专业数学的读书心得范文(14篇)

格式:DOC 上传日期:2023-10-28 00:18:13
专业数学的读书心得范文(14篇)
时间:2023-10-28 00:18:13     小编:薇儿

环境保护是我们每个人的责任,我们应该从自身做起。注意语言的准确性和流畅性。看看别人的总结,可以帮助我们更好地理解总结的写作方法和技巧。

数学的读书心得篇一

学习数学是一件需要耐心和恒心的事情,但是在学习过程中,我们经常会因为理解不了某个概念或者方法,而感到困惑和无助。近期我经历了一次与数学的“大战”,在这场战役中,我领悟到了简单学习数学的心得体会,今天我来和大家分享一下其中的经验与感悟。

第二段:提高自己的思考能力

学习数学的过程中,最重要的是培养自己的思考能力。我觉得正确的学习方法是,先要对接下来要学习的知识有一个大致的了解,可以通过查阅课本资料或者询问老师、同学来获取这些信息。接着,在课堂上认真听讲,因为在这个过程中,老师会告诉我们每一个知识点的核心概念和特点,同时也会介绍与之相关的例题。在听完老师讲解之后,我们需要拿出一定的时间来思考这些问题,这样才能更好地掌握知识的本质。

第三段:坚持练习和归纳总结

数学学习中少不了大量的练习题,坚持做题的同时,我们也要在练习的过程中进行反思。如果我们能写出一篇摘要,把学习到的知识点进行整理和总结,并且用自己的语言来概述,这样不仅可以让我们把学习到的内容更好地消化吸收,更重要的是,我们还可以用这种方式来检验自己对所学知识的理解程度。

第四段:善于利用工具

在学习数学的过程中,数学工具往往可以大大提高我们做题的效率。比如,我们可以利用电脑上的计算器或者一些简单的公式来计算,这样可以大大减少一些不必要的重复操作,提高效率。 同时,我们也需要注意一些数学工具的正确使用,这样才能更好地利用数学工具来帮助自己解题。

第五段:结语

在完成这篇文章的过程中,我深刻的认识到了学习数学的重要性和学习方法的重要性。通过积极的思考和坚持不懈地努力,我们可以学习到更多的数学知识,也能够对数学加深理解。对于那些一直被数学困扰的人来说,只要我们遵循好正确的学习方法,就一定会取得不错的成果,用轻松的方式学习数学,就让我们的学习之路变得更加的充实和幸福。

数学的读书心得篇二

《自然哲学的数学原理》是第一次科学革命的集大成之作,被认为是古往今来最伟大的科学著作,它在物理学、数学、天文学和哲学等领域产生了巨大影响。在写作方式上,牛顿遵循古希腊的公理化模式,从定义、定律(公理)出发,导出命题;对具体的问题(如月球的运动),他把从理论导出的结果和观察结果相比较。全书共分五部分,首先“定义”,这一部分给出了物质的量、时间、空间、向心力等的定义。第二部分是“公理或运动的定律”,包括著名的运动三定律。接下来的内容分为三卷。前两卷的标题一样,都是“论物体的运动”。第一卷研究在无阻力的自由空间中物体的运动,许多命题涉及已知力解定受力物体的运动状态(轨道、速度、运动时间等),以及由物体的运动状态确定所受的力。第二卷研究在阻力给定的情况下物体的运动、流体力学以及波动理论。压卷之作的第三卷是标题是“论宇宙的系统”。由第一卷的结果及天文观测牛顿导出了万有引力定律,并由此研究地球的形状,解释海洋的潮汐,探究月球的运动,确定彗星的轨道。本卷中的“研究哲学的规则”及“总释”对哲学和神学影响很大。

《自然哲学的数学原理》无论从科学史还是整个人类文明史来看,牛顿的《自然哲学的数学原理》都是一部划时代的巨著。在科学的历史上,《自然哲学的数学原理》是经典力学的第一部经典著作,也是人类掌握的第一个完整的科学的宇宙论和科学理论体系,其影响所及遍布经典自然科学的所有领域,在其后的300年时间里一再取得丰硕成果。从科学研究内部来看,《自然哲学的数学原理》示范了一种现代科学理论体系的样板,包括理论体系结构、研究方法和研究态度、如何处理人与自然的关系等多个方面的内容。此外,《自然哲学的数学原理》及其作者与同时代著名人物的互动关系也是科学史研究和其它学术史研究中经久不息的话题。

