最新小数的意义教学设计一等奖(通用17篇)

格式:DOC 上传日期:2023-10-28 06:13:08
最新小数的意义教学设计一等奖(通用17篇)
时间:2023-10-28 06:13:08     小编:文轩

语法是语文学习的基础,掌握好语法规则有助于写出正确的表达。在写一篇较为完美的总结时,我们应该明确总结的目的和受众。以下是小编为大家收集的总结范文,希望能给大家提供一些启示和参考。

小数的意义教学设计一等奖篇一

知识目标:在学生在了解小数产生的过程中,理解分数与小数的联系,理解小数的意义,知道小数的计数单位。知道小数和整数一样,相邻计数单位间的进率都是10。

能力目标:在探究过程中培养学生的观察能力、分析能力、抽象概括和迁移能力。

小数的意义,计数单位及进率。

三年级时学生已学习了小数的初步认识,会认识小数以及读写法,知道了小数在实际生活中的应用,并会进行两位以内小数大小的比较,以及一位小数的简单加减法。在生活中,小数的应用也普遍,所以学生已经具备一定的小数认识的基础。

操作法,观察法,讨论法,引导尝试法。

教学课时:1课时

一、情景导入

2.认识他们吗?读一读,生活中,这样的数多不多?还在哪儿见过这样的数?

3.在我们身边随处都能找到小数,小数的用处可大了,所以,我们今后还要反复学习小数,接下来我们继续去数学王国探究小数的奥秘。

二、新课教学

(一)认识一位小数

出示一米长的纸条

1.估一下,大概有多长?

2.确定是一米长的纸条。

出示长方形的纸片,老师想知道这个表的长和宽,怎么办?(量)

3.用一米的纸条做尺子,来量数位表的长。

4.发现:不够一米。不能得到一个整米数,怎么办?(用更小的单位,把一米分成10个一分米)

(板书)1分米

1/10米

0.1米

把1米平均分成10份,每一份是1分米。

也就是说1分米是把1米平均分10份里面的1份,也就是1/10米

也可以用小数表示为0.1米

【设计意图】

用一米的单位来量,得不到一个整米数,然后用分的方法引出小数0.1,让学生理解小数的产生及其作用。

5.通过测量,得到:长是3分米。

3分米

3/10米

0.3米

6.学生活动

(1)把“1”平均分成十份,其中五份用分数表示是(?),用小数表示是(??)。

(2)在方格纸上涂出0.6,你打算把方格纸平均分成多少份?

涂其中的几份?

【设计意图】

即时练习,举一反三,通过想、说、做,使学生明白以为小数与分母是10的分数的关系,理解一位小数的意义。

(二)认识两位小数

1.量出长方形的宽

比2分米长点,但不够三分米,没法用整分米数表示怎么办?(用更小的单位厘米,把一米分成100个一厘米)

(板书)

1厘米

1/100米

0.01米

2.得到21厘米,用米作单位怎么表示?

21厘米

21/100米

0.21米

3.学生活动

(1)在方格纸上涂出0.06,你打算把方格纸平均分成多少份?涂其中的几份?

(2)如果要在方格纸上涂出0.65呢?

(三)认识三位小数

如果仔细看,这个数位表的宽比21厘米还多一点点,但又比22厘米少,如果要得到更精确的宽度,可不可以再分?(用更小的单位:毫米,把一米分成1000个1毫米)

1毫米

1/1000米

0.001米

(四)如果我们需要更加精确的数,可不可以再分呢?分的完吗?

【设计意图】

在认识了一位小数的基础上,有层次,有规律地认识两位小数,学习三位小数,降低了学生对概念的理解难度。

(五)小数的计数单位

课件演示:用一个正方体的分解来演示

小数的计数单位分别是:十分之一,百分之一,千分之一……

分别写作:

0.1、

0.01、

0.001……

(六)教学小数计数单位之间的进率

10个0.1是1,10个0.01是0.1,10个0.001是0.01,也就是说,小数中相邻的两个计数单位进率是10。

师:同整数一样,小数里面每相邻的两个计数单位进率都是10。

【设计意图】

直观演示,有两方面的作用,一是加深学生对用“分”的方法来学习小数意义的过程的理解,二是通过观察,能更容易的理解小数计数单位之间进率的理解。

三、巩固练习

“勇闯智慧岛”

1.看图写出分数和小数。

2.我是小法官

四、课堂总结

1.观察,思考,小数跟哪种数有着密切的关系?(分母是10、100、1000……的分数)

2.评价学生活动,下课。

小数的意义教学设计一等奖篇二

教学难点:应用比例的'意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

教学步骤:

一、铺垫孕伏

师:同学们,今天我们数学课上有很多有趣的问题等你来解决,希望大家努力。我们首先来解决两个问题。

(二)反馈:(1)谁买的本子便宜些?能简单地说说你的理由。

(2)还有别的方法吗?

(3)这两个比可以用一个什么符号将它们连起来?为什么?

(三)(出示):2、3月10日下午2点,学校8米高的旗杆影子长5米,旁边一棵高120厘米的香樟树影子长75厘米,说出旗杆和香樟树与各自影长的比。(8:5120:75)

这两个比能用一个等号连接起来吗?为什么?

二、探究新知。

(一)比例的意义。

2、得出结论:表示两个比相等的式子,叫做比例。(板书课题:比例的意义)

3、完成“做一做”。

下面哪组中的两个比可以组成比例?把组成的比例写出来。(见书上“做一做)

5、反馈:(1)你给5:8找的朋友是(),组成的比例是(),向大家介绍你用了什么方法找到的。

6、师生小结:如果判断两个比能否组成比例,最关键是看什么?

(二)比例的基本性质。

1、认识比例各部分的名称。

(1)自学课本。

前几节课上,我们已经知道,比中两个数分别叫做比的前项和后项。今天学习的比例中的四个数也有新名字,想知道吗?请看课本第二页是怎样给它们取名的。

(2)反馈:让学生看下面这些比例,说出它的外项和内项各是多少。

45:27=10:66:10=9:15

:=6:406:02=:

2、探究比例的基本性质。

(2)学生汇报:

我发现在这两个比例里,两个外项的积都等于两个内项的积。

(3)查一查:你随便找几个比例,看一看这些比例中有没有这个有趣的现象?

(学生合作学习,汇报交流,得出结论)

在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

(板书课题:加上“和基本性质”,使课题完整。)

3、练一练。

(1)小游戏:下面我们轻松一下,由你出题考老师,规则是:请你说出10以内4个不同的自然数,看老师能为能马上告诉你,它们是否能组成比例?(学生报数,老师回答)

谁能说出老师的秘诀?

(2)现在轮到我考你:4、3、6、86、9、4、7

(学生回答后让他说出判断理由)

(3)请你独立用4、3、6、8写比例,然后小组交流讨论,把最好的办法推荐给大家。

(4)阅读教科书第1――2页的内容并填空。

三、全课小结。

这节课我们学会了什么?

四、随堂练习

1、说一说比和比例有什么区别。

2、练习一第2、3题。

小数的意义教学设计一等奖篇三

1、结合具体情境,结合实际操作,通过观察、类比等活动使学生理解小数的意义。

2、在理解小数意义的基础上学会读小数和写小数,并分清与整数读写的区别。

3、经历探索小数意义的过程,了解小数在生活中的广泛应用。

教学重点:结合实际操作,使学生理解小数的意义,学会读写小数

教学难点:经历探索小数意义的过程。

自制课件正方形纸片、正方体模型

课件播放歌曲《春天在哪里》

师:请大家用最响亮的声音告诉老师,刚才我们听到的歌曲与哪个季节有关?

生:春天。

课件出示:1千瓦时的电可以让电动车运行0.84千米。

师:谁来读一读这句话。

生:1千瓦时的电可以让电动车运行0.84千米。

师:0.84是个什么数?

生:小数。

1、教学小数的读写

师:你还会读其他的小数吗?

课件出示一组小数。指名学生读。如果都读对了给自己适当的鼓励。

教师给予适当的评价,教案《小数的意义教学设计》。然后分组讨论:小数的读法和整数的读法有什么相同的地方,又有什么不同的地方。

学生讨论后回答汇报。

教师小结:小数点前面的数按照整数的读法去读,小数点后面的按照数字出现的顺序去读。

师:打搅会读小数了,那你会写小数吗?

生:会。

课件出示零点四七四点一三十二点四零五

学生自由写--交流--集体订正。

2、教学小数的意义

师:大家既然都见到过小数,那想一想都是在哪里见到的:

生举例生活中的小数(超市的货架上、小票上、课本上等等)

师:大家都是善于观察、乐于发现的好孩子。那你知道0.1元是什么意思吗?

生:1角。

师:说说你的想法。

生:、、、、、、

师出示正方形的纸,然后让学生图出0.1元。

生操作然后汇报。

师生共同通过课件展示来理解1角=0.1元,然后拓展到2角。

师操作让学生回答表示的是多少元。

师:我还是把1元平均分成10份,你能表示出3角吗?涂一涂。

生操作后汇报

师:你知道0.01元是多少钱?

生:1分。

师:那1元里面有多少个1分呢?

生:100个。

师:也就是说(课件展示0.01元表示把1元平均分成份,取了其中的份,用分数表示。--学生自然而然的填写了答案。

0.03元呢?0.36元呢。

让学生用手中的正方形的纸片进行涂写、汇报。

展示0.25的图片,让学生写小数和分数。

借助课件讲解0.001与分数的关系。让学生写0.025与分数。进一步理解三位小数。

师小结:通过我们刚才的谈话,我们不难看出小数与分数有着密切的联系。其实小数就是表示十分之几、百分之几、千分之几…的数。0.1、0.01、0.001…是小数的计数单位。到这里,这节课我们主要就学习了出示课题"小数的读写及意义",学得怎么样呢,下面我们一起来测验一下。

(课件)展示题目

采用的方法是学生口答,并要学生说出原因。教师做适当的点评和评价。

师:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?

小数的意义教学设计一等奖篇四

苏教版《义务教育课程标准实验教科书数学》三年级(下册)第100~101页。

教学目标

1.使学生经历认识小数的过程,初步了解小数的含义,会读、写一位小数,知道小数各部分的名称,知道自然数和整数。

2.使学生在解决实际问题的过程中,培养初步的自主探究、合作交流的意识,感受数学和生活的密切联系,增强学好数学的信心。

教学过程

出示:1/2585/120.51.25.8

提问:同学们,知道这些数分别是什么数吗?

谈话:后面的三个数,你平时在什么地方见到过?

学生可能会想到:铅笔芯的规格、眼睛的视力、商品的价格等。

揭题:是的,在日常生活中经常接触到这样的数。它们都是小数,今天我们一起来认识小数。(板书课题:认识小数)

1.提出问题。

提问:你想了解小数的哪些知识?

学生可能提出:小数是怎么来的?学了小数有什么用处?小数应该怎样读,怎样写?……

2.教学第一个例题。

谈话:同学们想知道小数是怎样产生的吗?其实小数就来自我们的生活。先让我们来做这样一个活动:小组合作测量课桌面的长和宽,并用不同的数、不同的单位把测量结果表示出来。比一比,哪个小组想到的表示方法最多。

学生在小组内测量课桌面的长和宽,交流不同的表示方式。教师巡视,并作适当指导。

反馈:你们小组的测量结果是多少?想到几种不同的表示方法?

