]第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.

解:

=

=

=

=

=

六、随堂练习

计算

(1)(2)

(3)(4)

七、课后练习

计算

(1)(2)

(3)(4)

八、答案:

四.(1)(2)(3)(4)1

五.(1)(2)(3)1(4)

八年级数学教案人教版篇八

1.(跨学科综合 题)若把x克食盐溶入b克水中,从其中取出m克食盐溶液,其中含纯盐________.

2.(数学与生活)李丽从家到学校的路程为s,无风时她以平均a米/秒的速度骑车,便能按时到达,当风速为b米/秒时,她若顶 风按时到校,请用代数式表示她必须提前_______出发.

3.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a天完成,若甲组单独完成需要b天,乙 组单独完 成需_______天.

八年级数学教案人教版篇九

严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。

八年级数学教案人教版篇十

1、教材p140探究栏目的意图。

(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

2、教材p140的思考的意图。

(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。

3、p141利用计算器计算平均值

这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。

八年级数学教案人教版篇十一

1、知识与技能

会应用平方差公式进行因式分解,发展学生推理能力。

2、过程与方法

经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。

3、情感、态度与价值观

培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。

重、难点与关键

1、重点:利用平方差公式分解因式。

2、难点:领会因式分解的解题步骤和分解因式的彻底性。

3、关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来。

教学方法

采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维。

教学过程

一、观察探讨,体验新知

【问题牵引】

请同学们计算下列各式。

(1)(a+5)(a-5);(2)(4m+3n)(4m-3n)。

【学生活动】动笔计算出上面的两道题,并踊跃上台板演。

(1)(a+5)(a-5)=a2-52=a2-25;

(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律。

1、分解因式:a2-25;2.分解因式16m2-9n.

【学生活动】从逆向思维入手,很快得到下面答案:

(1)a2-25=a2-52=(a+5)(a-5)。

(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n)。

【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解。

平方差公式:a2-b2=(a+b)(a-b)。

评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式)。

二、范例学习,应用所学

【例1】把下列各式分解因式:(投影显示或板书)

(1)x2-9y2;(2)16x4-y4;

(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;

(5)m2(16x-y)+n2(y-16x)。

【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解。

【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演。

【学生活动】分四人小组,合作探究。

解:(1)x2-9y2=(x+3y)(x-3y);

(5)m2(16x-y)+n2(y-16x)

=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n)。

八年级数学教案人教版篇十二

1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)

求这15个销售员该月销量的中位数和众数。

假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。

2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示:

1匹1.2匹1.5匹2匹

3月12台20台8台4台

4月16台30台14台8台

根据表格回答问题:

商店出售的各种规格空调中,众数是多少?

假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?

答案:1.(1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。

2.(1)1.2匹(2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。

八年级数学教案人教版篇十三

(一)、知识与技能:

(1)使学生了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

(二)、过程与方法:

(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。

(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

重点:因式分解的概念及提公因式法。

难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。

教学环节:

活动1:复习引入

看谁算得快:用简便方法计算:

(1)7/9×13-7/9×6+7/9×2=;

(2)-2.67×132+25×2.67+7×2.67=;

(3)992–1=。

设计意图:

注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。

活动2:导入课题

p165的探究(略);

2.看谁想得快:993–99能被哪些数整除?你是怎么得出来的?

设计意图:

引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。

活动3:探究新知

看谁算得准:

计算下列式子:

(1)3x(x-1)=;

(2)(a+b+c)=;

(3)(+4)(-4)=;

(4)(-3)2=;

(5)a(a+1)(a-1)=;

根据上面的算式填空:

(1)a+b+c=;

(2)3x2-3x=;

(3)2-16=;

(4)a3-a=;

(5)2-6+9=。

在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。

活动4:归纳、得出新知

比较以下两种运算的联系与区别:

a(a+1)(a-1)=a3-a

a3-a=a(a+1)(a-1)

在第三环节的.运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?

八年级数学教案人教版篇十四

1、了解方差的定义和计算公式。

2、理解方差概念产生和形成过程。

3、会用方差计算公式比较两组数据波动大小。

重点:掌握方差产生的必要性和应用方差公式解决实际问题。

难点:理解方差公式。

(一)知识详解:

方差:设有n个数据,各数据与它们的平均数的差的平方分别为

用它们的平均数表示这组数据的方差,即

给力小贴士:方差越小说明这组数据越稳定,波动性越低。

(二)自主检测小练习:

1、已知一组数据为2.0、-1.3、-4,则这组数据的方差为。

2、甲、乙两组数据如下:

甲组:1091181213107;

乙组:7891011121112。

分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。

引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下(单位:cm):

甲:9.10.10.13.7.13.10.8.11.8;

乙:8.13.12.11.10.12.7.7.10.10;

问:(1)哪种农作物的苗长较高(可以计算它们的平均数:=)?