当时英国皇家学会要出版这部书,但是凑不出适当款子,而皇家学会的干事胡克则声称万有引力的平方反比定律是他首先发现的,爱德蒙·哈雷出于气愤,提议牛顿写了这本书,并由他自费出版了牛顿的书,于1687年7月《自然哲学的数学原理》拉丁文版问世。1713年出第2版,1725年出第3版。1729年由莫特将其译成英文付印,就是现在所见流行的英文本。各版均由牛顿本人作了增订,并加序言。後世有多种文字的译本,中译本出版于1931年。该书的宗旨在于从各种运动现象探究自然力,再用这些力说明各种自然现象。全书共分四个部分。开头和第一篇介绍了力学的基本运动三定律与基本的力学量;其中质量的概念是由牛顿首先提出及定义的,但牛顿当时称其为“物质的量”,这一名称後来被另一个物理量使用。第二篇中,讨论了物体在阻尼介质中的运动,提出阻力大小与物体速度的一次及二次方成正比的公式。还研究了气体的弹性和可压缩性,以及空气中的声速等问题,这为牛顿提供了一个展示他数学技巧的舞台。第三篇题目为宇宙体系,讨论了太阳系的行星、行星的卫星和彗星的运行,以及海洋潮汐的产生,涉及到多体问题中的摄动。

牛顿并没有声称自己要构造一个体系。牛顿在《自然哲学之数学原理》第一版的序言一开始就指出,他要「致力于发展与哲学相关的数学」,这本书是几何学与力学的结合,是一种「理性的力学」,一种「精确地提出问题并加以演示的科学,旨在研究某种力所产生的运动,以及某种运动所需要的力。他的任务是“由动现象去研究自然力,再由这些力去推演其它的运动现象”。

然而牛顿实际上是构造了一个人类有史以来最为宏伟的体系,他所说的力,主要是重力,我们今天称之为引力,或万有引力,以及由重力所衍生出来的摩擦力、阻力和海洋的潮汐力等,而运动则包括落体、抛体、球体滚动、单摆与复摆、流体、行星自转与公转、回归点、轨道章动等,简而言之,包括当时已知的一切运动形式和现象。也就是说,牛顿是要用统一的力学原因去解释从地面物体到天体的所有运动和现象。

在结构上,《自然哲学之数学原理》是一种标准的公理化体系,它从最基本的定义和公理出发,「在第一编和第二编中推导出若干普适命题」,其中第一编题为“物体的运动”为全书的讨论做了数学工具上的准备,把各种运动形式加以分类,详细考察每一种运动形式与力的关系;第二编讨论“物体(在阻滞介质中)的运动”,近一步考察了各种形式阻力对运动的影响,讨论地面上各种实际存在的力与运动的情况。在第三编中“示范了把它们应用于宇宙体系,用前两编中数学证明的命题由天文现象推演出使物体倾向于太阳和行星的重力,再运用其他的数学命题由这些力推算出行星、彗星、月球和海洋的运动”。在全书的最后牛顿写下了一段著名的「总释」,集中表述了牛顿对于宇宙间万事万物的根本原因——万有引力以及我们的宇宙为什是一个这样的优美的体系的总原因的看法,集中表达了他对于上帝的存在和本质的见解。

数学的读书心得篇三

随着信息时代的不断发展,数学作为一门重要的基础学科,越来越受到人们重视。而对于一些非数学专业的学生来说,学习数学总是一个令人头疼的问题,但是,通过我自己的实践和学习,我想和大家分享一些我关于简单学数学的读书心得体会。

第一段,引子

在大学学习时,我常常发现数学课程对许多同学来说是一件很难的事情。有些学生甚至会抱怨,称从来不曾理解过数学的魔力。但是,数学在日常生活中无处不在:我们用它来计算账单、统计票数,甚至是为了做清单。我决定破除这个谬论并从根本上改变观念:数学无处不在且不难学习。为此,我积极探索了几种方法来简化数学学习。

第二段,背景

许多人认为数学是一门不同寻常的学科,除了需用心记忆方程式和公式外,还要深度理解抽象规律。然而,在我的个人实践中,我发现用趣味和游戏元素结合的方法能让学习变得更有趣,从而更容易理解。当我独自学习时,我经常使用一些简单的遊戲来帮助自己加深对某个概念的理解。比如,我经常使用额外的卡片或骰子来学习算数性质或积分概念。这些方法增加了学习数学的乐趣,同时也打破了我对安装繁琐的数学障碍的既有想法。

第三段,真正的方法

在这个信息快节奏的时代里,人们可能不会找到足够的时间来坐下学习。但是,用户友好和自适应的智能学习应用可以提供您的数字世界中的数学学习资源。这些应用程序可以轻松地将数学概念提供给您,并帮助您识别常见的数学难点。例如,一些应用还会提供使用视频和图形化方法的简短讲解,以帮助您理解并且能够为您提供快捷的反馈。