学生量出课桌面的长是60厘米,宽是40厘米,并用600毫米、60厘米、6/10米等表示课桌面的长,用400毫米、40厘米、4/10米等表示课桌面的宽。(根据学生回答,板书:6分米=6/10米,4分米=4/10米)

提问:除了上面几种表示形式外,你还能用其他方法来表示吗?

如果学生主动想到分别用0.6米、0.4米表示课桌面的长和宽,则让学生说一说是怎样想到的,0.6米和0.4米分别表示什么意思。

如果学生不能主动地用小数来表示,则讲述:其实,6/10米还可以用小数0.6米来表示,0.6读作零点六。(板书:=0.6米0.6读作零点六)也就是说把1米平均分成10份,其中的6份可以用0.6米表示。

提问:你能说一说0.6米表示的意思吗?

学生回答后,让同桌间互相说一说。

引导:那么4/10米还可以怎样用小数来表示呢?(板书:0.4米0.4读作零点四)

提问:0.4米表示什么意思?

学生交流时,分别让学生在米尺上指出0.1米、0.5米、0.8米的实际长度。

小结:十分之几米可以写成零点几米。

3.做“想想做做”第1题。

先让学生弄懂题意,然后把答案填在书上。完成后,电脑出示答案,集体校对。

4.教学第二个例题。

谈话:昨天三(5)班的李萍同学在育才商店里买了这样一些文具用品。我们一起来看看吧。

出示文具的图片及标价:

铅笔圆珠笔笔记本

3角1元2角3元5角

提问:一枝铅笔是3角钱,如果用元作单位,是多少元呢?(分别用3/10元和0.3元表示,并读一读、写一写。)

讨论:一枝圆珠笔的价钱是1元2角,怎样用元作单位,用小数来表示圆珠笔的价钱呢?请先在小组里讨论讨论,再说一说你是怎样想的。

反馈时,着重引导学生体会:1元2角是1元多2角,2角可以用0.2元来表示,1元和0.2元合起来就写成1.2元,1元2角可以写成1.2元。(板书:1元2角=1.2元1.2读作一点二)

提问:一本笔记本的价钱是3元5角,用元作单位的小数又怎么来表示呢?你是怎么想的?(板书:3元5角=3.5元3.5读作三点五)

小结:几元几角写成小数就是几点几元。

5.做“想想做做”第2题。

让学生在书上完成填空,并说一说是怎样想的。

6.介绍自然数和整数。

让学生自由阅读书本第100页的最后一段,提出不懂的问题。

7.游戏。

男同学代表整数,女同学代表小数,看到你所表示的数请你站起来。

80.23.805995.411/41.6

谈话:我们已经认识了小数。现在我们以小组为单位,一起来进行比赛好吗?

1.听录音,把听到的小数记录下来。

一只青蛙跳过0.4米的田埂,来到宽16.8米的河面上,踏上了0.2平方米的荷叶,狂叫三声,扑通一声掉进了深3.9米的河里。

2.做“想想做做”第3题。

出示题目,让学生抢答,并说一说每道题中分数、小数的意义。

3.回答下面的问题。

一包上好佳,价钱在1元到2元之间,请你猜猜它的价钱是多少?

小组合作讨论后把价钱写在纸上,交流时引导学生用“几元几角”和“几点几元”两种方式表达,并在数轴上分别找出每种可能价钱所在的点。

提问:今天你学得开心吗?你有什么收获?

课件介绍十进分数的发展史和古代数学家刘徽的杰出成就。

小数的意义教学设计一等奖篇五

第一课时比例的意义

教学内容:

比例的意义(教材第40页的内容)

教学目标:

1、理解和掌握比例的意义。

2、了解比和比例的区别与联系。

2、能用比例的意义判断两个比能否组成比例。

教学重难点:

1、认识比例,理解比例的意义。

2、在已有知识的基础上,结合实例引出新的知识。

教具准备:

情景图、多媒体课件、习题卡。

教学过程:

一、导入

出示课题:比例

看到课题你想到了以前学过的什么知识?(生1,生2等回答)

我们已经了解了比的这些知识,请做下面练习。

求下面各比的比值。

18:453:52.7:4.5

求完比值你觉得哪些比有联系?

师:相机板书:3:5=2.7=4.5?

今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?

板书完整课题:比例的意义

二、揭题示标。

预设:生:1、比例的意义是什么?

生:2、比例的意义有什么作用?

(师趁机板书在黑板右上角)

本节课我们就来完成这两个目标:

三、自主探索

【设计意图:对学生同时进行思想品德教育和爱国教育】

生各抒己见。

你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。

自学指导:

1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。

2、发现了什么有趣的现象?

3、把你的发现尝试用算式写下来。

(5分钟后,期待你精彩的分享)

(二)自学

学生认真看书自学,教师巡视,督促人人都在认真地思考。

(三)汇报分享

谁愿意把你的结果和大家分享?师相机板书

(1)15:2.4=10:1.6(2)60:15=40:10(3)…(4)…

原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。

我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。

师:你还能写出两个比组成的比例吗?先自己选,再在小组里说一说。

生:…

师:你能根据自己的理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。

出示“比例的意义”概念

擦去开始板书中的“?”并把比例可用分数形式表示板书出来

师:你能说一说组成比例要具备哪些条件吗?

生:…

生:…

四、当堂检测(牛刀小试)

下面各比能组成比例吗?你是怎样判断的?请写出计算过程。

(1)3:7和9:21

(2)15∶3和60∶12

五、当堂训练:

1、把下面的式子进行归类:

(5)72:8=3x3(6)3.6:6=0.6

比:

比例:()

思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?

2、判断:

(1)、有两个比组成的式子叫做比例。()

(2)、如果两个比可以组成比例,那么这两个比

的比值一定相等。()

(3)、比值相等的两个比可以组成比例。()

(4)、0.1∶0.3与2∶6能组成比例。()

(5)、组成比例的`两个比一定是最简的整数比.()

六、拓展提升(思绪飞扬)

1、写出比值是7的两个比,并组成比例。

2、12的因数有(),从12的因数中挑选4个数组成比例是()。

七、全课总结

今天这节课你有什么收获?

八、课堂作业

第43页第2、3题。

九、抽查清。(每组4号同学完成)

判断下面每组中的两个比能不能组成比例。

30:5和48:812:0.4和3:5

十、板书设计

比例的意义

表示两个比相等的式子叫做比例。

比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

十一、教学反思:

本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的各种能力,全课体现了以下几个特点:

1.关注了学生已有的知识与经验。课的开始从引导学生复习比的知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的引出比例,这样的设计符合学生的认知规律。

2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。

3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。

4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。

5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。

小数的意义教学设计一等奖篇六

教学内容:

九年制义务教育小学数学教材第十二册第1、2页,练习一第1――3题。

教学目标:

1、使学生理解并掌握比例的意义和基本性质,学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。

2、认识比例的各部分的名称。

3、培养学生的观察能力、判断能力。

学法引导:

引导学生观察、讨论、试算,探究比例的意义和比例的性质。

教学重点:

将本文的word文档下载到电脑,方便收藏和打印

推荐度:

点击下载文档

搜索文档

小数的意义教学设计一等奖篇七

【导语】本站的会员“wss”为你整理了“小数的意义

教学

设计”范文,希望对你有参考作用。

教学目标:

1、理解小数的意义,借助熟悉的十进制关系现实原型,多角度理解小数和分数的联系,知道每相邻两个计数单位之间的进率是10。

2、通过小数和分数的联系,培养学生系统归纳知识的能力。

3、通过对测量、观察、思考、操作等活动,以及学生对日常生活中的小数的广泛应用,使学生积累了丰富的感性认识,渗透迁移、类推思想。

4、通过自学、交流等活动,积累思考的经验和探究的经验。

5、在用小数进行表达的过程中,感受小数与生活的联系,进一步培养数感和观察、比较、抽象的能力,增强学习数学的兴趣和信心。

6、引导学生在测量、操作过程中经历“不够1米怎么表示”,感受小数产生的必要性,并尝试着解决生活中的实际问题。通过分层练习,让学生牢固掌握并重点练习小数和分数的联系,注重培养学生系统归纳知识的能力,也让学生在练习中进一步理解小数的意义,培养迁移和类推的能力。

教学重点:

1、理解小数的意义

2、知道每相邻的两个计数单位之间的进率是10。

教学难点:

小数每相邻两个计数单位间的进率是10。

教学过程:

一、情境引入,揭示课题

今天我们一起来探究小数的意义(板书:小数的意义)

二、新授

(一)1、理解一位小数的意义

请看大屏幕(出示课件米尺图)

师:谁来说一说?3分米呢?7分米呢?

通过探究,发现:分母是10的分数可以用一位小数表示。

师:0.3m里面有几个0.1m?

0.7m里面有几个0.1m?1m呢?

小结:分母是10的分数,它的分子是几,里面就有几个0.1。

2、巩固练习(出示课件)

师:请你再思考一下:1里面有几个0.1?为什么?

(二)1、理解两位小数的意义

请看大屏幕(出示课件米尺图)

通过探究,发现:分母是100的分数可以用两位小数表示。

0.04m里面有几个0.01m?

0.08m里面有几个0.01m?1m呢?

小结:分母是100的分数,它的分子是几,里面就有几个0.01。

2、巩固练习(出示课件)

(三)1、理解三位小数的意义

请看大屏幕(出示课件米尺图)

谁来说一说?6毫米呢?13毫米呢?你能独立探究吗?

学生看课本33页,独立探究。(课件出示问题引导)

通过探究,发现:分母是1000的分数可以用三位小数表示。

0.006m里面有几个0.001m?

0.013m里面有几个0.001m?1m呢?

小结:分母是1000的分数,它的分子是几,里面就有几个0.001。

(四)迁移推理

同学们看课本33页,在米尺图的下面,小精灵说了一句话,咱们齐读一下。引导学生理解其中省略号的含义。

巩固练习:

1、教材36页 1、2两题

2、课件出示巩固练习

(五)认识小数的计数单位和进率

回忆整数的计数单位,引出小数的计数单位,理解每相邻两个计数单位之间的进率是10。

三、

课堂

总结

这节课你有什么收获?