(2)哪种农作物的苗长较整齐?(可以计算它们的极差,你可以发现)

归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别为

用它们的平均数表示这组数据的方差,即用来表示。

(一)例题讲解:

金志强1013161412

提示:先求平均数,然后使用公式计算方差。

(二)小试身手

1、甲、乙两名学生在相同条件下各射击靶10次,命中的环数如下:

甲:7.8.6.8.6.5.9.10.7.4

乙:9.5.7.8.7.6.8.6.7.7

经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定去参加比赛。

1、求下列数据的众数:

(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2

方差公式:

提示:方差越小,说明这组数据越集中。波动性越小。

每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。

1、小爽和小兵在10次百米跑步练习中的成绩如下表所示:(单位:秒)

如果根据这些成绩选拔一人参加比赛,你会选谁呢?

必做题:教材141页练习1.2;选做题:练习册对应部分习题。

写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!

八年级数学教案人教版篇十五

1.什么叫平行四边形?平行四边形有什么性质?

2.将以上的性质定理,分别用命题形式叙述出来。

平行四边形的判定方法:

证明:两组对边分别相等的`四边形是平行四边形

已知:

求证:

学生交流:把你做的四边形和其他同学做的进行比较,看看是否都是平行四边形。

观察发现:尽管每个人取的边长不一样,但只要对边分别相等,所作的都是平行四边形

八年级数学教案人教版篇十六

因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。

通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。

1、在分解因式的过程中体会整式乘法与因式分解之间的联系。

2、通过公式a-b=(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。

3、能运用提公因式法、公式法进行综合运用。

4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。

灵活运用平方差公式进行分解因式。

平方差公式的.推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。

八年级数学教案人教版篇十七

1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.

2、会求一组数据的极差.

1、重点:会求一组数据的极差.

2、难点:本节课内容较容易接受,不存在难点、

从表中你能得到哪些信息?

比较两段时间气温的高低,求平均气温是一种常用的方法、

这是不是说,两个时段的气温情况没有什么差异呢?

根据两段时间的气温情况可绘成的折线图、

观察一下,它们有区别吗?说说你观察得到的结果、

本节课在教材中没有相应的例题,教材p152习题分析

问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大、问题2涉及前一个学期统计知识首先应回忆复习已学知识、问题3答案并不唯一,合理即可。

八年级数学教案人教版篇十八

1、了解方差的定义和计算公式。

2、理解方差概念的产生和形成的过程。

3、会用方差计算公式来比较两组数据的波动大小。

重点:方差产生的必要性和应用方差公式解决实际问题。

难点:理解方差公式

(一)知识我先懂:

方差:设有n个数据,各数据与它们的平均数的差的平方分别是

我们用它们的平均数,表示这组数据的`方差:即用

来表示。

给力小贴士:方差越小说明这组数据越。波动性越。

(二)自主检测小练习:

1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为。

2、甲、乙两组数据如下:

甲组:1091181213107;

乙组:7891011121112.

分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.

引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)

甲:9、10、10、13、7、13、10、8、11、8;

乙:8、13、12、11、10、12、7、7、10、10;

问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数:=)

(2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了)

归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别是

我们用它们的平均数,表示这组数据的方差:即用来表示。

(一)例题讲解:

测试次数第1次第2次第3次第4次第5次

段巍1314131213

金志强1013161412

给力提示:先求平均数,在利用公式求解方差。

(二)小试身手

1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定

去参加比赛。

1、求下列数据的众数:

(1)3,2,5,3,1,2,3(2)5,2,1,5,3,5,2,2

方差公式:

给力提示:方差越小说明这组数据越。波动性越。

每课一首诗:求方差,有公式;先平均,再求差;

求平方,再平均;所得数,是方差。

1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!