在使用这些工具和应用程序的同时,理解数学的过程也应当得到重视。例如,您可以尝试使用针对数学知识点的启发式学习,以便您能突破过去的难点。这种类型的学习将指导您制定有目的的问题,并给您反馈帮助您更好地理解数学概念,而不只是机械地按照给定的公式计算。

第四段,总结

总的来说,这篇文章旨在帮助人们发现学习数学的更平易近人的方法。尝试多样化的教学方法和利用机器智能工具来学习是非常重要的,而了解数学概念背后的基本原理才是最重要的。我们相信,通过使用不同的工具和启发式学习,学习数学一定是一件既有趣又充满乐趣的事情。在不断的练习和学习中,我们可以轻松地掌握数学知识,无论将来身处何处。

第五段,展望

我发现,随着数学信息的不断涌现,在对待教育和学习的态度上,我们需要一种更全面和更持久的方法。对于那些困惑和不解的学生,我们要用更多的耐心和心态告诉他们在快节奏的数学学习的背后,隐含的是改变思维方式和思考风格,乃至提高我们的生活素养。这种思维方式可以帮助我们更好地理解世界,适应未来的挑战,并促进更好的问题解决方案的出现。

数学的读书心得篇四

莫里斯·克莱因(morriskline,1908—1992),纽约大学库朗数学研究所的教授,荣誉退休教授,他曾在那里主持一个电磁研究部门达20年之久。他的著作很多,包括《数学:确定性的丧失》和《数学与知识的探求》等。

本书论述了从古代一直到20世纪头几十年中的重大数学创造和发展,目的是介绍中心思想,特别着重于那些在数学历史的主要时期中逐渐冒出来并成为最突出的、并且对于促进和形成尔后的数学活动有影响的主流工作。本书所极度关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己的成就的理解。

本书的一些篇章只提出所涉及的领域中已经创造出来的数学的一些样本,可是我坚信这些样本最具有代表性,再者,为着把注意力始终集中于主要的思想,我引用定理或结果时,常常略去严格准确性所需要的次要条件。本书当然有它的局限性,作者相信它已给出整个历史的一种概貌。

本书的组织着重在居领导地位的数学课题,而不是数学家,数学的每一分支打上了它的奠基者的烙印,并且杰出的人物在确定数学的进程方面起决定作用。

本书论述了从古代一直到20世纪头几十年中的重大数学创造和发展,目的是介绍中心思想,特别着重于那些在数学历史的主要时期中逐渐冒出来并成为最突出的、并且对于促进和形成尔后的数学活动有影响的主流工作。本书所极度关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己的成就的理解。

本书的一些篇章只提出所涉及的领域中已经创造出来的数学的一些样本,可是我坚信这些样本最具有代表性,再者,为着把注意力始终集中于主要的思想,我引用定理或结果时,常常略去严格准确性所需要的次要条件。本书当然有它的局限性,作者相信它已给出整个历史的一种概貌。

本书的组织着重在居领导地位的数学课题,而不是数学家,数学的每一分支打上了它的奠基者的烙印,并且杰出的人物在确定数学的进程方面起决定作用。

数学的读书心得篇五

折纸与数学,这两个看似毫不相关的领域,在《折纸与数学的美丽关系》一书中被通俗易懂地阐述了它们之间的潜在联系。在阅读这本书之后,我深刻领悟到了折纸和数学之间的奥妙,以及许多关于思维方式和思考模式的启示。

第一段:介绍

折纸作为一种传统的手工活动,在过去几年重新受到了人们的关注。无论是在休闲时光还是在学校数学课程中,我们都可以看到折纸的身影。但是,很少有人能想到折纸和数学之间有什么关系。本书详细地讲述了这两个领域之间的联系,给我们展示了一个全新的折纸世界和数学世界。

第二段:折纸与数学之间的联系

在本书中,作者通过众多的实例向读者展示了折纸和数学之间的联系。这些实例包括:折纸的数学抽象、折纸中的几何学、折纸中的重心、用数学解决折纸难题等。通过这些实例,读者可以深刻地理解折纸和数学之间的联系。例如,折纸可以被看作是立体空间中的平面图形,这种空间中的平面图形和几何学的许多基本概念一样,具有对称性、相似性和等量性等重要属性。这些特性也是数学中常见的性质,因此折纸和数学之间具有深刻的联系。

第三段:启示

除了展示折纸和数学之间的联系之外,本书还对我们的思维方式和思考模式提出了一些新的启示。例如,折纸需要细心、耐心和仔细的分析,这些都是良好的思维习惯。在折纸过程中,一旦出现错误,就需要细心、耐心地重新找到解决方案。这种方法也可以运用到数学和其他学科中去。通过折纸和数学的学习,我们可以获得更好的思维方式,提高我们处理问题的能力。