四、介绍小数的历史,拓展视野

五、布置作业:教材37页7、8两题。

小数意义教学设计

小数的意义教学设计集合

《小数的产生和意义》教学设计

《小数的意义和读写》数学教学设计

小数的意义教学设计一等奖篇八

[教学内容] 苏教版五年级上册第86页例1、“试一试”、“练一练”以及练习十五的相应练习。

[教学目标] 1、使学生通过自主探索,理解并掌握小数乘小数的计算方法,能正确计算相应的式题。2、引导学生积极主动地参加教学活动,经历探索计算方法的过程,培养他们初步的推理能力以及抽象概括能力,并能用数学语言表达自己的想法并进行交流。

3、使学生进一步体会数学知识之间的内在联系,感受数学探究活动本身的乐趣,增强学好数学的信心。

[教学重点] 理解小数乘小数的算理,掌握小数乘小数的计算方法。

[教学难点] 理解把小数乘法转化成整数乘法后,得到的积回归小数乘法积的推理过程。

[教材简析] 这部分内容主要是教学小数乘小数的计算,教材一共安排了两道例题和一个练习。例1呈现的是“小明”房间连同阳台的平面图。教材在引导学生根据长方形面积公式列出乘法算式后,要求先估算再计算。这里的估算既是为了让学生体会解决问题的不同方式,更是为了给接下来探索笔算方法提供一种支持----学生可以通过对笔算结果与估算结果的比较,判断笔算结果是否合理,从而确认相应计算方法的正确性。在让学生初步估算乘积以后,教材重点组织学生探索笔算方法。先告诉学生可以把算式的的两个小数都看成整数来计算,再结合直观图示讨论:按整数相乘后,怎样才能得到原来的积?启发学生理解:把两个因素看成整数,等于把原来的两个因素分别乘10,得到的积也就等于原来的积乘10再乘10,即乘100。由此,要得到原来的乘积,应该用整数相乘的积反过来除以100。

随后的“试一试”让学生继续利用利用例题的情境,求平面图中的阳台面积。教材通过直观的图示继续呈现了计算的思考过程,但把其中的关键步骤留给了学生填空,并在填空的基础上完成了计算,进一步加深对计算方法的理解。然后,引导学生比较例题和“试一试”的计算过程,发现两个因数中的小数位数与积的小数位数的关系,初步抽象出小数乘小数的计算方法。“练一练”第1题针对小数乘小数计算方法的关键环节,让学生根据因数中的小数位数直接在乘积中点上小数点。第2题让学生通过计算巩固刚刚学习的计算方法。

[学情分析]

多媒体课件

[教学过程] 一、在情境中引发问题

1、出示小明房间图:从图中你了解到哪些信息?你能提出什么数学问题? 师:我们就先来解决第一个问题:房间的面积有多大? 谁会列式?你为什么这样列式? 2、揭示课题:

师:这里的计算结果与我们开始估计的结果可符合?说明同学们估计得准不准?

请两名学生板演,集体订正、注意纠正错误。3、完成练习十五第2题

在书上改正,谁愿意上来展示,展台展示。四、在回顾与反思中提升经验,渗透转化的策略

师:通过这节课的学习,你有什么收获?你觉得在计算小数乘小数的时候要注意些什么?

小数乘小数

3.6×2.8=10.08(平方米)2.8×1.15=3.22(平方米)3.6 1.1 5 × 2.8 × 2.8 2 8 8 9 2 0 7 2 2 3 0 1 0.0 8 3.2 2 0 答:房间的面积有10.08平方米。答:阳台的面积是3.22平方米。[作业布置] 练习十五第1、3题。

小数的意义教学设计一等奖篇九

苏教版《义务教育课程标准实验教科书 数学》三年级(下册)第100~101页。

教学目标

1. 使学生经历认识小数的过程,初步了解小数的含义,会读、写一位小数,知道小数各部分的名称,知道自然数和整数。

2. 使学生在解决实际问题的过程中,培养初步的自主探究、合作交流的意识,感受数学和生活的密切联系,增强学好数学的信心。

教学过程

出示:1/2 58 5/12 0.5 1.2 5.8

提问:同学们,知道这些数分别是什么数吗?

谈话:后面的三个数,你平时在什么地方见到过?

学生可能会想到:铅笔芯的规格、眼睛的视力、商品的价格等。

揭题:是的,在日常生活中经常接触到这样的数。它们都是小数,今天我们一起来认识小数。(板书课题:认识小数)

1. 提出问题。

提问:你想了解小数的哪些知识?

学生可能提出:小数是怎么来的?学了小数有什么用处?小数应该怎样读,怎样写?……

2. 教学第一个例题。

谈话:同学们想知道小数是怎样产生的吗?其实小数就来自我们的生活。先让我们来做这样一个活动:小组合作测量课桌面的长和宽,并用不同的数、不同的单位把测量结果表示出来。比一比,哪个小组想到的表示方法最多。

学生在小组内测量课桌面的长和宽,交流不同的表示方式。教师巡视,并作适当指导。

反馈:你们小组的测量结果是多少?想到几种不同的表示方法?

学生量出课桌面的长是60厘米,宽是40厘米,并用600毫米、60厘米、6/10米等表示课桌面的长,用400毫米、40厘米、4/10米等表示课桌面的宽。(根据学生回答,板书:6分米=6/10米,4分米=4/10米)

提问:除了上面几种表示形式外,你还能用其他方法来表示吗?

如果学生主动想到分别用0.6米、0.4米表示课桌面的长和宽,则让学生说一说是怎样想到的,0.6米和0.4米分别表示什么意思。

如果学生不能主动地用小数来表示,则讲述:其实,6/10米还可以用小数0.6米来表示,0.6读作零点六。(板书:= 0.6米 0.6读作零点六)也就是说把1米平均分成10份,其中的6份可以用0.6米表示。

提问:你能说一说0.6米表示的意思吗?

学生回答后,让同桌间互相说一说。

引导:那么4/10米还可以怎样用小数来表示呢?(板书:0.4米 0.4读作零点四)

提问:0.4米表示什么意思?

学生交流时,分别让学生在米尺上指出0.1米、0.5米、0.8米的实际长度。

小结:十分之几米可以写成零点几米。

3. 做“想想做做”第1题。

先让学生弄懂题意,然后把答案填在书上。完成后,电脑出示答案,集体校对。

4. 教学第二个例题。

谈话:昨天三(5)班的李萍同学在育才商店里买了这样一些文具用品。我们一起来看看吧。

出示文具的图片及标价:

铅笔 圆珠笔 笔记本

3角 1元2角 3元5角

提问:一枝铅笔是3角钱,如果用元作单位,是多少元呢?(分别用3/10元和0.3元表示,并读一读、写一写。)

讨论:一枝圆珠笔的价钱是1元2角,怎样用元作单位,用小数来表示圆珠笔的价钱呢?请先在小组里讨论讨论,再说一说你是怎样想的。

反馈时,着重引导学生体会:1元2角是1元多2角,2角可以用0.2元来表示,1元和0.2元合起来就写成1.2元,1元2角可以写成1.2元。(板书:1元2角= 1.2元 1.2读作一点二)

提问:一本笔记本的价钱是3元5角,用元作单位的小数又怎么来表示呢?你是怎么想的?(板书:3元5角=3.5元 3.5读作三点五)

小结:几元几角写成小数就是几点几元。

5. 做“想想做做”第2题。

让学生在书上完成填空,并说一说是怎样想的。

6. 介绍自然数和整数。

让学生自由阅读书本第100页的最后一段,提出不懂的问题。

7. 游戏。

男同学代表整数,女同学代表小数,看到你所表示的数请你站起来。

8 0.2 3.8 0 59 95.4 1 1/4 1.6

谈话:我们已经认识了小数。现在我们以小组为单位,一起来进行比赛好吗?

1. 听录音,把听到的小数记录下来。

一只青蛙跳过0.4米的田埂,来到宽16.8米的河面上,踏上了0.2平方米的荷叶,狂叫三声,扑通一声掉进了深3.9米的河里。

2. 做“想想做做”第3题。

出示题目,让学生抢答,并说一说每道题中分数、小数的意义。

3. 回答下面的问题。

一包上好佳,价钱在1元到2元之间,请你猜猜它的价钱是多少?

小组合作讨论后把价钱写在纸上,交流时引导学生用“几元几角”和“几点几元”两种方式表达,并在数轴上分别找出每种可能价钱所在的点。


提问:今天你学得开心吗?你有什么收获?

课件介绍十进分数的发展史和古代数学家刘徽的杰出成就。

小数的意义教学设计一等奖篇十

义务教育课程标准实验教科书(西南师大版)四年级(下)练习十六第3~11题。

1进一步掌握小数点位置的移动引起小数大小的变化。

2能根据要求正确移动小数点的位置。

3感受数学知识的严谨,养成认真、仔细的习惯。

进一步掌握小数点位置的移动引起小数大小的变化。

根据要求正确移动小数点的位置。

一、基本练习

1小数点位置移动引起小数大小变化的规律是什么?

2练习十六第3题。

学生独立看懂表格,注意找准整数的小数点位置,并指名让学生说说他们的方法。

二、指导练习

1第8题

老师针对不同的学生进行指导。

第9题请同学们先汇报收集的资料,再算一算。

3第10题

注意两种情况:一是宽边相接,按长边计算;二是长边相接,按宽边计算。

三、独立练习

1练习十六第4,5题教师强调:写得数时注意位数不够用"0"补足。

2学生独立完成第6,7题

四、拓展练习

练习第11题。

引导学生思考:两个因数同时缩小10倍、100倍、1000倍,由此引起的`积的变化。

五、小结

哪些同学愿意谈谈今天的收获?

小数的意义教学设计一等奖篇十一

北师大版教材第八册 小数的意义

1.使学生了解小数的产生,理解小数的意义。

2、培养学生收集信息、动手操作能力和抽象概括能力。

3、渗透事物之间普遍联系的观点、实践第一的观点。

4、加强对学生学习方法的指导。

相对应的课程目标:

1、进一步认识小数,探索小数、分数之间的关系,并会进行转化。

2、进一步体会数在日常生活中的作用,能运用数表示事物,并能进行交流。

理解和抽象小数的意义。

1、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。让学生用个性化的理解方式表达对小数的理解。

2、尊重每一位学生的学习成果,建立平等、民主、愉悦的学习氛围。

小数的认识是在三年级下册“元、角、分与小数”及“分数的初步认识”的基础上进行的。“小数的意义”是通过实际操作,借助几何模型使学生体会到小数与分数之间的关系。小数是十进分数的另一种书写形式,要使学生理解小数的意义,必须通过实际操作。把一个正方形看作“1”,把“1”平均分成10份,1份是它的十分之一,就是0.1;把“1”平均分成100份,1份就是它的一百分之一,也就是0.01。从而使学生体会到分母是10、100、1000等的分数可以用小数表示。在练习中通过在直线图上表示十进分数和小数的问题,进一步沟通小数和分数之间的关系。

教师的教就是为了不教,作为学生学习活动的参与者、合作者、引导者,只有让学生拥有好的学习方法才会有真正意义上的有效学习。这也是学生一直迫切需要掌握的。那么这节课在学习新知识的同时另外一个重点就是对学生进行学习方法的指导。

课件

一、导入。

在我们以前的学习当中,重点研究了整数。但是由于在日常生活中我们进行测量、计算等活动的时候往往经常得不到整数的结果,所以我们又进一步学习了分数。其实在用分数表示的基础上我们还可以用小数表示。这个学期我们将重点学习小数。

二、介绍方法:

怎样学好小数呢?要想学好它,就要讲究一定的学习方法,制定一个计划,按一定的步骤学习,就能收到事半功倍的效果了。今天老师就向大家介绍一种学习方法。(出示学习步骤)

学习步骤:关于小数:

1、我已经知道了什么?

2、我还想知道什么?

3、通过学习我又知道了什么?

4、动动手,检测一下。接下来我们就按照这样的步骤开展学习。

三、思考、讨论:

1、我已经知道了什么?