八年级数学教案人教版篇十九

(1)知识结构

本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:

学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点p,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

八年级数学教案人教版篇二十

《基础教育课程改革纲要(试行)》指出:“大力推进多媒体信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。”教师运用现代多媒体信息技术对教学活动进行创造性设计,发挥计算机辅助教学的特有功能,把信息技术和数学教学的学科特点结合起来,可以使教学的表现形式更加形象化、多样化、视觉化,有利于充分揭示数学概念的形成与发展,数学思维的过程和实质,展示数学思维的形成过程,使数学课堂教学收到事半功倍的效果。

本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,在知识结构上打破了教材的编写顺序,从整体的角度探究特殊四边形性质。运用多媒体教学体现出直观、课容量大、容易接受的特点,为进一步的理论证明及应用起着提供数据和宏观指导作用,使学生学习本章具体内容时知道身在何处,使知识体系更加系统。本节课内容是四边形这章的理论基础,在该章占有非常重要的地位。

本班经历了一年多课改实践,学生对运用现代多媒体信息技术的教学方式有浓厚的兴趣,能运用《几何画板》这一工具进行简单的操作,形成自主探索和合作交流的学风,从而乐于在教师的指导下主动与同学探索、发现、归纳、经历数学知识于实践的过程。

本节课充分利用现有的先进教学设备(两名学生一台电脑),利用笔者自制,借助《几何画板》把学生带入数学模拟实验室,以研究电动门的机械原理为切入点,从学生已有的生活经验出发,让学生亲身经历数学知识的形成并进行解释与应用过程。组员相互配合分别测量、搜集、分析、整理特殊四边形的边长、角度、对角线长度等数据,并总结其性质,通过人机对话方式把静态、抽象的几何图形变为动态、直观地演示出来。在此过程中教师当好课堂教学的组织者、决策者、创造者和参与者,教给学生自觉主动地探究新知识的方法,激发学生的思维,培养学生的科学精神和创新思维习惯,使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到发展。

1、初步理解特殊四边形性质;

2、培养学生自主收集、描述和分析数据的能力;

1、了解特殊四边形性质的形成过程;

2、初步了解探究新知识的一些方法;

1、了解特殊四边形在日常生活中的应用;

2、学生在观察、归纳、类比及实验教学活动中,体会成功后的喜悦;

3、初步具有感性认识上升到理性认识的辩证唯物主义思想。

教学环境:

多媒体计算机网络教室

教学课型:

试验探究式

教学重点:

特殊四边形性质

教学难点:

特殊四边形性质的发现

一、设置情景,提出问题

提出问题:

1、电动门的网格和结点能组成哪些四边形?

2、在开(关)门过程中这些四边形是如何变化的?

3、你还发现了什么?

解决问题:

学生猜想:包括平行四边形、矩形、菱形、等腰梯形、直角梯形……;

当我们学习完本节知识后,其他问题就容易解决了。

(意图:用《几何画板》的动态演示生活事例,充分展示了数学的美妙,可以使学生容易进入情境和保持积极学习状态,激起学生探究解决问题的求知欲望。)

二、整体了解,形成系统

本节课从整体角度研究特殊四边形性质,为今后的个体研究打下良好的基础。我们先研究四边形中的特殊与一般的关系。

提出问题:

1、本章主要研究哪些特殊四边形?

2、从哪几方面研究这些特殊四边形?

解决问题:

学生操作电脑(用几何画板),了解本章研究的主要图形;教师个别指导。

1、包括:平行四边形、矩形、菱形、梯形、等腰梯形、直角梯形

3、等腰梯形和直角梯形后面应该是矩形,但不符合梯形定义,所以没有图形。

(意图:学生自主观察、分组讨论了解本章知识结构,从而形成系统;通过假设、猜想、推理、论证、否定假设获得新知识)

三、个体研究、总结性质

1、平行四边形性质

提出问题:

在平行四边形的形状、位置、大小变化过程中,请观察数据并找出边长、角度、对角线长度相对不变的性质。

解决问题:

教师引导学生拖动b点(学生操作电脑),改变平行四边形的形状、位置、大小,并观察数据的变化,从中找出相对不变的要素。

在图形变化过程中,

(1)对边相等;

(2)对角相等;

(3)通过ao=co、bo=do,可得对角线互相平分;

(4)通过邻角互补,可得对边平行;

(5)内外角和都等于360度;

(6)邻角互补;

……

指导学生填表:

平行四边形性质矩形性质正方形性质

菱形性质

梯形性质等腰梯形性质

直角梯形性质

(既属于平行四边形性质又属于矩形性质可以画箭头)

按照平行四边形性质的探索思路,分别研究:

2、矩形性质;

3、菱形性质;

4、正方形性质;

5、梯形性质;

6、等腰梯形性质;

