方案可以帮助我们在实践中不断改进和迭代。制定完美的方案需要从整体把握,考虑到各个方面的因素。方案的成功与否,还需要领导的支持和组织的重视。
大数据实施方案篇一
随着云计算和物联网的日渐普及,大数据逐渐成为各行各业的核心资源。然而,海量的数据需要采取一些有效措施来处理和分析,以便提高数据质量和精度。由此,数据预处理成为数据挖掘中必不可少的环节。在这篇文章中,我将分享一些在大数据预处理方面的心得体会,希望能够帮助读者更好地应对这一挑战。
第二段:数据预处理的重要性
作为数据挖掘的第一步,预处理的作用不能被忽视。一方面,在真实世界中采集的数据往往不够完整和准确,需要通过数据预处理来清理和过滤;另一方面,数据预处理还可以通过特征选取、数据变换和数据采样等方式,将原始数据转化为更符合建模需求的格式,从而提高建模的精度和效率。
第三段:常用的数据预处理方法
数据预处理的方法有很多,要根据不同的数据情况和建模目的来选择适当的方法。在我实际工作中,用到比较多的包括数据清理、数据变换和离散化等方法。其中,数据清理主要包括异常值处理、缺失值填充和重复值删除等;数据变换主要包括归一化、标准化和主成分分析等;而离散化则可以将连续值离散化为有限个数的区间值,方便后续分类和聚类等操作。
第四段:实践中的应用
虽然看起来理论很简单,但在实践中往往遇到各种各样的问题。比如,有时候需要自己编写一些脚本来自动化数据预处理的过程。而这需要我们对数据的文件格式、数据类型和编程技巧都非常熟悉。此外,在实际数据处理中,还需要经常性地检查和验证处理结果,确保数据质量达到预期。
第五段:总结
综上所述,数据预处理是数据挖掘中非常重要的一步,它可以提高数据质量、加快建模速度和提升建模效果。在实际应用中,我们需要结合具体业务情况和数据特征来选择适当的预处理方法,同时也需要不断总结经验,提高处理效率和精度。总之,数据预处理是数据挖掘中的一道不可或缺的工序,只有通过正确的方式和方法,才能获得可靠和准确的数据信息。
大数据实施方案篇二
今年,火车票预售期由春节前60天缩短至30天。昨天下午,去哪儿网通过对60多万条飞机航线、50余万条铁路客运线进行大数据计算,对外发布了《春运大交通数据报告》,为回家旅客提供参考。报告显示,20春运期间,预计铁路车票中高铁占比将超4成;航班出发最集中的日期是年1月24日,十大难买票航线中,北京占了一半。同时“怡起回家”福利通道已开启,将为旅客提供最高金额达100元的火车票减免优惠券等多项福利。
火车票
超四成人将坐高铁
铁路向来是春运客运量最高的交通工具,据去哪儿网大数据预测,2017年12月15日将进入旅客春运抢票高峰,此轮去程购票高峰将和去年一样,一直持续到春节前结束。
今年春运,铁路最热门的出发地集中在北京、上海、成都、重庆和杭州。这些城市多属于超一线和新一线城市,外来人口集中,也是多条铁路线路的起始地。一个显著的变化是,购买快速铁路车票的用户比例不断增加,选择乘坐高铁的人数占比达到了41.5%,选择乘坐城际铁路的人群比例也达到了10.3%,整体超过了总数的一半。乘坐上海出发的高铁线路人数最多,杭州、长沙、北京、广州的票量紧随其后。
飞机票
北京飞佳木斯特难买
2017年春运出发最集中的日期是2017年1月24日,已经进入了乘飞机回家旅客的人数峰值期,全国重要的机场将进入到繁忙状态,返程高峰则从大年初六即2017年2月2日开始。
北京至成都、深圳至重庆、上海至哈尔滨、北京至三亚、广州至重庆、深圳至成都、成都至北京、重庆至广州、北京至哈尔滨、上海至成都,这十条是往年最热门的空中回家路。据去哪儿网大数据统计,北京至佳木斯的航线,在众多热门航线中并不起眼,但订票时间却比其他航线早很多,平均会提前36天。而从深圳回海口更早,一般提前43天,堪称最难买航线。记者注意到,在“春运期间十大最难买线路”中,北京起飞地就占了一半。
接送站
4点到11点为乘车高峰
春运期间,95%的旅客会有行李箱、背包并携带各种礼品,专车接送机/站成为热门出行工具。北京、成都、深圳、上海、三亚、广州、昆明、西安、哈尔滨、厦门等10个城市成为去哪儿接送机使用率最高的城市。
在接送机/站的用户中,25至35岁年龄段人群最高,占比48%,35至45岁占比也超过两成。在预约时间上看,男性一般提前在出发前3.5天至4.1天预订接送机服务;女性用户明显准备更加充分,其预约时间在4.1天至5.6天。
从出行时段上看,4点至11点为旅客乘车去机场、火车站高峰,其中5至6点出发人群最高,高达6.9%;10至11点又会出现小的高峰,出行占比为5.1%。