小数点、小数在生活中的广泛运用……

师:看来大家对小数的了解很有限,那么更有必要认真的学习小数了。

2、还想知道什么?

小数的起源、发展、计算、数位顺序、读写法、意义……

师:要想了解小数的这些知识,首先最基本的就是要了解小数的意义。那么这节课我们就来了解小数的意义吧。

四、引导学生自主学习小数的意义。

1.小数的意义,自学小数的意义(看书第3页)

(1)出示课件,把这个正方形平均分为10份取其中1份,用分数表示是十分之一,用小数表示是0.1;取其中3份就是十分之三,用小数表示是0.3。

把这个正方形平均分为100份取其中1份,用分数表示是百分之一,用小数表示是0.01。

(2)以1米为例结合具体的数量理解小数

把一米长的线段平均分为10份取其中1份,用分数表示是十分之一米,用小数表示是0.1米;把这条线段平均分为100份取其中1份,用分数表示是百分之一米,用小数表示是0.01米。

2、同桌之间互相交流,用数学语言说一说自己的涂色部分用分数和小数表示,分别是怎样的。

4、师:像0.1、0.5、0.7这样的小数是一位小数。像0.01、0.19、0.08这样的小数是二位小数。

6、看书p3,找一找你认为最重要的那句话,读一读。分母是10、100、1000……的分数可以用小数表示。

7、看学习步骤3:通过学习我又知道了什么?集体交流

8、质疑(学生提问)

五、学习步骤4:检测。

1、在直线上标出相应的小数、分数。见p5、1

2、分数小数的转化p5 2、3

3、同伴相互出题。

这节课既是一节数学知识学习课,同时又是一节学习方法的指导课。通过对教学的设计,教学,对学生的检测,我有以下体会:

1、教师要善于倾听。学习活动要以学生为本,在学生思考、讨论的过程中,经常会有精彩的见解,教师要善于捕捉。尤其是当学生有独特的见解出现时,教师要及时给予反应,以此保护学生对数学的积极性。当然这需要教师在平时的教学实践中注意有意识地积累。

2、注重方法指导。 本节课的特色和重点之一即学习方法的指导。但是学习方法的指导应该是贯穿整个学习过程的,所以教师在进行方法指导的时候要让学生清楚本节课介绍的方法还适合那些内容的学习,其他的学习内容应该用什么样的学习方法更好。

3、注重基础知识的掌握。本节课既让学生学习了好的学习方法,又让学生扎实地学习了小数的意义,关注了学生多方面能力的发展。

存在的问题:数学课程要让学生了解数学在我们生活中无处不在,但本课与生活的联系不够,在学生的发言中教师的把握不及时。另外,要注重多样化的课程资源的整合,学习方式还可以更丰富一些,如认识一位小数、两位小数的方法可以有变化,以拓展学生的思维。

案例点评:《小数的意义》这一节课整体框架好,是一节学习方法指导课。本节课能够很好地确定研究的课题、目标,即学习方法的指导,有研究的方向。并且能够引导学生参与目标的制定;学习过程中能用多种方法引导学生学习,学生基础知识、基本技能掌握较好;师生关系融洽,学习氛围好。

小数的意义教学设计一等奖篇十二

一位、两位、三位小数的意义。小数的计数单位,每相邻两个计数单位之间的进率是10.

教材编写特点:

简化了小数意义的叙述重视了对小数意义的理解加强了小数与实际生活的联系在探究的过程中注重给学生创设自主研究的空间。

理解一位、两位、三位小数的意义,知道相邻的两个计数单位之间的进率是10。

教学关键:

理解一位、两位、三位小数的意义。

基本活动经验:

在老师引导下,重视学生实际动手操作的能力、合理安排引导给学生自主探索的空间、借助学生已有知识经验的迁移,促进学生自主学习。

小数的意义是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。

学生学习该内容可能的困难:

教学时,学生必须依托分数和整数的相关知识,借助分数理解小数的意义,借助整数掌握小数的结构特征。理解每相邻两个计数单位之间的进率是10时,必须联系生活中的货币、长度或者重量等理解小数之间的关系。

充分的运用演示、操作、观察等直观的手段,把基本概念的本质属性和普遍意义形象地展示出来,是学生在头脑中建立起这些内容的丰富表象,再组织学生进行分析、讨论,加深这些知识概念的感性认识;最后对表象进一步加工,形成概念,从而实现对概念的深刻理解。

知识与技能

1使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。借助熟悉的十进制关系的显示原型多角度的理解小数与分数之间的关系,理解计数单位0.1、0.01、0.001。

2明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几.....知道相邻两个计数单位间的进率是10。

过程与方法

充分的运用演示、操作、观察等直观的手段,引导学生经历从直观到抽象、概括的心理活动过程,实现“动作表征”、“直观表征”、“符号表征”的循序渐进发展,进而培养学生发现和构建知识的能力、迁移和类推能力。

情感态度与价值观

培养学生的抽象、概括、归纳的思维能力和应用数学的能力。

1、已知导入、情境感知

师:(出示教室场景图)同学们看,这个地方熟悉吗?

生:熟悉

师:是哪?

生:我们的教室

师:我们的教室,这是黑板的高度,讲台的长度,课桌的长度(课件出示)。

生:我知道了,讲台的长度、课桌的长度有1米多。

生:我知道讲台的长度跟1米差不多。

生:可以用重叠法

生:可以把黑板的高度那里,对直画一根虚线下来,再看

师:课桌的长度是1米多,具体多多少呢?你有办法吗?

2、展开,认识一位小数的意义

生:先测量出1米,多余的部分截取下来,再接着去测量。

师:谁还来说说......

生:先测量出1米,多余的部分截取下来,再拿多余部分去跟1米比较(边说边用手比划)。

师:你们看看,是这样的吗?(课件演示,将多余的部分截取下来,放在1米的下面测量)

生:是的。

师:接下来,谁有办法?

生:用多余部分去比,看看1米里面有几个那么长。

生:将1米平均分成10份,再比较。

师:比不出来啊,谁有办法?

生:1个1个去比,看看几个那么长正好是1米。就用除法解决。

师:是这样的吗?(课件演示)

生:是的

师:我们一起来数数

生:1个,2个,3个......正好10个这么长是1米。

(在出现问题的时候,想解决问题的办法:我们可以把已经知道的1米的刻度标记出来,再继续测量,先用多余部分去比较,发现正好10个那么长就是1米。所以多余部分是10份中的1份,也就是说将1米平均分成10份,这样的1份,它的长度正好是多余部分,所以多余部分可以用十分之一米表示;十分之一米用小数表示是0.1米。在测量或者计算时,我们往往不能正好得到整数的结果,这时,可以用分数或者小数表示。

师:那现在知道怎么具体表示了吗?说说我们刚才的思路。

生:因为老师在操作的时候,我们可以发现10个多余部分的长度正好是1米,也就是说每个多余部分的长度是1米的1/10,也就是1/10米。写成小数的话是0.1米。还可以用1分米表示。

生:根据观察我们发现,将1米平均分成10份,多余部分正好是10份中的1份,可以用分数1/10米表示,还可以用小数0.1米表示。

生:将1米平均分成10份,多余部分是1米的1/10,也就是1/10米,用小数表示是0.1米。

师:我们一起来说说:将1米平均分成10份,多余的部分正好是这10份中的1份,也就是1/10,1米的1/10是1/10米,也可以用小数表示为0.1米。

师:这就是我们这节课要研究的“小数的意义”(板书课题)

师:那你们知道小数0.1的意义了吗?

生:0.1表示的是十分之一。

师:你还能在1米(用手比划)中找到其他的小数吗?并说说它的意义。

生:0.3米(学生说,老师点课件,并根据课件演示,学生说意义)

师:那0.3里面有几个0.1呢?表示什么

生:0.3里面有3个0.表示十分之三。

师:还找到了其他的小数吗?

生:0.7米(老师点课件,学生说意义)0.7里面有7个0.1

师:那1米里面有多少个0.1呢?

生:1米里面有10个0.1米

师:10个0.1是1

仔细观察这些小数和分数(用手比划并引导学生观察分数),你发现了什么?

生:这些小数都表示十分之几。

生:这些分数的分母都是10,小数都是一位小数

生:分母是10的分数可以写成一起小数

生:10个0.1是1

师:说得非常好。一位小数表示十分之几。分母是10的分数可以写成一位小数,10个0.1就是1。一位小数,它的计数单位是十分之一,写作0.1。

我们一起把这句话小声齐读:分母是10的分数可以写成一位小数,一位小数的计数单位是十分之一,写作0.1。

师:我们在这个1米中找到了很多的小数,是不是只能在这里找到小数呢?

(出示数轴图)你能在这里找到小数吗?

生:能(学生上台寻找并说明理由。)

师:为什么是这里呢?

生:因为0-1之间分成了10份,每一份是0.1,表示十分之一。

生:0.1还可以表示刻度。也就是说:这里的每个刻度依次是0.1、0.2、0.3......

师:我们在学习数轴的时候知道数是按照从小到大的顺序依次排列的,所以0.1在这里。

师:那你能找到0.8吗?

生:某一个点,某一个范围(指出0.8的具体位置)

师:你是怎么找到0.8的?

生:数8个0.1(10份中数出其中的8份)

生:从1开始往左边数2个0.1(10-2=8)

师:那数轴上还有其他的小数吗?

生:有,学生说小数

师:如果将数轴无限的延长,这样的小数说得完吗?

生:说不完。

师:回归到米尺中,理清我们刚刚的思路:我们知道多余的这个部分—可以用分数十分之一米表示,用小数0.1米表示。所以课桌的长度是1.1米。

3、推进,认识两位小数的意义

师:课桌的长度已经具体的表示出来了,黑板的高度呢?

生:还是拿红色部分进行重叠,多余的部分截取下来。继续用红色部分测量(课件演示)。

师:遇到了什么问题?

生:测量时,多余的部分不够1米,

生:那就用蓝色部分比较。(学生边说,课件演示)也不够1分米。

师:那怎么办?

生:用刚刚的方法去比,看多少个紫色部分有是一个蓝色部分。用分米的下一个单位厘米表示。

师:(课件演示)我们发现......

生:我们发现10个紫色部分的长度就是蓝色部分

生:把蓝色部分平均分成10份,紫色部分是其中的1份

生:是1厘米

师:把蓝色部分平均分成了10份,那1米里面会有多少个这样的紫色部分呢?

生:有100个这样的紫色部分。

生:还可以用0.01米表示。

师:对的,1/100米写成小数是0.01米。

师:那红色部分有多少个0.01米蓝色部分呢?

生:1米里面有100个0.01米。1分米里面有10个0.01米

师:那这样的4份呢?可以怎么表示?

生:4/100米,写成小数0.04米

师:请同学们拿出抽屉中的软尺。

师:这根软尺长度是多少?