第四段:实践

本书不仅仅是理论性的探讨,它还提供了许多实践的机会。通过模仿书中的折纸作品,我们可以更加深入地学习折纸和数学之间的联系。在实践中,我们可以体验到这两个领域的美妙之处。同时,通过实践,我们也可以更好地理解折纸和数学之间的联系。

第五段:结论

通过《折纸与数学的美丽关系》一书的学习,我们可以更好地理解折纸和数学之间的联系。折纸作为一种传统的手工活动,不仅可以培养我们的动手能力,还可以提高我们的思维方式和思考模式。通过模仿书中的折纸作品,我们也可以更加深入地学习折纸和数学之间的联系。我们应该在日常的生活和学习中,更加注重关注折纸和数学这一领域的奥妙。

数学的读书心得篇六

《自然哲学的数学原理》是第一次科学革命的集大成之作,它在物理学、数学、天文学和哲学等领域产生了巨大影响。在写作方式上,牛顿遵循古希腊的公理化模式,从定义、定律(即公理)出发,导出命题;对具体的问题(如月球的运动),他把从理论导出的结果和观察结果相比较。全书共分五部分,首先“定义”,这一部分给出了物质的量、时间、空间、向心力等的定义。第二部分是“公理或运动的定律”,包括著名的运动三定律。接下来的内容分为三卷。前两卷的标题一样,都是“论物体的运动”。

第一卷研究在无阻力的自由空间中物体的运动,许多命题涉及已知力解定受力物体的运动状态(轨道、速度、运动时间等),以及由物体的运动状态确定所受的力。第二卷研究在阻力给定的情况下物体的运动、流体力学以及波动理论。压卷之作的第三卷是标题是“论宇宙的系统”。由第一卷的结果及天文观测牛顿导出了万有引力定律,并由此研究地球的形状,解释海洋的潮汐,探究月球的运动,确定彗星的轨道。

本卷中的“研究哲学的规则”及“总释”对哲学和神学影响很大。当时英国皇家学会要出版这部书,但是凑不出适当款子,而皇家学会的干事胡克则声称万有引力的平方反比定律是他首先发现的,爱德蒙·哈雷出于气愤,提议牛顿写了这本书,并由他自费出版了牛顿的书,于1687年7月《自然哲学的数学原理》拉丁文版问世。

数学的读书心得篇七

折纸与数学这本书为我打开了一扇之前未曾开启的大门,它引导我探索了折纸和数学之间的奥妙和联系,教会了我许多新的技巧和思考方式。阅读这本书让我不仅有了新的认识,也让我更好地理解了折纸和数学的本质,下面,我将分享一下我的读书心得体会。

第一段:折纸的艺术之美

折纸是一门独特的艺术形式,它能展现出一份纯净与优美,同时带来一份轻松愉悦的感受。在这本书中,我了解了各种各样的折纸作品,从最简单的纸飞机到最复杂的折纸模型,每一个作品都有着独特的美感和气息。我被折纸的纯粹和完美的几何形态所吸引,感受到了一种世外桃源般的安宁感。折纸中的成败在所难免,但是折纸的过程却是一份享受,在折纸中我更能领悟到生活不能一帆风顺,人生的真正意义是在于经历,享受成长的过程。

第二段:折纸与创新

折纸是一门充满创造力的活动,它能启发人们独立思考和创新。阅读这本书后,我对于折纸的方式和过程产生了更深层的理解。折纸教给我不仅仅是单纯的手艺,更是培养了我的思考能力和创造性。在一件事物出现问题时,我们往往会有许多固定的思维惯性,折纸可以帮助我们打破思维的局限性,远离刻板的思维模式,做出创新的作品。在一次次的尝试中,我逐渐掌握了折纸的技巧,提高了自己的动手能力和思考能力。

第三段:数学与折纸的关系

数学对于折纸而言,是至关重要的。折纸的好处就在于它将一件复杂的事物简单化,让我们利用数学的原理把一个长长的纸张变成一个艺术品。我了解到,在折纸中运用数学关系,能够更好地理解和巩固数学知识,更好地应用数学原理,从而使我们的折纸作品更为完美。阅读这本书,使我深刻认识到,折纸与数学是相互依存的,折纸的制作需要数学的理论支持,而数学为折纸的制作提供了数学基础和理论支持。