发福利
买火车票最高减100元
由华润怡宝饮料(中国)有限公司和去哪儿网发起的2017“怡起回家”春节活动于昨天正式启动。即日起至2017年2月11日,旅客打开去哪儿网app找到“怡起回家”专题可以参加红包抽奖,覆盖去哪儿网旗下机票、火车票、汽车票、接送机租车、度假、门票、酒店等全线产品。
其中,活动力度最大的是乘坐比例最高的“火车票”,活动为旅客提供了最高金额达100元的火车票减免优惠券,并可直接用于购票抵扣,还有千张“1元机票”秒杀、4000份车车代金券、4万份出游保险等多种优惠。过年期间,旅客还将享受到国内外12条免费度假线路、3万份怡宝定制红包和1万份出游保险的额外奖项。
相关
北京至昆明高铁首发
记者从北京铁路局获悉,自2017年1月5日起,北京将首开昆明、福田和绍兴方向高铁列车,北京西至昆明南最快旅行时间较现行直达特快压缩约21小时,实现“朝发夕至”。
铁路部门提示,为了配合此次运行图和下一步春运运行图的调整,12月30日以后的火车票预售期调整为30天。按此计算,今日最远可以买到2017年1月4日的火车票,有出行需求的旅客,可登录中国铁路客户服务中心网站或通过车站窗口、火车票代售处、拨打北京铁路局订票电话(95105105)购买车票。
列车调整
首开北京西至昆明南g403/4次、g405/6次高铁列车2对;
首开北京西至福田高铁列车2对,g71/2次、g79/80次;
首开北京南至绍兴北高铁列车1对,g39/40次;
增加1对北京南至商丘g1567/8次高铁列车;
延长3对快速列车运行区段:北京西至桂林北k21/2次延长至南宁;保定至南京k849/52/49、k850/1/0次延长至上海;天津至大同k608/5次延长至朔州;大同至秦皇岛2604/1次改为朔州至秦皇岛。
大数据实施方案篇三
美国国家标准和技术研究院对大数据做出了定义:“大数据是指其数据量、采集速度,或数据表示限制了使用传统关系型方法进行有效分析的能力,或需要使用重要的水平缩放技术来实现高效处理的数据。”我们认为大数据价值链可分为:数据生成、数据采集、数据储存以及数据分析。数据分析是大数据价值链的最后也是最重要的阶段,是大数据价值的实现,是大数据应用的基础,其目的在于提取有用的值,提供论断建议或支持决策,通过对不同领域数据集的分析可能会产生不同级别的潜在价值。
虽然这些传统的分析方法已经被应用于大数据领域,但是它们在处理规模较大的数据集合时,效率无法达到用户预期,且难以处理复杂的数据,如非结构化数据。因此,出现了许多专门针对大数据的集成、管理及分析的技术和方法。
布隆过滤器:其实质是一个位数组和一系列hash函数。布隆过滤器的原理是利用位数组存储数据的hash值而不是数据本身,其本质是利用hash函数对数据进行有损压缩存储的位图索引。其优点是具有较高的空间效率和查询速率,缺点是有一定的误识别率和删除困难。布隆过滤器适用于允许低误识别率的大数据场合。
hash法,其本质是将数据转化为长度更短的定长的数值或索引值的方法。这种方法的优点是具有快速的读写和查询速度,缺点是难以找到一个良好的hash函数。
索引:无论是在管理结构化数据的传统关系数据库,还是管理半结构化和非结构化数据的技术中,索引都是一个减少磁盘读写开销、提高增删改查速率的有效方法。索引的缺陷在于需要额外的开销存储索引文件,且需要根据数据的更新而动态维护。
trie树:又称为字典树,是hash树的变种形式,多被用于快速检索,和词频统计。trie树的思想是利用字符串的公共前缀,最大限度地减少字符串的比较,提高查询效率。
并行计算:相对于传统的串行计算,并行计算是指同时使用多个计算资源完成运算。其基本思想是将问题进行分解,由若干个独立的处理器完成各自的任务,以达到协同处理的目的。
传统数据分析方法,大多数都是通过对原始数据集进行抽样或者过滤,然后对数据样本进行分析,寻找特征和规律,其最大的特点是通过复杂的算法从有限的样本空间中获取尽可能多的信息。随着计算能力和存储能力的提升,大数据分析方法与传统分析方法的最大区别在于分析的对象是全体数据,而不是数据样本,其最大的`特点在于不追求算法的复杂性和精确性,而追求可以高效地对整个数据集的分析。总之,传统数据方法力求通过复杂算法从有限的数据集中获取信息,其更加追求准确性;大数据分析方法则是通过高效的算法、模式,对全体数据进行分析。
[2]黄晓斌,钟辉新.基于大数据的企业竞争情报系统模型构建[j].情报杂志,20xx(03).