7、直角梯形的性质。

(意图:学生运用电脑自主收集、描述、分析数据,把抽象的性质变为直观化、形象化,培养独立探究,自主自信,使学生体验到科学探索的乐趣。)

教师总结:

(意图:掌握画箭头的方法,使学生了解事物个体既有该事物一般性质,又有自己的特点。既清楚地表达,又节省时间。)

四、联系生活,解决问题

解决问题:

学生操作电脑,观察图形、分组讨论,教师个别指导。

学生在分别演示开(关)门过程中,观察数据并总结:边长、角度、对角线长度的变化引起四边形的形状、大小、位置的变化。

四边形具有不稳定性,而三角形没有这个特点……

(意图:使学生体会到数学于生活、又服务于生活,更重要的是培养学生应用知识解决实际问题的能力,体会成功后的喜悦。)

五、小结

1.研究问题从整体到局部的方法;

2.主要从边长、角度、对角线长度三方面研究特殊四边形性质。

六、作业

1.平行四边形内角中,既有两个相邻的角相等,又有一组邻边相等,试判断它是什么图形。

2.观察实际生活中的电动门,在开(关)门过程中特殊四边形的变化。

针对教学内容、学生特点及设计方案,预计下列学习效果:

利用多媒体信息技术图文并茂、形象直观的特点,通过学生自主测量、分析、整理数据并总结其性质,培养学生收集、描述和分析数据的能力,并达到初步理解特殊四边形性质的目标。

在问题引入、了解整体、测量个体、总结性质的过程中,符合事物的认识规律及探究新知识的一般方法,初步形成感性认识上升到理性认识的辩证唯物主义思想。

由于个体差异,针对教学目标难以达到的个别学生,根据教学的进展,通过师生之间、学生之间的对话交流及时指导,使教学目标得以实现。

八年级数学教案人教版篇二十一

教学目标:

1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

重点与难点:

重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

难点:分析典型图案的设计意图。

疑点:在设计的图案中清晰地表现自己的设计意图

教具学具准备:

提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

教学过程设计:

1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)

明确在欣赏了图案后,简单地复习旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

2、课本

1欣赏课本75页图3—24的图案,并分析这个图案形成过程。

评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

(二)课内练习

(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

(三)议一议

生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

(四)课时小结

本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)

八年级数学上册教案(五)延伸拓展

进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

八年级数学教案人教版篇二十二

1.经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.

2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。

3.在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.

将实际问题中的等量关系用分式方程表示

找实际问题中的等量关系

有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg。已知第一块试验田每公顷的.产量比第二块少3000kg,分别求这两块试验田每公顷的产量。你能找出这一问题中的所有等量关系吗?(分组交流)

如果设第一块试验田每公顷的产量为kg,那么第二块试验田每公顷的产量是________kg。

根据题意,可得方程___________________

从甲地到乙地有两条公路:一条是全长600km的普通公路,另一条是全长480km的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从甲地到乙地所需的时间。

这一问题中有哪些等量关系?

如果设客车由高速公路从甲地到乙地所需的时间为h,那么它由普通公路从甲地到乙地所需的时间为_________h。

根据题意,可得方程______________________。

学生分组探讨、交流,列出方程.

上面所得到的方程有什么共同特点?

分母中含有未知数的方程叫做分式方程

分式方程与整式方程有什么区别?

(3)根据分式方程编一道应用题,然后同组交流,看谁编得好

本节课你学到了哪些知识?有什么感想?

八年级数学教案人教版篇二十三

《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。

本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。

(一)知识目标:

1、要求学生掌握正方形的概念及性质;

2、能正确运用正方形的性质进行简单的计算、推理、论证;

(二)能力目标:

1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;

2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;

(三)情感目标:

1、让学生树立科学、严谨、理论联系实际的良好学风;

2、培养学生互相帮助、团结协作、相互讨论的团队精神;

3、通过正方形图形的完美性,培养学生品格的完美性。

该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。

针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。

通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。

本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。

第一环节:相关知识回顾

以提问的形式复习平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。

第二环节:新课讲解通过学生们的发现引出课题“正方形”

1、正方形的定义:引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。

2、正方形的性质定理1:正方形的四个角都是直角,四条边都相等;

定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。

以上是对正方形定义和性质的学习,之后是进行例题讲解。

4、课堂练习:第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。

第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。

5、课堂小结:此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。

6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。

【本文地址:http://www.xuefen.com.cn/zuowen/4210818.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档