第四段:折纸推广的意义

如今,折纸已成为全球传统文化的一部分,被普及到各个角落。折纸的制作难度多样,适合各个年龄段的人群,是学科教育中的一种优秀教育手段。通过折纸这种简单的活动,学生们可以更好地理解数学、几何等相关知识,同时也能在轻松地环境下提高动手能力,促进想象、创造力。折纸推广不仅是宣传折纸艺术的普及,也是宣传科学知识的一种有效方式,能够帮助更多的学生感受到科学之美。

第五段:总结

折纸与数学的结合,是当今学科教育和文化交流中所注重的一种新兴教育方式。无论从美学角度、思维角度还是数学角度来看,折纸都是一种优秀的艺术形式。通过折纸与数学的结合,可以更好的体现出科学与艺术的结合之美。从这本书中,我学到了许多折纸的技巧和思维方式,更深刻地认识到折纸与数学的关系,也从折纸中领悟到了生活的真谛,希望更多的人能够关注折纸并从中受益。

数学的读书心得篇八

数学是一门重要的学科,在我们的生活中无处不在。不少人因为对数学的恐惧而避之不及,但实际上,学数学并不难,只需要掌握正确的学习方法。在我读书的过程中,我了解到了一些简单学数学的心得体会,希望能够与大家分享。

第二段:建立数学基础

要学好数学,第一步就是要建立起扎实的数学基础。这个过程需要有耐心和坚持不懈的努力。我们可以通过课本、习题册和辅导教材来进行基础的学习和巩固。关键是不要急功近利,一步一个脚印去走,逐步积累知识,就能够打好坚实的数学基础。

第三段:掌握数学思维方法

掌握数学思维方法是学习数学的重要环节。数学思维方法不仅能够帮助我们理解概念,也能够帮助我们解决问题。我们需要学会思维的抽象化、直觉化和形象化处理,以及从宏观和微观的角度来思考问题。通过不断地实践和思考,就能够掌握数学思维方法。

第四段:勤做数学题

要学好数学,勤做题是必不可少的。通过不断的练习,我们不仅能够巩固知识,还能够培养自己的数学思维能力。在做题的过程中,我们要注意题目的出现形式以及运算方式,掌握基本的解题思路和方法,然后再逐步解决较为复杂的问题。

第五段:结语

简单学数学需要掌握正确的方法,这个过程需要耐心和坚持。我们需要建立数学基础,掌握数学思维方法,勤做数学题,才能够在数学学科上有所成就。最重要的是,我们需要坚定信心,不要被一时的困难所打败,相信自己一定能够爬过这座数学山峰,获得数学学科的成功和荣耀。

数学的读书心得篇九

俗话说"一寸光阴一寸金,寸金难买寸光阴"、"知识就是力量",其实在我的内心深处我一直认为趁着青春年少多看些书,多学些知识是永远不会错的,《小学数学教师》读书体会。在走上了三尺讲台之后,由于这职业的原因,我更加喜欢看书、看报,并逐渐对教育书刊有所涉猎,其中我最喜欢《小学数学教师》。一本书刊或杂志能够成为读者的朋友,其实是一件很不容易的事情,而在我的心目中,《小学数学教师》就是我的挚友。我和它的相识其实很平淡无奇,当我刚踏上教学之路,为了走好事业的第一步,常常要做些准备,其中有一项就是到校图书室借阅书刊,摘抄一些新的教育信息、新的教育理念、新的教育教学方法,而这些,我都通过《小学数学教师》获得了,因此我一次次走近它。有人说:"一本教育杂志,也应当是一所学校,有先进的教育理念,有切实、具体的可以给读者以启迪的教育案例,有高水平的服务…"而《小学数学教师》恰恰如此,它的文章精短实用,可读性强,内容实在,在推动教学改革、传递教学信息方面都有独到之处。如今,做为一名小学数学教师,我更加希望能在教学方面得到一些切实具体的帮助,《小学数学教师》将怎样处理教材难点,怎样设计创造性教学方案等都为我们想到了。

据了解,《小学数学教师》滋润了无数数学教师的茁壮成长,也为许许多多的青年数学教师架起了走向成功的`桥梁,是培育教师成长的摇篮。她的风格十分朴素平实。务实、朴实、平实是其魅力的源泉。朴素、精致、人文是其独具的特点。她的教学点评中肯,教案设计新颖,教学随笔精致。她贴近教改前沿,是小学数学教改的冲锋号。

在轰轰烈烈的教改之风中,《小学数学教师》宣扬对学生做为"人"的尊重;宣扬对学生生命的唤醒与赏识;宣扬人格平等基础上的情感交流;教育我们用心灵感受心灵,用生命点燃生命,用智慧开启智慧。因此,每当我竭尽所能地传授知识给学生却看到学生似懂非懂的目光时,我都能从《小学数学教师》中再次找寻到信心的起点;每当遇到教学中我自己也弄不太清、搞不太懂的知识时,《小学数学教师》为我解决了燃眉之急;每当我想在教学上有所突破、有所创新时,都是《小学数学教师》为我导航,让我有所创想,寻到教学的"亮点"。