大数据实施方案篇四
(一)数据1.0时代
数据分析出现在新的计算技术实现以后,分析1.0时代又称为商业智能时代。它通过客观分析和深入理解商业现象,取缔在决策中仅凭直觉和过时的市场调研报告,帮助管理者理性化和最大化依据事实作出决策。首次在计算机的帮助下将生产、客户交互、市场等数据录入数据库并且整合分析。但是由于发展的局限性对数据的使用更多的是准备数据,很少时间用在分析数据上。
(二)数据2.0时代
2.0时代开始于20xx年,与分析1.0要求的公司能力不同,新时达要求数量分析师具备超强的分析数据能力,数据也不是只来源于公司内部,更多的来自公司外部、互联网、传感器和各种公开发布的数据。比如领英公司,充分运用数据分析抢占先机,开发出令人印象深刻的数据服务。
(三)数据3.0时代
又称为富化数据的产品时代。分析3.0时代来临的标准是各行业大公司纷纷介入。公司可以很好的分析数据,指导合适的商业决策。但是必须承认,随着数据的越来越大,更新速度越来越快,在带来发展机遇的同时,也带来诸多挑战。如何商业化地利用这次变革是亟待面对的课题。
随着顾客主导逻辑时代的到来以及互联网电商等多渠道购物方式的出现,顾客角色和需求发生了转变,世界正在被感知化、互联化和智能化。大数据时代的到来,个人的行为不仅能够被量化搜集、预测,而且顾客的个人观点很可能改变商业世界和社会的运行。由此,一个个性化顾客主导商业需求的时代已然到来,大数据冲击下,市场营销引领的企业变革初见端倪。
(一)大数据时代消费者成为市场营销的主宰者
传统的市场营销过程是通过市场调研,采集目前市场的信息帮助企业研发、生产、营销和推广。但是在大数据以及社会化媒体盛行的今天,这种营销模式便黯然失色。今天的消费者已然成为了市场营销的主宰者,他们会主动搜寻商品信息,货比三家,严格筛选。他们由之前的注重使用价值到更加注重消费整个过程中的体验价值和情境价值。甚至企业品牌形象的塑造也不再是企业单一宣传,虚拟社区以及购物网站等的口碑开始影响消费者的购买行为。更有甚者,消费者通过在社交媒体等渠道表达个人的需求已经成为影响企业产品设计、研发、生产和销售的重要因素。
(二)大数据时代企业精准营销成为可能
在大数据时代下,技术的发展大大超过了企业的想象。搜集非结构化的信息已经成为一种可能,大数据不单单仅能了解细分市场的可能,更通过真正个性化洞察精确到每个顾客。通过数据的挖掘和深入分析,企业可以掌握有价值的信息帮助企业发现顾客思维模式、消费行为模式。尤其在今天顾客为了彰显个性,有着独特的消费倾向。相对于忠诚于某个品牌,顾客更忠诚与给自己的定位。如果企业的品牌不能最大化地实现客户价值,那么即使是再惠顾也难以保证顾客的持续性。并且,企业不能奢望对顾客进行归类,因为每个顾客的需求都有差别。正是如此,大数据分析才能更好地把握顾客的消费行为和偏好,为企业精准营销出谋划策。
(三)大数据时代企业营销理念――“充分以顾客为中心创造价值”
传统的营销和战略的观点认为,大规模生产意味着标准化生产方式,无个性化可言。定制化生产意味着个性化生产,但是只是小规模定制。说到底,大规模生产与定制化无法结合。但是在今天,大数据分析的营销和销售解决的是大规模生产和顾客个性化需求之间的矛盾。使大企业拥有传统小便利店的一对一顾客关系管理,以即时工具和个性化推荐使得大企业实现与顾客的实时沟通等。
京东是最大的自营式电商企业。其中的京东商城,涵盖服装、化妆品、日用品、生鲜、电脑数码等多个品类。在整个手机零售商行业里,京东无论是在销售额还是销售量都占到市场份额一半的'规模。之所以占据这样的优势地位,得益于大数据的应用,即京东的jdphone的计划。
jdphone计划是依据京东的大数据和综合服务的能力,以用户为中心整合产业链的优质资源并联合厂商打造用户期待的产品和服务体验。京东在销售的过程中,通过对大数据的分析,内部研究出一种称为产品画像的模型。这个模型通过综合在京东网站购物消费者的信息,例如:年龄、性别、喜好等类别的信息,然后进行深入分析。根据分析结果结合不同的消费者便有诸如线上的程序化购买、精准的点击等营销手段,有效的帮助京东实现精准的营销推送。不仅如此,通过对于后续用户购物完成的售后数据分析,精确的分析商品的不足之处或者消费者的直接需求。数据3.0时代的一个特征便是企业不在单纯的在企业内部分析数据,而是共享实现价值共创。所以,京东把这些数据用于与上游供应商进行定期的交流,间接促进生产厂商与消费者沟通,了解市场的需求,指导下一次产品的市场定位。总的来说,这个计划是通过京东销售和售后环节的大数据分析,一方面指导自身精准营销,另一方面,影响供应商产品定位和企业规划,最终为消费者提供满足他们需求的个性化产品。
(一)数据分析要树立以人为本的思维
“以人为本”体现在两个方面,一方面是数据分析以客户为本,切实分析客户的需求,用数据分析指导下一次的产品设计、生产和市场营销。另一方面,以人为本体现在对用户数据的保密性和合理化应用。切实维护好大数据和互联网背景下隐私保护的问题,使得信息技术良性发展。
(二)正确处理海量数据与核心数据的矛盾
大数据具有数据量大、类型繁多、价值密度低和速度快时效高的特点。所以在众多海量的数据中,只有反映消费者行为和市场需求的信息才是企业所需要的。不必要的数据分析只会影响企业做出正确的决策。鉴于此,首先企业需要明确核心数据的标准;其次企业要及时进行核心数据的归档;最后要有专业的数据分析专业队数据进行分析,得出科学合理的结果以指导实践。
(三)整合价值链以共享数据的方式实现价值创造
单纯的企业内部数据已经无法满足今天市场上顾客多样性的需求,大数据的共享已经迫在眉睫。首先,可以通过扩展常规上下游渠道的数据。例如京东与上游供应商的合作。其次,与社会化媒体数据建立联系。社会化媒体数据是外围数据的一个重要来源。但是如果只是搜集并没有把数据与企业本身营销策略或者数据发布者建立联系,那么数据就没有发挥其应有的价值。最后,虚拟人脉交换获取数据。比如建立企业自媒体收获粉丝获取数据等。
[1]岳占仁.大数据颠覆传统营销[j].it经理世界,20xx,17.
[2]单华.大数据营销带给我国网络自制剧的思考――以《纸牌屋》为例[j].青年记者,20xx,26.
[3]魏伶如.大稻萦销的发展现状及其前景展望.辽宁大学新华国际商学院.