生:1米、10分米、100厘米、1000毫米。

师:看来长度单位的换算学的很好哦。

操作:拿出软尺,在软尺上找到1米,1分米,1厘米,1毫米。以米为单位,找出一个可以用小数表示的地方,跟同桌说一说,并将它写在练习纸上)。

学生汇报

生1:我找到的是0-99厘米。是99厘米,用分数表示是99/100米,用小数表示是0.99米。

生2:我找到的是0-20厘米。是20厘米,用分数表示是20/100米,用小数表示是0.20米。

生:老师对于生2找的还有表示方法,我可以用分数2/10米,用小数表示是0.2米。

生:一个是表示把1米平均分成100份,取其中的20份,是20/100米=0.20米;一个是表示把1米平均分成10份,取其中的2份,是2/10米=0.2米。

生:它们表示的长度是一样的,但是它们表示的意义是不同的。

师:仔细观察这些小数,你又有什么发现呢?

生:这些分数的分母都是100,小数都是两位小数

生:分母是100的分数可以写成两位小数

生:100个0.01是1

师:说得非常好。两位小数表示百分之几,它的计数单位是百分之一,写作0.01。

(课件出示:分母是100的分数可以写成两位小数,两位小数的计数单位是百分之一,写作0.01。)

师:通过我们刚才的探究,我们知道黑板高度中1米之外多余的这个部分—1厘米,可以用分数百分之一米表示,用小数0.01米表示。所以讲台的长度是1.01米。

4、拓展,认识三位小数、四位小数的意义

师:(出示课件显示1毫米)这是多长?

生:1毫米

师:你是怎么知道的?

生:.因为把1厘米平均分成了10份,其中的1份就是1毫米.....

师:1米里面有多少个这样的1毫米呢?

生:1000个(1米里面有1000个1毫米),因为1米=1000毫米

出示课件

师:将1米平均分成1000份,这样的1份是1毫米,这样的1份还可以怎么表示?

生:1/1000米,0.001米。

师:对的,把1米平均分成1000份,其中的1份是1/1000米,用小数表示为0.001米。

师:那这里的7份可以怎么表示?米尺中的1厘米可以怎么表示呢?

生:这里的7份可以用分数7/1000米表示,用小数表示为0.007米

生:米尺中的1厘米是1000份中的10份,用分数千分之十米表示,用小数0.010米表示。

生:1厘米也可以用分数百分之一米表示,用小数0.01表示。

师:也就是说10个0.001等于1个0.01。

师:观察这些小数,你发现了什么

生:还可以知道,分母是1000的分数可以写成三位小数,三位小数的计数单位是千分分之一,写作0.001。1厘米中有10个1毫米,所以0.01里面有10个0.001;1米里面有1000个1毫米,所以1里面有1000个0.001。

五、总结及应用

(观察板书可以知道)

分母是10.100.1000......的分数可以用小数表示。

小数的计数单位是十分之一、百分之一、千分之一......写作0.1、0.01、0.001......

每相邻两个计数单位之间的进率是(10)

生:因为我们刚刚在黑板上标记了

生:进率是100

生:进率是10.看黑板我们知道0.1米是1分米,0.01米是1厘米,0.001米是1毫米。它们之间的关系是10毫米=1厘米,10厘米=1分米。所以相邻两个计数单位之间的进率是10.

(学生根据小数的计数单位自己理解这句话,并且填空,说明理由。)

写出合适的分数和小数

说一说你的收获

生:我知道了“小数的意义”

生:我知道了分母是10.100.1000......这样的分数可以写成小数

生:我知道了小数的计数单位

......

是的,这些都是我们这节课的收获,希望大家在以后的生活或者学习中能够好好的运用这些知识。你们将会发现,原来数学与生活是息息相关的。

板书设计

1米1计数单位

1/10米=0.1米十分之一0.1一位小数

1/100米=0.01米百分之一0.01两位小数

1/1000米=0.001米千分之一0.001三位小数

1/10000米=0.0001米万分之一0.0001四位小数

《课标》指出:学生的数学学习应当是一个生动活泼、生动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,在设计本课时,我注重让学生经历探究与发现的过程,使他们在动手、动脑、动口中理解知识,掌握方法,学会思考,获得积极的情感体验。

一、运用多种手段,提高教学实效

本节课中将现代化教学手段与常规教学手段相结合,提高了教学效率。从引入课题、讲授新课、反馈练习,大部分内容均制成多媒体课件,直观、形象、动态地展现知识的形成过程,刺激学生的感官,启迪学生思维,增大了课堂容量,大大提高了课堂效率。在授新一位小数的`意义时,扎扎实实的抓住了重难点,两位小数的意义学习时,让学生借助实物(软尺)进行操作:找小数,写小数,说小数的意义,从而加深了实际与理论的联系,强化了对理论知识的理解,三位小数的引入更是在已有的软尺基础上,复习了长度单位之间的关系,从而让学生能够理解三位小数的意义。同时,本节课又注重了常规教学手段的运用,课题、一位、二位、三位小数的几个关系式等,均由老师板书。提纲挈领的板书,帮助学生形成完整的知识结构。

2、情景导入,回到最初

借助教参中的情景导入,但是在设计时抛开了已有的尺子测量,让学生只根据已有的1米进行思考。也就是在遇到不能用整数表示的时候,要想其他的办法进行解决(如:想出一个新的名数单位,比如分米、厘米、毫米来解决问题;或者想到用分数表示,借助分数从而过度到小数),让学生明白知识不是原本就是这样的。是因为我们在实际的问题当中不能解决,必须借助新的知识来解决,就此重新回顾了小数的产生与发展。

3、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。

许多教师认为,小数的意义这一内容用传统的接受式教学方法比较恰当,因为小数的意义是约定术成的,新型的学习方式(动手实践、自主探究与合作交流)也只能是一种课堂的装饰。这种思想,是我在设计教学时考虑得最多,也是我最难突破的瓶颈。因此在本课的设计上,我以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。

《小数的意义》这一课。为我们诠释了如何让学生在基础数学的学习过程中,触及数学本质的深处,更深切的感受数学的精神、思维和方法的魅力。同时,本节课的教学不落俗套,特别是在教学设计上为我们展示了独有的环环相扣。

1、回归本质,回到最初

在第一个环节一位小数的意义的设计中,教师提出:“在没有测量工具的前提下,你能想办法知道课桌的长度吗”这个问题,学生想到了最为原始的办法:用非整数表示或者产生一个比米更小的名数来表示。这样的教学设计,让学生能触及数学本质。

2、数与型结合,便于学生理解

两位、三位小数的意义教学设计中,更是将实物——1米的软尺搬进课堂,让学生去观察、寻找“以米为单位可以用两位小数表示”的地方,从而让学生感受知识并不是凭空捏造的,而是有凭有据的,让学生理会到数学是一门严谨的学科。脱离实物过渡到三位小数时,让学生在操作、观察中感知,在感知后依据课件抽象、概括,在思维碰撞中提高认识的学习过程。

3、概念性的教学是否可以全面放开,让学生自己去发现、去总结

附:评课老师简介

何琴,小学高级教师,校级骨干教师。2011年担任教育部“国培计划(2011)”——中西部地区小学教师置换脱产研修项目培训导师,2012年被聘为“第二批校级骨干教师”多篇教学论文获国家二等、省级二等、市级一等奖,多篇论文在《湖南教育》杂志上发表。曾代表长沙高新区参加“长沙市名优教师‘志愿支教、送教下乡’活动”,参加全国中小学“本色教育”说课比赛,荣获一等奖;在教育部“国培计划(2011)——中西部农村小学骨干教师培训班上的示范课,曾经参加“长沙高新区小学数学教师素养比赛”荣获特等奖,参加“长沙市小学数学教师素养比赛”课堂教学竞赛荣获一等奖。工作理念:多一点鼓励,多一点期待,多一点平等,多一点沟通。教育理念:勤于好学才能乐于施教。

小数的意义教学设计一等奖篇十三

1、结合具体情境使学生初步体会小数的含义,能认、读、写小数部分是一位的小数,知道小数各部分的名称。

2、通过观察思考、比较分析、综合概括,经历小数含义的探索过程,让学生主动参与,学会讨论交流,与人合作。

3、使学生进一步体会数学与生活的密切联系,培养学生自主探索与合作交流的习惯。通过了解小数的产生和发展过程,提高学生学习数学的兴趣,增强爱国情感。

体会小数的意义。

课件

一、情境导入:

(两个小朋友在量课画面的长和宽。长5分米,宽4分米。)

板书:5分米4分米

二、新知探索:

(一)认识整数部分是0的小数。

师:5分米是几分之几米?你能说说你是怎么想的吗?

那4分米呢?

师:5/10、4/10这样的数,我们称为分数,那5和4是什么数?表示物体个数的数1、2、3、4……我们称为自然数,0也是自然数,它们都是整数。

板书:分数、整数

今天我们要认识另一种数。板书:小数。

1、告诉:5/10米可以用小数0.5米来表示。

请仔细看0.5米怎么写,板书:0.5米

你觉得在书写的时候要注意什么?它读作:零点五。板书:零点五

(估计好读哦同学已经会读了,指名读一读,再一起读。)

想一想,4/10米用小数表示是多少?

讲述:今天我们要学习“小数的意义和读写”。

板书:小数的意义和读写

引导学生发现:分数十分之几可以写成小数零点几;小数零点几就表示十分之几。

2、完成“想想做做”第一题:在括号里填上合适的数。

“1分米”用分数怎么表示?小数呢?你能像这样把余下的括号填完吗?全班交流。

3、完成“想想做做”第3题。

你能利用分数和小数的关系来完成“想想做做”第3题吗?

学生独立完成。全班交流。

讲述:小数是在人们实际测量和计算的需要中产生的,在我们实际生活中有着非常广泛的应用。

4、说说你在哪些地方见过小数?(汽车的排量、视力、铅笔芯的规格……)

(二)认识整数部分不是0的小数。

2、课件出示:圆珠笔1元2角笔记本3元5角

你知道了什么?

你能用小数表示出圆珠笔和笔记本各是多少元吗?

学生独立思考,再在小组中合作交流。

全班交流,教师相机板书:

1元2角2角是2/10元0.2元1.2元读作:一点二

3元5角5角是5/10元0.5元3.5元读作:3点五

小结:几元几角分成两部分:几元和几角,先把几角表示成“零点几元”,再和几元合起来是几点几元。

三、练习巩固:

1、“想想做做”第二题:商店里有很多食品,你能用“元”作单位来表示它们的价格吗?

学生独立完成。全班交流。

2、“想想做做”第四题:先读一读各小数,再说说每种文具的价格各是几元几角.

(1)一起读题,指名说说本题的要求与第二题有什么不同。

(2)读一读文具的价格。(3)学生独立完成,同桌交流。

(4)全班交流:

3讨论:小数有什么特点?

看看这些小数,你觉得它有什么特点?

告诉:小数中间的点称为“小数点”,小数点的左边是整数部分,右边是小数部分。

4、“想想做做”第五题。

(1)提问:为什么0右边第1个点上填0.1?1右边第二个点上填1.2?(2)学生独立填写.(3)全班校对.

师:小数在我们生活、生产中处处可以用到,同学们要学会用数学的眼睛观察生活,用数学知识解决生活中的实际问题。

三:在以有的基础进行拓展训练

1、排列0.81.20.93.12.5你能给这些小数从大到小排列吗?

2、解决问题

一条红丝带长3.2米,一条黄丝带长1.7米,红丝带和黄丝带一共多少米?