数学的读书心得篇十

《数学课程标准》提出了新的理念:“数学教育要面向全体学生,实现人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。数学教育要在培训每一个学生的数学素养的同时,不同的人在数学上有不同的发展。”它第一次提出了数学素养这个概念,并把数学素养作为数学教育的重要目标。这一重要的提法“数学素养”,它不是“知识”的代名词,而是一种涵养,它是通过对知识的掌握、理解、应用和探究而形成的。从这一提法可以看出,它更关注数学的应用价值,关注数学与生活的联系,关注学生的情感态度和思想价值观。

一、数学素养——数学教育的重要目标

素养与知识的关系是:“知识”是“素养”形成的基础,但知识不等于“素养”,知识可以被人所掌握,但素养却不能被机械地模仿。知识和素养都是人的一种“本领”,但知识和素养不是一回事。素养是在知识和能力的基础上经过概括和总结形成的一种比较稳定的特征,或者说,素养是知识能力和个性品质素养是人的基本素质,它主要包括人的道德素养、法律素养、知识素养、能力素养、健康素养、审美素养等。数学素养就是学生借助于数学的知识、能力、方法和观点而反映出来的“数学化”水平。具备数学素养的人用数学观点观察、分析事物的能力。简言之,数学素养就是人文素养的重要组成部分。

纵观国际数学教育发展的趋势,无论是强调双基(基本知识和基本技能),还是提倡培养学生的数学能力,都是要建立在数学素养的基础上。虽然各种不同的国家在数学教育目标表述上有所不同,但无一例外,都把数学素养作为数学教育的重要目标。

数学素养,需要经过后天的培养和训练,并在实践中不断内化,最终成为一种数学素养。培养学生的数学素养,数学教学责无旁贷,数学教师任重道远。

二、挖掘素养——数学教学的应尽之责

如何在数学教学中培养学生的数学素养?

首先,教师要深刻领会数学素养的内涵。素养与知识、能力不同,不是一种“结论”,而是一种“过程”,需要经过概括和总结才能形成。数学素养,需要经过后天的培养和训练,并在实践中不断内化,最终成为一种数学素养。数学素养,不是“教”出来的,而是学生“练”出来的,与其说“培养”学生的数学素养,不如说“训练”学生的数学素养。

其次,教师要深入挖掘教材中的数学素养。数学素养是一种“内隐”的素质,它不是教材中每一篇内容或每一个知识点都所能包含的。数学素养的培养,需要教师对教材深入研究,挖掘教材中的数学素养。

再次,教师要通过数学教学提高学生的数学素养。数学教学是培养学生数学素养的重要途径。教师在教学中,不仅要注重提高学生的数学能力,而且要注重培养学生的数学意识,数学意识的培养需要教师有意识的培养。

最后,教师要通过数学教学提高学生的数学素养。数学教学是培养学生数学素养的重要途径。教师在教学中,不仅要注重提高学生的数学能力,而且要注重培养学生的数学意识,数学意识的培养需要教师有意识的培养。

数学素养的培养,是一个系统工作,需要教师在教学中,有目的、有计划、有步骤地进行。作为数学教师,应该责无旁贷,为提高学生的数学素养而努力。

数学的读书心得篇十一

这个星期,我看了一本书,名字叫《帮你学数学》,是张景中写的。

这本书的'每一个小故事都有有声有色的图画,每个故事中含有一个数学题,程度有浅有深,在故事的最后,有这道题的正确解法和答案。

在这个社会上数学是一门重要的基础学科。它的重要性非常大的,曾有这样的`三句话:数学是建设四化的武器,数学是其他科学的基础,数学是锻炼思维的体操。里面的故事简直是多的事,比如说有着这样的一个有趣的故事,驴和马一块驮着粮食,去城市里,驴才走了一会儿,就不肯走了,驴对马说:"马大哥你背的有多重呀?"马就出了给驴的题目,再说驴算出了马驮的有多重,自己算出了自己驮的有多重,在也不叫苦叫累。

我读完了这本书,感觉这本书写的非常好,学习是紧张的,更应该是有趣的,希望大家看了这本书学的轻松,学的有劲,取得最好的学习效果。

数学的读书心得篇十二

通过学习,在教学中我们最大限度的给学生提供积极思维的条件,创造良好的思维环境,设法运用多种激发策略,调整学生情绪,点燃思维火花,激发学生积极思维。此外,联想为思维从横向进行发散提供了一条途径,在教学中我们引导学生根据已有的知识、经验、方法对数学问题展开想象,广泛联想,纵横沟通,以培养学生良好的思维品质。