大数据实施方案篇五
随着信息技术的飞速发展,现代社会中产生了大量的数据,而这些数据需要被正确的收集、处理以及存储。这就是大数据数据预处理的主要任务。数据预处理是数据分析、数据挖掘以及机器学习的第一步,这也就意味着它对于最终的数据分析结果至关重要。
第二段: 数据质量问题
在进行数据预处理的过程中,数据质量问题是非常常见的。比如说,可能会存在数据重复、格式不统一、空值、异常值等等问题。这些问题将极大影响到数据的可靠性、准确性以及可用性。因此,在进行数据预处理时,我们必须对这些问题进行全面的识别、分析及处理。
第三段: 数据筛选
在进行数据预处理时,数据筛选是必不可少的一步。这一步的目的是选择出有价值的数据,并剔除无用的数据。这样可以减小数据集的大小,并且提高数据分析的效率。在进行 数据筛选时,需要充分考虑到维度、时间和规模等方面因素,以确保所选的数据具有合适的代表性。
第四段: 数据清洗
数据清洗是数据预处理的核心环节之一,它可以帮助我们发现和排除未知数据,从而让数据集变得更加干净、可靠和可用。其中,数据清洗涉及到很多的技巧和方法,比如数据标准化、数据归一化、数据变换等等。在进行数据清洗时,需要根据具体情况采取不同的方法,以确保数据质量的稳定和准确性。
第五段: 数据集成和变换
数据预处理的最后一步是数据集成和变换。数据集成是为了将不同来源的数据融合为一个更综合、完整的数据集合。数据变换,则是为了更好的展示、分析和挖掘数据的潜在价值。这些数据变换需要根据具体的研究目标进行设计和执行,以达到更好的结果。
总结:
数据预处理是数据分析、数据挖掘和机器学习的基础。在进行预处理时,需要充分考虑到数据质量问题、数据筛选、数据清洗以及数据集成和变换等方面。只有通过这些环节的处理,才能得到满足精度、可靠性、准确性和可用性等要求的数据集合。
大数据实施方案篇六
在大数据时代的大数据管理形式不断发展过程中,给企业发展带来冲击非常巨大。因此,企业要根据我国信息技术不断发展的形式,对大数据管理框架进行全面的设计和创新,如图1所示。在大数据的处理的过程中,主要是围绕着数据资产进行管理的,同时对大数据时代的大数据管理制度,进行全面的规划行、设计、创新,这样对其它信息技术管理领域,提供了便利的条件。其实,大数据时代的大数据管理最主要的目的,就是将大数据的价值进行充分的展现。另外,在大数据时代的大数据管理框架不断创新的过程中,有效的实现了大数据共享等性能,不断扩大了大数据时代的大数据管理的内容,对我国现代化信息技术的发展,起到了重要的作用和意义。
2。2开发与内容的管理形式
在不断提高大数据时代的大数据管理形式的过程中,可以从两个方面进行,一是大数据开发管理,二是内容管理。其中大数据开发管理注重于大数据管理的定义,和管理解决策略,对其大数据的存在价值,进行有效的开发。换句话说,其实也就是在大数据时代的大数据管理的过程中,对其管理形式的开发,对大数据的功能和价值,进行充分的理解。
大数据时代的大数据管理中的内容管理是指:企业对大数据进行不断的获取、使用、存储、维护等工作活动。因此,传统的大数据时代的大数据管理形式,已经无法满足对这个时代发展需求。因此,在时代快速发发展的推动下,要对开发管理和内容管理,进行全面的创新和设计,对需要专门设定的管理形式,要给予高度的重视,可以利用的集合型的保存形式,进行全面的保存。
其实,大数据时代的大数据管理主要是为企业提供重要的发展方向,为企业提供重要的价值信息。大数据时代的大数据管理在数据应用和开发的过程中,起到了重要的衔接作用,也为我国信息技术的发展,打下了坚实的基础。
2。3对大数据架构进行全面的管理
在大数据时代的大数据管理的过程中,数据框架管理起到了重要的作用,并且与大数据开发的过程中,有很多相似的地方。在传统的大数据时代的大数据管理的过程中,对其数据的开发、处理、保存等形式,都受到了一定程度上的限制。因此,在对大数据时代的大数据架构管理的过程中,对其操作形式,进行了全面的管理创新,避免受到范围的限制。另外,随着大数据不断的增加,大数据构架管理可以根据大数据的用途,质量良好的应用形态。例如:社交网络等形式。
与此同时,在最近几年的发展中,大数据时代的大数据管理形式,也面临着新的挑战基机遇。以此,只有对大数据时代的大数据管理形式,对个人信息、隐私等进行全面的管理,避免个人信息、隐私等发生泄露、不对称等现象的发生,这样不仅仅企业在发展的过程中,提供了最大程度上的安全保障,也为大数据时代的发展,带来了新的发展篇章。
3结语
综上所述,大数据时代是信息技术时代不断发展的产物,不管对我国经济的发展,还是人们在日常工作、生活的过程中,都起到了重要的作用和意义。因此,本文对大数据时代的大数据管理发展的历程进行了简要的分析,并对大数据时代的大数据管理形式,提出了一些可参考性的建议,只有对大数据时代的大数据管理形式,进行不断的创新,对大数据时代的大数据管理框架,进行不断的构建,也只有这样的才能在最大程度上促进了我国信息技术的发展,也为我国各行各业的发展,提供了重要的发展方向,对我国经济的发展,也起到了推动性的作用。
大数据实施方案篇七