四板书设计:小数的意义与读写

小数的意义教学设计一等奖篇十四

教材以两位小数的意义为主要研究对象,向前联系一位小数与整数,往后发展到三位小数和四位小数,逐渐形成比较完整的小数概念以及记数方法。例1从学生已有的经验切入,先教学两位小数的读法,再感受两位小数的含义,学生体会两位小数的意义不是很轻松的。而小数部分的读法与整数部分不同,又是他们初学时感到不习惯的。从有利于教学出发,例题先讲两位小数的读法,再让学生感受到两位小数的含义。例2通过数形结合,建立小数的概念。

1、通过学习使学生在分数的基础上认识小数,知道什么是小数,小数的意义,学会分数、小数的互化。

2、培养学生的理解空间想象能力。

3、训练学生思维的灵活性。

小数的意义及小数与分数的联系。

多媒体课件

一、复习。

用分数表示下面的数。

1角=()元,1分米=()米。

2角=()元,1厘米=()米。

1分=()元,1毫米=()米。

二、教学例。

1、出示例1:用“角”或“分”作单位,说出下面物品的价钱。

指名回答问题。注意学生回答问题时要完整。

橡皮的单价0.3元是3角;信封的'单价0.05元是5分;练习簿的单价0.48元是4角8分或48分。

(联系学生的已有经验,既使学生消除对这三个小数的陌生感,又为下面体会小数的意义埋下伏笔。)

2、教学小数的读法:

你能读出下面的小数吗?鼓励学生大胆尝试。

0.05读作:零点零五;0.48读作:零点四八。

引导学生总结读整数部分为0的小数的方法:

从左往右依次读出各位上的数。

3、初步感受两位小数的含义。

想一想:0.3元是1元的几分之几?0.05元是1元的几分之几?0.48元呢?

小组讨论交流。

汇报:0.3元是1元的十分之三。

(学生根据三年级的知识,完全可以回答出第一个问题。)

0.05元是1元的百分之五。提问:为什么:

(根据学生的回答情况,可以作如下的引导。)

思路:1元=100分,1元平均分成100份,1份是1分,1分就是1元的_____;0.05元是5分,是5个,也就是1元的_____。

根据上面的思路,让学生说明0.48元是1元的。

学生回答:1元=100分,1元平均分成100份,1份是1分,1分就是1元的_____;0.48元是48分,是48个,也就是1元的_____。

观察板书:

你发现了什么?

引导学生看到0.05和0.48都是两位小数,都表示百分之几。

4、“试一试”

a、理解:1厘米是米,米可以写成0.01米。

指名理解1厘米为什么是米。

(1米=100厘米,1米平均分成100分,1份就是1厘米,1厘米也就是1米的,就是米。)

b、用米为单位的分数和小数分别表示4厘米与9厘米。

学生回答并说名理由。

c、观察板书:

这三个分数都是什么样的分数?(百分之几的分数)

这三个小数呢?(两位小数)

我们知道一位小数表示十分之几,那两位小数又表示什么呢?(百分之几)

三、数形结合,建立小数的概念。

1、出示例2:

把什么看作“1”?(正方形)

看着图形将和写成小数。学生自主填空后回答。

提问:0.1表示什么?0.01又表示什么?

小数的意义教学设计一等奖篇十五

1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。

2.经历探索小数意义的过程,体会小数与生活的联系,培养归纳能力。

3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。

理解小数的意义。

理解小数的计数单位。

一、创设情境,复习引入

1.师:同学们,你们在日常生活中,都见过哪些种类的蛋呢?……看来大家见过的蛋还真不少。接下来,咱们一起走进《蛋的世界》,看看里面有多奇妙,好不好!这节课我们一起来探究小数的意义。(板书:小数的意义)

生1:0.2表示把一正方形平均分成10份,取其中的2份,是十分之二也就是0.2。

师:说得很好,谁再来说一个?

生2:0.5表示十分之五,

生3:0.4表示十分之四。

生:能!

师:下面请同学们从这三个小数中,选择你喜欢的一个用画图的方式表示出来?好吗?

生:好!

师:哪位同学展示一下你画的小数?把你的想法和画法和同学们说一说?

生1:先画一条线段,平均分成10份,取其中的5份,是十分之五,也就是0.5。

师:老师想问问你,为什么取其中5份就是0.5?

生1:因为其中一份是0.1,5份就是0.5。

师:谁想再来展示一下?

生2:我先画一个长方形平均分成10份,取其中的2份,是十分之二,也就是0.2。

生:一位小数。

师:一位小数他们画法虽然不同,但是有共同点。谁来说说这两种画法的共同之处?

生:都是把一个物体平均分成10份,然后再取其中几份,来表示小数。

2.谈话:看来同学们前面的知识掌握的不错,课前,老师从几种动物的蛋的质量中也搜集了一些小数,请同学们看大屏幕。(课件出示情境图)

二、结合情境,探究新知

1.学习小数的读写。

(1)师:请同学们仔细观察情境图,你获得了那些数学信息?

(学生根据情境图说出信息)

师:这个小数读作?第二个小数读作?

这位同学读得非常正确,谁想再来读一读?谁来说说读小数时应注意什么?

(读小数时,小数点前面部分和整数读法一样,小数点后面部分依次读出每一个数。)

(写小数时,小数点前面部分和整数的写法一样,小数点后面部分依次写出每一个数。)

2.学习两位小数的意义。

(1)在正方形纸片上表示出0.25。

这组信息给我们提供了4个小数,像0.25、0.06这样的小数在图上怎样表示呢?老师为每位同学准备了一张画有正方形的纸,现在请同学们从这两个小数中选择一个小数在这个正方形中表示出来。

谁能到前面来说说你的想法和画法?

学生到前面交流。

师:你是把什么看作一个整体,平均分成( )份,表示其中的( )份,用分数表示是( ),0.25里面有( )个0.01。

老师想问问你,为什么取6份(或25份)就表示0.06(或0.25),一格(份)就是0.01,6份(或25份)就是0.06(或0.25)。

小数的意义教学设计一等奖篇十六

教学主要内容:

一位、两位、三位小数的意义。小数的计数单位,每相邻两个计数单位之间的进率是10.

教材编写特点:

简化了小数意义的叙述重视了对小数意义的理解加强了小数与实际生活的联系在探究的过程中注重给学生创设自主研究的空间。

教学的重点、难点:

理解一位、两位、三位小数的意义,知道相邻的两个计数单位之间的进率是10。

教学关键:

理解一位、两位、三位小数的意义。

基本活动经验:

在老师引导下,重视学生实际动手操作的能力、合理安排引导给学生自主探索的空间、借助学生已有知识经验的迁移,促进学生自主学习。

2、学情分析

小数的意义是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。

学生学习该内容可能的困难:

教学时,学生必须依托分数和整数的相关知识,借助分数理解小数的意义,借助整数掌握小数的结构特征。理解每相邻两个计数单位之间的进率是10时,必须联系生活中的货币、长度或者重量等理解小数之间的关系。

学习方式:

充分的运用演示、操作、观察等直观的手段,把基本概念的本质属性和普遍意义形象地展示出来,是学生在头脑中建立起这些内容的丰富表象,再组织学生进行分析、讨论,加深这些知识概念的感性认识;最后对表象进一步加工,形成概念,从而实现对概念的深刻理解。

3、教学目标

知识与技能

1使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。借助熟悉的十进制关系的显示原型多角度的理解小数与分数之间的关系,理解计数单位0.1、0.01、0.001。

2明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几.....知道相邻两个计数单位间的进率是10。

过程与方法

充分的运用演示、操作、观察等直观的手段,引导学生经历从直观到抽象、概括的心理活动过程,实现“动作表征”、“直观表征”、“符号表征”的循序渐进发展,进而培养学生发现和构建知识的能力、迁移和类推能力。

情感态度与价值观

培养学生的抽象、概括、归纳的思维能力和应用数学的能力。

4、教学过程

1、已知导入、情境感知

师:(出示教室场景图)同学们看,这个地方熟悉吗?

生:熟悉

师:是哪?

生:我们的教室

师:我们的教室,这是黑板的高度,讲台的长度,课桌的长度(课件出示)。

生:我知道了,讲台的长度、课桌的长度有1米多。

生:我知道讲台的长度跟1米差不多。

生:可以用重叠法

生:可以把黑板的高度那里,对直画一根虚线下来,再看

师:课桌的长度是1米多,具体多多少呢?你有办法吗?

2、展开,认识一位小数的意义

生:先测量出1米,多余的部分截取下来,再接着去测量。

师:谁还来说说......

生:先测量出1米,多余的部分截取下来,再拿多余部分去跟1米比较(边说边用手比划)。

师:你们看看,是这样的吗?(课件演示,将多余的部分截取下来,放在1米的下面测量)

生:是的。

师:接下来,谁有办法?

生:用多余部分去比,看看1米里面有几个那么长。

生:将1米平均分成10份,再比较。

师:比不出来啊,谁有办法?

生:1个1个去比,看看几个那么长正好是1米。就用除法解决。

师:是这样的吗?(课件演示)

生:是的

师:我们一起来数数

生:1个,2个,3个......正好10个这么长是1米。

(在出现问题的时候,想解决问题的办法:我们可以把已经知道的1米的刻度标记出来,再继续测量,先用多余部分去比较,发现正好10个那么长就是1米。所以多余部分是10份中的1份,也就是说将1米平均分成10份,这样的1份,它的长度正好是多余部分,所以多余部分可以用十分之一米表示;十分之一米用小数表示是0.1米。在测量或者计算时,我们往往不能正好得到整数的结果,这时,可以用分数或者小数表示。

师:那现在知道怎么具体表示了吗?说说我们刚才的思路。

生:因为老师在操作的时候,我们可以发现10个多余部分的长度正好是1米,也就是说每个多余部分的长度是1米的1/10,也就是1/10米。写成小数的话是0.1米。还可以用1分米表示。

生:根据观察我们发现,将1米平均分成10份,多余部分正好是10份中的1份,可以用分数1/10米表示,还可以用小数0.1米表示。

生:将1米平均分成10份,多余部分是1米的1/10,也就是1/10米,用小数表示是0.1米。

师:我们一起来说说:将1米平均分成10份,多余的部分正好是这10份中的1份,也就是1/10,1米的1/10是1/10米,也可以用小数表示为0.1米。

师:这就是我们这节课要研究的“小数的意义”(板书课题)

师:那你们知道小数0.1的意义了吗?

生:0.1表示的是十分之一。

师:你还能在1米(用手比划)中找到其他的小数吗?并说说它的意义。

生:0.3米(学生说,老师点课件,并根据课件演示,学生说意义)

师:那0.3里面有几个0.1呢?表示什么

生:0.3里面有3个0.表示十分之三。

师:还找到了其他的小数吗?

生:0.7米(老师点课件,学生说意义)0.7里面有7个0.1

师:那1米里面有多少个0.1呢?

生:1米里面有10个0.1米

师:10个0.1是1

仔细观察这些小数和分数(用手比划并引导学生观察分数),你发现了什么?