在数学教学中我们每节课都要进行“课前口算练习”,要求学生不动笔,灵活运用各种公式、定律及法则进行口算,做到既快又准。在口算的过程中,学生要对各种法则、定律、公式进行选择并使用,这样学生思维的敏捷性、灵活性等思维品质便在学生口算的过程中得到了培养与锻炼。

启迪思维,培养能力,建立良好的智能结构是数学课堂教学追求的目标之一。在教学实践中,我们充分挖掘练习题的功能,在巩固基础知识的同时,做到灵活练习,引发学生积极思维和创新。

如,教学“百分数的意义和读写法”,在巩固练习时,教师先让学生写出10个百分号(%),要求一个比一个写得好看,学生们照着老师的板书或参照书上的样子认真写起来。学生书写的过程中,教师突然叫停,让学生数一数自己完成的个数。接着教师提问:你能告诉老师完成了几个吗?学生纷纷举手。教师话锋一转:“同学们,直接说出你写了几个百分号,那是很容易的。你能用今天刚学的百分数知识来说一句话,告诉老师你完成的情况吗?”学生顿觉有趣,积极思维后,学生回答出多种不同的说法:“我完成了任务的40%。”“我已经写好的个数占要写个数的30%。”“我还剩任务的60%没完成。”“我再写任务的10%,就完成一半了。”“我完成的比刚才那位同学的多25%”等等。每一位学生都根据自己写的百分号的个数,想出一道含有百分数的式题。学生回答后,教师又问:“你是怎么想到这个百分数呢?”学生都能说出自己的思考过程,如一位学生回答说:“我写了4个,占任务(10个)的4/10,也就是40/100,用百分数表示是40%,所以我完成了任务的40%。”教师充分肯定了他的想法。

学生在积极的思维状态下参与学习,既培养了学生思维的灵活性、深刻性等思维品质,又获得了成功的体验。

人的思维往往是从问题开始的。学生遇到问题才能主动去学习。在教学中,我们为学生提供材料,置学生于问题情境中,使其处于很想弄懂但又无法弄懂、有所知但并非完全明白的心里状态,从而产生认知冲突,使思维进入积极状态。

例如:在学完用比例知识解应用题后,教师指着窗外一棵高大的白杨树说:“同学们,如果我要知道这棵大树的高度,请大家想一想,有什么好方法?”,问题一出,同学们的思维一下活跃起来,有的说:“可以用尺子量一量”,有的说:“不行,这棵树那么高,怎么量?”有的说:“爬到树上量。”,有的说:“你能爬到树梢上去吗?”有的说:“要是把树放倒就好量了。”……大家你一言我一语,但都没有什么好的办法,就在大家积极思索而又不知如何解决的时候,教师说:“同学们,用我们今天学习的知识能不能解决呢?”同学们一听,个个露出兴奋的表情,学习兴趣再次被激发,思维的火花再次被点燃。

最后终于用比例知识创造性的解决了教师提出的问题。思维的灵活性、创造性等思维品质得到了锻炼与培养。

随着年龄的增加,有意注意也占有一定的地位,如果能很好的利用有意注意,并能使其保持较长的时间,就能提高学生积极思维的参与度。因此,我们课堂上努力激发学生求知欲望,引发积极思维。

例如在教学比较两个角的大小时,教师让学生分别在投影片上画一角后,让学生思考:怎样比较所画的角的大小,大部分学生采用了度量的方法,当教师问学生谁有更简便的方法时,学生积极思考,踊跃上台演示,当学生提出用重叠的方法进行比较时,既提高了兴趣,又培养了思维的灵活性、广阔性等思维品质。

由具体到抽象,由感性到理性,由简单到复杂,这是人们认识的一般规律。小学生的思维带有鲜明的具体性、形象性。低年级学生以具体形象思维为主,高年级学生的抽象思维也往往需要具体形象作支柱。因此,在数学教学中我们重视学生的实际操作,让学生在实际操作中运用多种感官,通过操作、观察,引导学生分析、比较、抽象和概括,促进了发展学生思维能力的发展,培养学生良好的思维品质。