在大数据时代的大数据管理的人员管理形式,不断发展和改革的过程中,计算机的软件和硬件都得到了有效的提高,磁盘、磁鼓等储存软件,得到了全面的普及和发展。同时,在在不断发展的过程中,计算机将大数据的组成形式,叫做大数据文件,并且在大数据文件上就可以直接的取名字,直接的进行查看,这对大数据的管理,无疑不是一个新的发展的起点。在大数据时代的大数据文件管理的过程中,由于大数据长期的保存在外面的,这样在对的大数据处理、分析、查找、删除、修改等操作的过程中,提供了极大程度上的'便利,其对其操作的程序,也具有特点的要求。但是,在文件管理的过程中,由于共享性能较大,数据与数据之间缺乏一定的独立性,对其管理和维护的费用和时间较大,这样往往工作效率提高,不能被广泛的使用。
大数据实施方案篇八
有人说生活像一团乱麻,剪不断理还乱;我说生活像一团乱码,尽管云山雾罩惝恍迷离,最后却总会拨云见日雨过天晴。维克托迈尔舍恩伯格就把这团乱码叫做大数据,在他的这本书里,试图给出的就是拨开云雾见青天的玄机。
这玄机说来也简单,就是放弃千百年来人们孜孜追求的因果关系转而投奔相关关系。说来简单,其实却颠覆了多少代人对真理探求的梦想。我觉得作者是个典型的实用主义者,在美帝国主义万恶的压迫下,始终追逐性价比和利益最大化,居然放弃了追求共产主义真理最基本的要求!不像我们在天朝光芒的笼罩下,从小就开始学习和追求纯粹的共产主义唯心科学历史文化知识啦!这或许就是我们永远无法获得诺贝尔奖、永远无法站在科技最前沿的根本原因吧。其实小学时候,我就想过这个问题,相信所有的人都问过类似的问题,例如现在仍然很多人在问,妈的从来没人知道我每天摆摊赚多少钱,你们他妈的那人均收入四五千是怎么算出来的。中国是抽样的代表,因为中国人最喜欢用代表来表现整体,最典型的例子莫过于公布的幸福指数满意指数各种指数永远都高于你的预期,你完全不清楚他是怎么来的,一直到最后汇总成三个代表,真心不清楚它到底能代表了啥。说这么多显得自己是个愤青,其实只是想表达“样本=总体”这个概念在科技飞速发展的今天,在世界的不同角落,还是会体现出不同的价值,受到不同程度的对待及关注。在大数据观念的冲击下,我们是不是真的需要将平时关注的重点从事物内在的发展规律转移到事物客观的发生情况上。
大数据的出现,必然对诸多领域产生极大的冲击,某些行业在未来十年必将会得到突飞猛进的发展,而其他一些行业则可能会消失。这是废话,典型的三十年河东三十年河西的道理,就像三十年前的数理化王子们,现在可能蜷缩在某工厂的小角落里颤颤巍巍的修理机器;就像三十年前职业高中的学生才学财会学银行,如今这帮孙子一个个都开大奔养小三攒的楼房够给自己做墓群的了;当然也不乏像生物这种专业,三十年前人们不知道是干啥的,三十年后人们都知道没事别去干,唯一可惜的是我在这三十年之间的历史长河中却恰恰选了这么一个专业,这也是为什么我现在在这写读后感而没有跟姑娘去玩耍的原因。其实乍一看这个题目,我首先想到的是精益生产的过程控制,比如六西格玛,这其实就是通过对所有数据的分析来预测产品品质的变化,就已经是大数据的具体应用了。而任何事物都会有偏差,会有错误,也就是说,这全部的数据中,肯定是要出现很多与总体反应出的规律相违背的个体,但是无论如何这也是该事件中一般规律的客观体现的一种形式,要远远好过从选定的样本中剔除异常值然后得到的结论。换句话说,也大大减少了排除异己对表达事物客观规律的影响。就好比是统计局统计中国人民的平均收入一样,这些数怎么这么低啊,这不是给我们国家在国际社会上的形象抹黑么,删掉删掉;这些数怎么这么高啊,这还不引起社会不满国家动荡啊,删掉删掉。所以说,大数据至少对反应客观事实和对客观事实做预测这两个方面是有非常积极地意义的。而这个新兴行业所体现的商机,既在如何利用数据上,又在如何取得数据上。
先说数据的利用,这里面表达的就是作者在通书中强调的对“相关关系”的挖掘利用。相关关系与因果关系便不再赘述,而能够对相关关系进行挖掘利用的企业其实缺不多,因为可以相信未来的大数据库就像现在的自然资源一样,必将因为对利益的追逐成为稀缺资源,而最终落在个别人或企业或部门的手中。想想无论当你想要做什么事情的时候,都有人已经提前知道并且为你做好了计划,还真是一件甜蜜而又令人不寒而栗的事情。
而对于数据的获取,我觉得必然是未来中小型企业甚至个人发挥极致的创造力的领域。如何在尽可能降低成本的情况下采集到越多越准确的数据是必然的发展趋势,鉴于这三个维度事实上都无法做到极致,那么对于数据获取方式的争夺肯定将成就更多的英雄人物。
现在回头从说说作者书中的观点中想到的,p87中关于巴斯德的疫苗的事件,描述了一个被疯狗咬伤的小孩,在接种了巴斯德的狂犬疫苗后成功幸存,巴斯德成了英雄的故事。这是个非常有意思的案例,因为小孩被狗咬伤而患病的概率仅为七分之一,也就是说,本事件有85%的概率是小孩根本就不会患病。那么小孩的生命到底是不是巴斯德救的,而这疫苗到底是有效没效,通过这个事件似乎根本就没有办法得到验证。这就好比某人推出个四万亿计划,但实际上国际经济形势就是好转,哪怕你只推出个二百五计划,gdp都会蹭蹭的往上涨,而且又不会带来四万亿导致的严重通胀、产能过剩、房价泡沫等问题。那你说这四万亿到底是救了国还是误了国?回到我自己的工作领域上来,安全工作,我们一直遵循的方向都是寻找因果关系,典型的从工作前的`风险评估,到调查事故的taproot或者五个为什么,无一不是逻辑推理得到结果的产物。而事实上,如果能做到信息的丰富采集和汇总的话,找出事物之间的相关性,对提高工作环境的安全系数是极为有利的。这个点留着,看看可不可以在未来继续做进一步研究。