生:这些小数都表示十分之几。

生:这些分数的分母都是10,小数都是一位小数

生:分母是10的分数可以写成一起小数

生:10个0.1是1

师:说得非常好。一位小数表示十分之几。分母是10的分数可以写成一位小数,10个0.1就是1。一位小数,它的计数单位是十分之一,写作0.1。

我们一起把这句话小声齐读:分母是10的分数可以写成一位小数,一位小数的计数单位是十分之一,写作0.1。

师:我们在这个1米中找到了很多的小数,是不是只能在这里找到小数呢?

(出示数轴图)你能在这里找到小数吗?

生:能(学生上台寻找并说明理由。)

师:为什么是这里呢?

生:因为0-1之间分成了10份,每一份是0.1,表示十分之一。

生:0.1还可以表示刻度。也就是说:这里的每个刻度依次是0.1、0.2、0.3......

师:我们在学习数轴的时候知道数是按照从小到大的顺序依次排列的,所以0.1在这里。

师:那你能找到0.8吗?

生:某一个点,某一个范围(指出0.8的具体位置)

师:你是怎么找到0.8的?

生:数8个0.1(10份中数出其中的8份)

生:从1开始往左边数2个0.1(10-2=8)

师:那数轴上还有其他的小数吗?

生:有,学生说小数

师:如果将数轴无限的延长,这样的小数说得完吗?

生:说不完。

师:回归到米尺中,理清我们刚刚的思路:我们知道多余的这个部分—可以用分数十分之一米表示,用小数0.1米表示。所以课桌的长度是1.1米。

3、推进,认识两位小数的意义

师:课桌的长度已经具体的表示出来了,黑板的高度呢?

生:还是拿红色部分进行重叠,多余的部分截取下来。继续用红色部分测量(课件演示)。

师:遇到了什么问题?

生:测量时,多余的部分不够1米,

生:那就用蓝色部分比较。(学生边说,课件演示)也不够1分米。

师:那怎么办?

生:用刚刚的方法去比,看多少个紫色部分有是一个蓝色部分。用分米的下一个单位厘米表示。

师:(课件演示)我们发现......

生:我们发现10个紫色部分的长度就是蓝色部分

生:把蓝色部分平均分成10份,紫色部分是其中的1份

生:是1厘米

师:把蓝色部分平均分成了10份,那1米里面会有多少个这样的紫色部分呢?

生:有100个这样的紫色部分。

生:还可以用0.01米表示。

师:对的,1/100米写成小数是0.01米。

师:那红色部分有多少个0.01米蓝色部分呢?

生:1米里面有100个0.01米。1分米里面有10个0.01米

师:那这样的4份呢?可以怎么表示?

生:4/100米,写成小数0.04米

师:请同学们拿出抽屉中的软尺。

师:这根软尺长度是多少?

生:1米、10分米、100厘米、1000毫米。

师:看来长度单位的换算学的很好哦。

操作:拿出软尺,在软尺上找到1米,1分米,1厘米,1毫米。以米为单位,找出一个可以用小数表示的地方,跟同桌说一说,并将它写在练习纸上)。

学生汇报

生1:我找到的是0-99厘米。是99厘米,用分数表示是99/100米,用小数表示是0.99米。

生2:我找到的是0-20厘米。是20厘米,用分数表示是20/100米,用小数表示是0.20米。

生:老师对于生2找的还有表示方法,我可以用分数2/10米,用小数表示是0.2米。

生:一个是表示把1米平均分成100份,取其中的20份,是20/100米=0.20米;一个是表示把1米平均分成10份,取其中的2份,是2/10米=0.2米。

生:它们表示的长度是一样的,但是它们表示的意义是不同的。

师:仔细观察这些小数,你又有什么发现呢?

生:这些分数的分母都是100,小数都是两位小数

生:分母是100的分数可以写成两位小数

生:100个0.01是1

师:说得非常好。两位小数表示百分之几,它的计数单位是百分之一,写作0.01。

(课件出示:分母是100的分数可以写成两位小数,两位小数的计数单位是百分之一,写作0.01。)

师:通过我们刚才的探究,我们知道黑板高度中1米之外多余的这个部分—1厘米,可以用分数百分之一米表示,用小数0.01米表示。所以讲台的长度是1.01米。

4、拓展,认识三位小数、四位小数的意义

师:(出示课件显示1毫米)这是多长?

生:1毫米

师:你是怎么知道的?

生:.因为把1厘米平均分成了10份,其中的1份就是1毫米.....

师:1米里面有多少个这样的1毫米呢?

生:1000个(1米里面有1000个1毫米),因为1米=1000毫米

出示课件

师:将1米平均分成1000份,这样的1份是1毫米,这样的1份还可以怎么表示?

生:1/1000米,0.001米。

师:对的,把1米平均分成1000份,其中的1份是1/1000米,用小数表示为0.001米。

师:那这里的7份可以怎么表示?米尺中的1厘米可以怎么表示呢?

生:这里的7份可以用分数7/1000米表示,用小数表示为0.007米

生:米尺中的1厘米是1000份中的10份,用分数千分之十米表示,用小数0.010米表示。

生:1厘米也可以用分数百分之一米表示,用小数0.01表示。

师:也就是说10个0.001等于1个0.01。

师:观察这些小数,你发现了什么

生:还可以知道,分母是1000的分数可以写成三位小数,三位小数的计数单位是千分分之一,写作0.001。1厘米中有10个1毫米,所以0.01里面有10个0.001;1米里面有1000个1毫米,所以1里面有1000个0.001。

5、总结及应用

(观察板书可以知道)

分母是10.100.1000......的分数可以用小数表示。

小数的计数单位是十分之一、百分之一、千分之一......写作0.1、0.01、0.001......

每相邻两个计数单位之间的进率是(10)

生:因为我们刚刚在黑板上标记了

生:进率是100

生:进率是10.看黑板我们知道0.1米是1分米,0.01米是1厘米,0.001米是1毫米。它们之间的关系是10毫米=1厘米,10厘米=1分米。所以相邻两个计数单位之间的进率是10(学生根据小数的计数单位自己理解这句话,并且填空,说明理由。)

写出合适的分数和小数

说一说你的收获

生:我知道了“小数的意义”

生:我知道了分母是10.100.1000......这样的分数可以写成小数

生:我知道了小数的计数单位

......

是的,这些都是我们这节课的收获,希望大家在以后的生活或者学习中能够好好的运用这些知识。你们将会发现,原来数学与生活是息息相关的。

板书设计

1米1计数单位

1/10米=0.1米十分之一0.1一位小数

1/100米=0.01米百分之一0.01两位小数

1/1000米=0.001米千分之一0.001三位小数

1/10000米=0.0001米万分之一0.0001四位小数

小数的意义教学设计一等奖篇十七

教学内容:本节课教学内容是新人教版本四年级下册第四单元p32页。

1、教材分析

教学主要内容:

一位、两位、三位小数的意义。小数的计数单位,每相邻两个计数单位之间的进率是10.

教材编写特点:

简化了小数意义的叙述重视了对小数意义的理解加强了小数与实际生活的联系在探究的过程中注重给学生创设自主研究的空间。

教学的重点、难点:

理解一位、两位、三位小数的意义,知道相邻的两个计数单位之间的进率是10。

教学关键:

理解一位、两位、三位小数的意义。

基本活动经验:

在老师引导下,重视学生实际动手操作的能力、合理安排引导给学生自主探索的空间、借助学生已有知识经验的迁移,促进学生自主学习。

二、学情分析

小数的意义是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。

学生学习该内容可能的困难:

教学时,学生必须依托分数和整数的相关知识,借助分数理解小数的意义,借助整数掌握小数的结构特征。理解每相邻两个计数单位之间的进率是10时,必须联系生活中的货币、长度或者重量等理解小数之间的关系。

学习方式:

充分的运用演示、操作、观察等直观的手段,把基本概念的本质属性和普遍意义形象地展示出来,是学生在头脑中建立起这些内容的丰富表象,再组织学生进行分析、讨论,加深这些知识概念的感性认识;最后对表象进一步加工,形成概念,从而实现对概念的深刻理解。

3、教学目标

知识与技能

1使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。借助熟悉的十进制关系的显示原型多角度的理解小数与分数之间的关系,理解计数单位0.1、0.01、0.001。

2明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几.....知道相邻两个计数单位间的进率是10。

过程与方法

充分的运用演示、操作、观察等直观的手段,引导学生经历从直观到抽象、概括的心理活动过程,实现“动作表征”、“直观表征”、“符号表征”的循序渐进发展,进而培养学生发现和构建知识的能力、迁移和类推能力。

情感态度与价值观

培养学生的抽象、概括、归纳的思维能力和应用数学的能力。

4、教学过程

1、已知导入、情境感知

师:(出示教室场景图)同学们看,这个地方熟悉吗?

生:熟悉

师:是哪?

生:我们的教室

师:我们的教室,这是黑板的高度,讲台的长度,课桌的长度(课件出示)。

生:我知道了,讲台的长度、课桌的长度有1米多。

生:我知道讲台的长度跟1米差不多。

生:可以用重叠法

生:可以把黑板的高度那里,对直画一根虚线下来,再看

师:课桌的长度是1米多,具体多多少呢?你有办法吗?

2、展开,认识一位小数的意义

生:先测量出1米,多余的部分截取下来,再接着去测量。

师:谁还来说说......

生:先测量出1米,多余的部分截取下来,再拿多余部分去跟1米比较(边说边用手比划)。

师:你们看看,是这样的吗?(课件演示,将多余的部分截取下来,放在1米的下面测量)

生:是的。

师:接下来,谁有办法?

生:用多余部分去比,看看1米里面有几个那么长。

生:将1米平均分成10份,再比较。

师:比不出来啊,谁有办法?

生:1个1个去比,看看几个那么长正好是1米。就用除法解决。

师:是这样的吗?(课件演示)

生:是的

师:我们一起来数数

生:1个,2个,3个......正好10个这么长是1米。

(在出现问题的时候,想解决问题的办法:我们可以把已经知道的1米的刻度标记出来,再继续测量,先用多余部分去比较,发现正好10个那么长就是1米。所以多余部分是10份中的1份,也就是说将1米平均分成10份,这样的1份,它的长度正好是多余部分,所以多余部分可以用十分之一米表示;十分之一米用小数表示是0.1米。在测量或者计算时,我们往往不能正好得到整数的结果,这时,可以用分数或者小数表示。

师:那现在知道怎么具体表示了吗?说说我们刚才的思路。

生:因为老师在操作的时候,我们可以发现10个多余部分的长度正好是1米,也就是说每个多余部分的长度是1米的1/10,也就是1/10米。写成小数的话是0.1米。还可以用1分米表示。

生:根据观察我们发现,将1米平均分成10份,多余部分正好是10份中的1份,可以用分数1/10米表示,还可以用小数0.1米表示。

生:将1米平均分成10份,多余部分是1米的1/10,也就是1/10米,用小数表示是0.1米。

师:我们一起来说说:将1米平均分成10份,多余的部分正好是这10份中的1份,也就是1/10,1米的1/10是1/10米,也可以用小数表示为0.1米。

师:这就是我们这节课要研究的“小数的意义”(板书课题)

师:那你们知道小数0.1的意义了吗?

生:0.1表示的是十分之一。

师:你还能在1米(用手比划)中找到其他的小数吗?并说说它的意义。

生:0.3米(学生说,老师点课件,并根据课件演示,学生说意义)

师:那0.3里面有几个0.1呢?表示什么

生:0.3里面有3个0.表示十分之三。

师:还找到了其他的小数吗?