例如,在教学圆锥体体积时,教师将学生分成四组,每组用准备好的实验材料:圆锥、圆柱和沙子来探讨圆锥与圆柱的体积关系。在教师的指导下,同学们边操作、边思考、边讨论,兴趣甚浓,马上得出了结论,用圆锥装满沙子往圆柱里倒,三次正好装满,这说明了圆锥体的体积正好是圆柱体体积的三分之一。这时,教师又出示了另一组圆柱、圆锥,让同学们看老师的操作。结果老师操作的结果是:用圆锥装满沙子向圆柱里装,装了四次装满。这时学生都瞪大了眼睛,迷惑不解,有的同学开始发言,说老师装的不标准,结果老师找一学生当众演示,还是原来的结果。这到底是怎么回事呢?学生又开始重新观察、操作、思考、讨论,最后终于发现,圆锥体的体积等于圆柱体体积的三分之一有一个很重要的条件,那就是等底等高。

教师让学生在观察、操作、讨论中探索知识发生、形成的过程。学生在“动”中“思”,在“思”中“动”,动思互为补充,不但加深了学生对知识的理解,而且使学生思维的敏捷性、深刻性等思维品质得到促进与提高。

类比思维是从要解决的问题联想到与它类似的、熟悉的问题,用熟悉的问题的解法来思考解答待解决问题的思维方法。教学中,教师运用这种方法来启发、引导学生进行相关的数学思维与解决数学问题,往往会收到事半功倍的效果。

例如,教学应用题:“王老师为学校买体育用品,他所带的钱正好可买12个篮球或18个足球。如果王老师买了8个篮球,剩下的钱全部买足球,还可以买几个足球?”按一般思路求解,既不知价钱,又不知总钱数,学生感到困难,甚至难以下手。教师可启发学生类比联想到工程问题,把总钱数理解为总工作量,把“带的钱可买12个篮球或18个足球”理解为“甲、乙两人完成总工作量各需12天和18天”。那么,就得到一道工程问题:“一项工程,甲做需12天,乙做需18天。现在甲先做8天后,再由乙接着做,还需多少天能完成?”由此得到原题的解答方法:(1-1/12×8)÷1/18=6(个)。

这样不仅拓宽了学生的解题思路,优化了解题过程,提高解题能力,又让学生体验到成功的喜悦,从而激发学生多向联想的兴趣,思维的灵活性、创造性等思维品质也得到了培养。

数学的读书心得篇十三

主要内容:陈景润玩捉迷藏还拿着一本书,他最爱数学,成了一个数学家。

好词:津津有味、沉默寡言、如愿以偿、毫不羞涩、陈氏定理。

好句:

(1)陈景润不懂就问,别看他平时沉默寡言,但向老师请教时他毫不羞涩和胆怯。

(2)他就紧追上去和老师一边走一段路,一边走一边问问题。

(3)许多年之后,陈景润如愿以偿地进入了中国科学院数学研究所。

好段:他往往拿着一本书,藏在一个别人不容易发现的角落或桌子底下,边津津有味地看书,一边等着别人来“捉”他。

读书感悟:我佩服陈景润那么爱看书,而且玩游戏时也看,那种爱读书的精神值得我们学习,他能有成就,就是凭着自己的实力和努力创就的。我们玩时没想要学习,学习的.时间是由我们自己而挤出来的,没有不靠挤就有时间,我们应用双手去做。

数学的读书心得篇十四

作为一名数学老师,在教学时时常会遇到一些疑难问题,小学里面想不通的问题,有时一知半解,可这本书讲的很精确,很科学,就是很简单的.问题也讲出了其中的道理,让人心服口服。像自然数为什么从0开始而不是从1开始、为什么最小的偶数是0而不是2、为什么最小的一位数是1而不是零等等。在教学中老师讨论的问题,争执的问题,在这本书里我找到了答案,并明白其中的原由,真让人恍然大悟。

由于《小学数学研究》能够深刻地阐述小学数学的规律性问题。比如,第一章提出的小学数学中蕴涵的思想方法,让我们从更高的层面、思辩性地加深对小学数学的掌握和理解。而数学是一门研究“关系”的学问这一命题的提出,则进一步提示了小学数学内容的深刻本质。所有的数学问题均存在于关系之中,可以说,对小学数学知识的学习具有指导性和纲领性的作用。

所以这本书成了我工作的导师和助手,一遇到不明白的问题我就会翻开它,有时间也会细细品读,从这本书我不但明白圆周率的发展及历史、平移旋转的实质、小学数学的方程的真正含义,还从中了解到数学的博大精深,作为一名数学老师不仅仅是把书本上的知识教给学生,给学生讲懂题目,还需要了解数学知识的内在联系,真正把教科书上的内容彻底弄明白,所以我觉得自己要不断充电,好好学习数学方面的专业知识,提高业务水平,才能成为一名优秀的小学数学教师。所以我也真心的将这本书推荐给我们的数学教师。

【本文地址:http://www.xuefen.com.cn/zuowen/4053115.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档