p89说了常用的两种因果推理方式,分别是凭直觉的快速推理和经过分析的慢速推理。有意思的是很多时候直觉反而比分析来得成功率要更高。作者是想利用这个例子来说明因果关系是多么的不可靠,也想表达出靠分析试验得到结果的过程成本有多高。其实我是想说,因果关系更多面向的是未来,是没有对新鲜事物发展做出的预测,而相关关系更多的是对已经存在的事物未来发展的预测,侧重点不同而已。
p135里面关于山上小球的描述,它的能量是隐藏的、潜在的。这个观点我很喜欢,也很悲观。这正说明了社会上的一种现象。很多人,虽然没有站在巨人的肩膀上,但是当他们站在亲爹干爹的路虎上保险箱上高背椅上时,就是拥有别人无法企及的力量。最近一直在背马丁老兄的i have a dream,真真切切体会到自由、公正、平等对一个社会,一个国家繁荣发展的重要性。实干兴邦、空谈误国,那就先从建立一个公平的社会秩序开始吧!
p163里面大概讲述了商家是怎么通过大数据获得的信息来进行商业推广的。这里我只想用我的三张信用卡发卡银行做一下比较。首先是交通银行,这张卡最近半年几乎没怎么用,交行也从来都无声无息,我考虑已经可以把这张卡扔掉了;去年因为国航里程申请了一张中信的信用卡,但是今年开始也已基本停用,因为之前一段时间一直使用,中信银行这几个月频繁与我联系,推荐各种业务,多次要给我提供贷款或者提高透支额度,我几次都想要不然就换回来继续用它好了;招商银行的卡也是我用得比较久的一张,近期每月的消费基本都稳定在几千,偶尔也有一万多快两万的时候,当然这不是因为我消费,只是因为出差比较多自己垫钱多而已,但是招商银行从未与我联系给我提升额度,尽管我的月消费额度都已经基本达到信用卡的上限了,有时候甚至不得不使用别家的信用卡。最差的自然是中行,首先是预约了国航金卡的信用卡,结果联系了两次我都在出差,就再也不与我联系了,半年多了我还没有拿到我的卡,而作为工资卡的借记卡,多年来仍然是每天网上付款最多2000,我的使用记录明明经常一个月有好几天都达到2000的顶值,甚至我都主动打过电话要求更改,都给我答复是必须到柜台办理。说完这几个例子,我想中国的银行业与欧美发达国家银行的差距就已经是显而易见了。真的很难以想象这种企业能在世界500强中排名那么靠前,是因为黑了中国人民多少钱。而通过对visa和mastercard的案例描述,则清晰的说明了一个成功的银行是怎么通过对数据收集进行行为预测,最终改变消费者消费习惯的。
然后想说说关于免费导航等应用的使用。天下没有免费的午餐,这是亘古不变的真理。你以为你可以只花点流量费就能舒服方便的使用卫星导航了么,你去过的每一个地方,时间,逗留市场都已经被人家记录下来卖给商家啦,哪天你打车找到一家麦当劳,刚停下车服务员就送上一套板烧鸡腿汉堡套餐可乐换阳光橙不加冰的时候你可千万不要惊讶,因为你已经无时无刻不暴露在别人的监视之下了。
最后想用文中引用的莎士比亚的一句话作为结尾,凡是过去,皆为序曲。
大数据实施方案篇九
有些人感觉身体不舒服,但到医院进行西医体检,各项指标都是正常。为此,很多人开始接受中医体检。昨天,南京市中西医结合医院在膏方文化节启动仪式上,发布南京首个中医体质检测大数据报告:在该院对1000名参与中医体检的市民中,比较健康的人群只占33%,其余67%市民都处于亚健康状态。据介绍,通俗来说,亚健康状态,就是身体出现了不适,但还未到某些诊断的标准,因此体检指标是正常的。
中医将身体状态分为9种体质。根据这份大数据报告,平和体质排在第一位,占比33%。平和体质也就是常说的健康状态。其余8种体质人群,按照从高到低的顺序排序依次为气虚体质(约占12.7%)、阴虚体质(约占10.8%)、气郁体质(约占9.3%)、阳虚体质(约占8.3%)、痰湿体质(约占8.1%)、湿热体质(约占7.6%)、血瘀体质(约占6%)和特禀体质(约占4.2%)。
从主要人群分布分析,没有明显的职业和学历差异,但是与测试者的生活习惯密切相关。比如,喜欢高热量高脂肪饮食的人群,在痰湿体质的人群占比中最高;喜欢熬夜的人群,在阴虚体质的人群中占比最高;不爱户外活动的人群,在气郁体质的人群中占比较高。
南京市中西医结合医院治未病中心夏公旭副主任中医师说,平和体质人群的总体特征是阴阳气血调和,体态适中、面色红润、精力充沛,这个样本的.数据主要以体检中心和治未病中心的数据为主,大部分参与测试的人群都不是患者,而是以体检为主的人群。但大部分没有因为疾病到医院就诊的人群中,接近七成的人都是亚健康人群。
在亚健康的8种体质中,气虚高居榜首。夏公旭说,气虚常常是身体出现问题的最开始预警信号,不良生活习惯易致亚健康。针对亚健康状态,选择膏方调理身体,越来越受到人们的欢迎。但是,膏方进补不能盲目,否则不仅不能达到调理身体的目标,甚至事与愿违。今年,针对开具膏方的人群,南京市中西医结合医院均免费提供价值120元一次的中医体质辨识检测,让市民根据不同体质有针对性地选择相应的膏方。
对照一下,你可能属于哪种体质?