生:0.7米(老师点课件,学生说意义)0.7里面有7个0.1

师:那1米里面有多少个0.1呢?

生:1米里面有10个0.1米

师:10个0.1是1

仔细观察这些小数和分数(用手比划并引导学生观察分数),你发现了什么?

生:这些小数都表示十分之几。

生:这些分数的分母都是10,小数都是一位小数

生:分母是10的分数可以写成一起小数

生:10个0.1是1

师:说得非常好。一位小数表示十分之几。分母是10的分数可以写成一位小数,10个0.1就是1。一位小数,它的计数单位是十分之一,写作0.1。

我们一起把这句话小声齐读:分母是10的分数可以写成一位小数,一位小数的计数单位是十分之一,写作0.1。

师:我们在这个1米中找到了很多的小数,是不是只能在这里找到小数呢?

(出示数轴图)你能在这里找到小数吗?

生:能(学生上台寻找并说明理由。)

师:为什么是这里呢?

生:因为0-1之间分成了10份,每一份是0.1,表示十分之一。

生:0.1还可以表示刻度。也就是说:这里的每个刻度依次是0.1、0.2、0.3......

师:我们在学习数轴的时候知道数是按照从小到大的顺序依次排列的,所以0.1在这里。

师:那你能找到0.8吗?

生:某一个点,某一个范围(指出0.8的具体位置)

师:你是怎么找到0.8的?

生:数8个0.1(10份中数出其中的8份)

生:从1开始往左边数2个0.1(10-2=8)

师:那数轴上还有其他的小数吗?

生:有,学生说小数

师:如果将数轴无限的延长,这样的小数说得完吗?

生:说不完。

师:回归到米尺中,理清我们刚刚的思路:我们知道多余的这个部分—可以用分数十分之一米表示,用小数0.1米表示。所以课桌的长度是1.1米。

3、推进,认识两位小数的意义

师:课桌的长度已经具体的表示出来了,黑板的高度呢?

生:还是拿红色部分进行重叠,多余的部分截取下来。继续用红色部分测量(课件演示)。

师:遇到了什么问题?

生:测量时,多余的部分不够1米,

生:那就用蓝色部分比较。(学生边说,课件演示)也不够1分米。

师:那怎么办?

生:用刚刚的方法去比,看多少个紫色部分有是一个蓝色部分。用分米的下一个单位厘米表示。

师:(课件演示)我们发现......

生:我们发现10个紫色部分的长度就是蓝色部分

生:把蓝色部分平均分成10份,紫色部分是其中的1份

生:是1厘米

师:把蓝色部分平均分成了10份,那1米里面会有多少个这样的紫色部分呢?

生:有100个这样的紫色部分。

生:还可以用0.01米表示。

师:对的,1/100米写成小数是0.01米。

师:那红色部分有多少个0.01米蓝色部分呢?

生:1米里面有100个0.01米。1分米里面有10个0.01米

师:那这样的4份呢?可以怎么表示?

生:4/100米,写成小数0.04米

师:请同学们拿出抽屉中的软尺。

师:这根软尺长度是多少?

生:1米、10分米、100厘米、1000毫米。

师:看来长度单位的换算学的很好哦。

操作:拿出软尺,在软尺上找到1米,1分米,1厘米,1毫米。以米为单位,找出一个可以用小数表示的地方,跟同桌说一说,并将它写在练习纸上)。

学生汇报

生1:我找到的是0-99厘米。是99厘米,用分数表示是99/100米,用小数表示是0.99米。

生2:我找到的是0-20厘米。是20厘米,用分数表示是20/100米,用小数表示是0.20米。

生:老师对于生2找的还有表示方法,我可以用分数2/10米,用小数表示是0.2米。

生:一个是表示把1米平均分成100份,取其中的20份,是20/100米=0.20米;一个是表示把1米平均分成10份,取其中的2份,是2/10米=0.2米。

生:它们表示的长度是一样的,但是它们表示的意义是不同的。

师:仔细观察这些小数,你又有什么发现呢?

生:这些分数的分母都是100,小数都是两位小数

生:分母是100的分数可以写成两位小数

生:100个0.01是1

师:说得非常好。两位小数表示百分之几,它的计数单位是百分之一,写作0.01。

(课件出示:分母是100的分数可以写成两位小数,两位小数的计数单位是百分之一,写作0.01。)

师:通过我们刚才的探究,我们知道黑板高度中1米之外多余的这个部分—1厘米,可以用分数百分之一米表示,用小数0.01米表示。所以讲台的长度是1.01米。

4、拓展,认识三位小数、四位小数的意义

师:(出示课件显示1毫米)这是多长?

生:1毫米

师:你是怎么知道的?

生:.因为把1厘米平均分成了10份,其中的1份就是1毫米.....

师:1米里面有多少个这样的1毫米呢?

生:1000个(1米里面有1000个1毫米),因为1米=1000毫米

出示课件

师:将1米平均分成1000份,这样的1份是1毫米,这样的1份还可以怎么表示?

生:1/1000米,0.001米。

师:对的,把1米平均分成1000份,其中的1份是1/1000米,用小数表示为0.001米。

师:那这里的7份可以怎么表示?米尺中的1厘米可以怎么表示呢?

生:这里的7份可以用分数7/1000米表示,用小数表示为0.007米

生:米尺中的1厘米是1000份中的10份,用分数千分之十米表示,用小数0.010米表示。

生:1厘米也可以用分数百分之一米表示,用小数0.01表示。

师:也就是说10个0.001等于1个0.01。

师:观察这些小数,你发现了什么

生:还可以知道,分母是1000的分数可以写成三位小数,三位小数的计数单位是千分分之一,写作0.001。1厘米中有10个1毫米,所以0.01里面有10个0.001;1米里面有1000个1毫米,所以1里面有1000个0.001。

五、总结及应用

(观察板书可以知道)

分母是10.100.1000......的分数可以用小数表示。

小数的计数单位是十分之一、百分之一、千分之一......写作0.1、0.01、0.001......

每相邻两个计数单位之间的进率是( 10 )

生:因为我们刚刚在黑板上标记了

生:进率是100

生:进率是10.看黑板我们知道0.1米是1分米,0.01米是1厘米,0.001米是1毫米。它们之间的关系是10毫米=1厘米,10厘米=1分米。所以相邻两个计数单位之间的进率是10.

(学生根据小数的计数单位自己理解这句话,并且填空,说明理由。)

写出合适的分数和小数

说一说你的收获

生:我知道了“小数的意义”

生:我知道了分母是10.100.1000......这样的分数可以写成小数

生:我知道了小数的计数单位

......

是的,这些都是我们这节课的收获,希望大家在以后的生活或者学习中能够好好的运用这些知识。你们将会发现,原来数学与生活是息息相关的。

板书设计

1米 1 计数单位

1/10米=0.1米 十分之一 0.1 一位小数

1/100米=0.01米 百分之一 0.01 两位小数

1/1000米=0.001米 千分之一 0.001 三位小数

1/10000米=0.0001米 万分之一 0.0001 四位小数

五、教学反思

《课标》指出:学生的数学学习应当是一个生动活泼、生动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,在设计本课时,我注重让学生经历探究与发现的过程,使他们在动手、动脑、动口中理解知识,掌握方法,学会思考,获得积极的情感体验。

一、运用多种手段,提高教学实效

本节课中将现代化教学手段与常规教学手段相结合,提高了教学效率。从引入课题、讲授新课、反馈练习,大部分内容均制成多媒体课件,直观、形象、动态地展现知识的形成过程,刺激学生的感官,启迪学生思维,增大了课堂容量,大大提高了课堂效率。在授新一位小数的意义时,扎扎实实的抓住了重难点,两位小数的意义学习时,让学生借助实物(软尺)进行操作:找小数,写小数,说小数的意义,从而加深了实际与理论的联系,强化了对理论知识的理解,三位小数的引入更是在已有的软尺基础上,复习了长度单位之间的关系,从而让学生能够理解三位小数的意义。同时,本节课又注重了常规教学手段的运用,课题、一位、二位、三位小数的几个关系式等,均由老师板书。提纲挈领的板书,帮助学生形成完整的知识结构。

2、情景导入,回到最初

借助教参中的情景导入,但是在设计时抛开了已有的尺子测量,让学生只根据已有的1米进行思考。也就是在遇到不能用整数表示的时候,要想其他的办法进行解决(如:想出一个新的名数单位,比如分米、厘米、毫米来解决问题;或者想到用分数表示,借助分数从而过度到小数),让学生明白知识不是原本就是这样的。是因为我们在实际的问题当中不能解决,必须借助新的知识来解决,就此重新回顾了小数的产生与发展。

3、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。

许多教师认为,小数的意义这一内容用传统的接受式教学方法比较恰当,因为小数的意义是约定术成的,新型的学习方式(动手实践、自主探究与合作交流)也只能是一种课堂的装饰。这种思想,是我在设计教学时考虑得最多,也是我最难突破的瓶颈。因此在本课的设计上,我以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。

六、案例研讨

《小数的意义》这一课。为我们诠释了如何让学生在基础数学的学习过程中,触及数学本质的深处,更深切的感受数学的精神、思维和方法的魅力。同时,本节课的教学不落俗套,特别是在教学设计上为我们展示了独有的环环相扣。

1、回归本质,回到最初

在第一个环节一位小数的意义的设计中,教师提出:“在没有测量工具的前提下,你能想办法知道课桌的长度吗”这个问题,学生想到了最为原始的办法:用非整数表示或者产生一个比米更小的名数来表示。这样的教学设计,让学生能触及数学本质。

2、数与型结合,便于学生理解

两位、三位小数的意义教学设计中,更是将实物——1米的软尺搬进课堂,让学生去观察、寻找“以米为单位可以用两位小数表示”的地方,从而让学生感受知识并不是凭空捏造的,而是有凭有据的,让学生理会到数学是一门严谨的学科。脱离实物过渡到三位小数时,让学生在操作、观察中感知,在感知后依据课件抽象、概括,在思维碰撞中提高认识的学习过程。

3、概念性的教学是否可以全面放开,让学生自己去发现、去总结

附:评课老师简介

何琴,小学高级教师,校级骨干教师。20xx年担任教育部“国培计划(20xx)”——中西部地区小学教师置换脱产研修项目培训导师,20xx年被聘为“第二批校级骨干教师”多篇教学论文获国家二等、省级二等、市级一等奖,多篇论文在《湖南教育》杂志上发表。曾代表长沙高新区参加“长沙市名优教师‘志愿支教、送教下乡’活动”,参加全国中小学“本色教育”说课比赛,荣获一等奖;在教育部“国培计划(20xx)——中西部农村小学骨干教师培训班上的示范课,曾经参加“长沙高新区小学数学教师素养比赛”荣获特等奖,参加“长沙市小学数学教师素养比赛”课堂教学竞赛荣获一等奖。工作理念:多一点鼓励,多一点期待,多一点平等,多一点沟通。教育理念:勤于好学才能乐于施教。

【本文地址:http://www.xuefen.com.cn/zuowen/4170108.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档