为了让市民了解亚健康状态的8种体质,南京中西医结合医院进行了一些临床特征的总结,市民不妨自我对照一下。
气虚质
性格内向,不喜冒险。不耐受风、寒、暑、湿邪。
阳虚质
阳气不足,以畏寒怕冷、手足不温等虚寒表现为主要特征。耐夏不耐冬;易感风、寒、湿邪。
阴虚质
阴液亏少,以口燥咽干、手足心热等虚热表现为主要特征。手足心热,口燥咽干,鼻微干,喜冷饮,大便干燥,舌红少津,脉细数。
痰湿质
痰湿凝聚,以形体肥胖、腹部肥满、口黏苔腻等痰湿表现为主要特征。面部皮肤油脂较多,多汗且黏,胸闷,痰多,口黏腻或甜,喜食肥甘甜黏,苔腻,脉滑。
湿热质
湿热内蕴,以面垢油光、口苦、苔黄腻等湿热表现为主要特征。面垢油光,易生痤疮,口苦口干,身重困倦,大便黏滞不畅或燥结,小便短黄,男性易阴囊潮湿,女性易带下增多,舌质偏红,苔黄腻,脉滑数。
血瘀质
血行不畅,以肤色晦黯、舌质紫黯等血瘀表现为主要特征。肤色晦黯,色素沉着,容易出现瘀斑,口唇黯淡,舌黯或有瘀点,舌下络脉紫黯或增粗,脉涩。
气郁质
气机郁滞,以神情抑郁、忧虑脆弱等气郁表现为主要特征。神情抑郁,情感脆弱,烦闷不乐,舌淡红,苔薄白,脉弦。
特禀质
以过敏反应等为主要特征。常见哮喘、风疹、咽痒、鼻塞、喷嚏等。
大数据实施方案篇十
最近看了《大数据》一书,有一点感想,在这里和大家分享。
作者在后序中写 道,这不是一本纯粹谈技术的书,而是以技术背景探讨人和社会关系的书。今天的中国,是一个人口大国、互联网大国、手机大国,却不是一个数据大国。书中有这 样一组调查数据——“麦肯锡公司以20xx年度各国新增的存储器为基准,对全世界大数据的分布做了一个研究和统计,中国20xx年新增的数据量为250 拍,不及日本的400拍、欧洲的2000拍,和美国的3500拍相比更是连十分之一都没有达到。国内的大数据步伐急需加快。
《大数据》一书对美国大数据的应用进行了十分详细的介绍与分析,我印象最深的为两点。
第一,以海量数据的处理作为政策制定的依据。看这本书的时候,我想到了这两年很火的一个美国人——斯诺登。在其曝光的“棱镜”计划中美政府直接从包括微软、谷歌、雅虎、facebook、aol、skype以及苹果在内的国际公司服务器收集信息。美国政府从这些海量数据中寻找自己需要的数据,并以此作为所谓安全政策制定的依据之一。姑且不论媒体对此计划的口诛笔伐及相应的道德风险,仅从政策制定方面来说,依据于海量数据的政策制定科学性肯定比一般计划要高得多。
20xx年,雅虎 首席执行沃兹博士在《自然》上发表的《21世纪的科学》中提到,得益于计算机技术和海量数据库的发展,我们每个人在现实世界中的活动得到前所未有的记录, 这种记录也更为细致,为社会科学的定量分析提供了极为丰富的数据。打个比方,从你的qq空间、微博、微信中一个普通朋友都能了解到你在哪儿、做了哪些事 情、现在的状态是什么,而新闻的跟帖、网站的下载记录、社交平台的互动记录等等都为社会行为的研究提供了大量的数据。我想到最近比较火爆的穿戴设备,如果 该技术得到普及过后,拥有穿戴设备的人群的生活轨迹、生理各项指标都能轻而易举地得到,相信这些大量的原始数据如能安全有效利用定能为卫生政策的制定提供 科学依据。
第二,万事万物, 凡存在,皆联网,凡联网,皆计算。20xx年起,美国食品与药品管理局开始在药品上推行配备rfid做法即每个食品包装上安装一个薄如纸张或小如豆粒的无 线传感器。通过这个移动传感器,对食品进行连续跟踪,一旦相应的安全事故爆发,就能通过数据库追踪溯源,快速确定传染源与影响范围。这一技术相对于国内尚 在起步阶段的食品追溯具有极强的借鉴性。上面提到的穿戴设备其实就可以视为一个穿戴在人身上的rfid。
20xx年的时 候,美国国家气象局在全国2000两客运大巴上装备了传感器,随着大巴的移动,沿途手机所有地点的温度、湿度、露水、光照度等数据,并立即传给国家气象局 数据中心。数据的采集是每10秒中一次,每天采集10万次以上的数据,这些实时的、高精度的数据意味着天气预报将不再仅仅是”预“,将逐渐走向“实”报、 “精”报。
作者涂子沛在书里 引用胡适与黄仁宇的话。胡适说中国人习惯于当“差不多先生”,凡是马马虎虎、不求精确。黄仁宇认为,中国不懂得用数字来管理国家。作者引用这两位先生的名 言,当然是要彰显传统中国和今天美国之间的差异。但是我们也必须认识到:这两位先生身经当时中国的混乱,激愤而出此言。在大数据浪潮迅猛而来的时候,中国 与100年前已经完全不一样了,我们已经有足够的能力与自信来面对各项挑战。20xx年中国开始着手制定医疗系统的最小数据集,3年之后卫生部出台了第一 版中国医院最小数据集的标准。也是在20xx年,中国创立了第一个全国性的大型社会调查项目,开始对社会的发展和变迁进行全方位、综合性、纵贯性的问卷访 谈调查,即“杨文昊在kod里面穿的裤子”。可以看到,中国政府和企业已经投入到了大数据时代的浪潮之中了。我个人也有几点应对的想法。
一是鼓励、扶持基 于数据的创新创业。书中提到,政策扶持的传统方法,可能是以政府主导建立大数据产业园,对新兴企业提供办公场所等便利条件或者现金支持,这固然有效,但更 为有效的是调动全社会的力量。调动全社会的力量来支持可以包括扶植民间团体,快速推进新技术、新理念在全社会的传播。现在云技术大众基本上都耳熟能详了, 而这主要是各大互联网服务上都相继推出了相应的云服务以及各大媒体对这项技术的关注,促进了大众对新技术的了解与支持。
二是政府机构要建 立专门机构来统筹管理数据工作。在大数据时代不同的数据需要整合,公安、消防、民政、社保等等数据都需要进行联动,将沉睡在数据库内的数据唤醒,为政府制 定政策所用,避免各自为政、多头管理的情况发生。数据的联通也能在一定程度上减少群众的“办证”问题,相信在大数据时代,大家可能只需要一张身份卡就能满 足绝大部分的数据需要。
三是围绕个人数据安全,加强管理。任何技术都是双刃剑,耍得好可以披荆斩棘,耍得不好则会害人伤己,大数据也不列外。如何保障个人隐私也成为了大数据时代面临的一个重大挑战。
大数据实施方案篇十一
每年的年终盘点往往让营销人头疼,需旁征博引、海纳百川,还要有“亮点”,从创意到制作都颇费心力,但最终效果往往却差强人意。
那么究竟如何做,才能让年终盘点营销玩出新意?让我们通过一个鲜活的例子来分解看看怎么玩转年终盘点吧。
创意是灵魂,眼球只为新鲜事停留
20岁末,百度再次秀了一把“高难度动作”。百度汇总全年天文数字般的用户搜索数据,由搜索指数的高低起伏联想到五线谱的律动,将全年搜索热词“连接”,形成旋律。此外,百度邀请著名作曲家张朝进行谱曲、中国国家交响乐团演奏,共同创作了一支只属于2015的交响乐。
冬奥会、屠呦呦获诺奖、习马会谈、天津港爆炸、火星液态水……旋律响起,一幕幕重回眼前,每天50亿次搜索,带来全网最真实的2015记忆。那么,就让我们来感受下这首回响2015的时代之音:
让品牌占据消费者的心,最容易的方法无疑是打“情感”牌。而打好“情感”牌,却没那么容易。百度以“音乐”为情感表达载体,通过“回忆”激发情感,为看似平凡无奇的搜索指数的高低起伏注入情怀,把冷冰冰的搜索数字变成悠扬动人的交响乐曲。
想与做,艺术与大数据的有机结合
对于营销人而言,执行力体现的是一种全面的策划和落地能力。这个项目对其创作者考验极大。百度平均每天接收50亿次的搜索请求,创造者要从这些庞大的数据中诞生搜索曲线;再以曲线为基础谱曲一首由五大部分组成、抑扬顿挫、婉转起伏的宏大乐章,大数据与艺术的跨界执行难度不可小觑。(据了解,该交响乐的五大乐章分别为:第一乐章,2015,从回家开始;第二乐章,重新出发;第三乐章,离别和考验;第四乐章,跋涉中的荣耀;以及第五乐章,永不止步。)
我们听到的是华彩乐章,感受到的是创意之美,而其背后的协调、组织、制作这些创意所需的跨界执行难度可见一斑。优秀创意的实现,必须有强大的执行力来落实。
触摸科技品牌的体温
大数据对于大多数网民而言,始终带有冷冰冰的距离感。百度这部大数据奏鸣曲的出现打破了科技的冰冷感,赋予了时代温度和律动。数据不再是冰冷庞大的数字,而是以音乐的形式与用户亲密互动的艺术,看似科技文艺跨界,实则也是融合。
而这些事件触动用户的内心情感,百度从情感上与用户产生联结,以此拉近品牌与用户之间的距离,借时代情怀为用户心中的品牌温度升温。
这首奏鸣曲来源于其中全网13亿网民的搜索行为。科技和艺术的跨界,让交响乐不再是音乐家曲高和寡的狂欢,13亿网民,每一个人都可以说是这首乐曲的作曲家,每一个音符都是凝聚了用户每一次参与搜索与点击的力量。这样一首用户全情参与、有温度的时代乐章,那么用户会自发去传播,营销自然事半功倍。
“结合自身具备的能力和特点,将科技温度化,同时以创意吸引网民,引发广泛传播”,或许这就是百度大数据奏鸣曲将品牌温度化想要达到的效果。
[百度大数据交响乐]
大数据实施方案篇十二
7月26日晚间,百度统计重磅升级,独家发布百度收录量精准数据,助力站长网站优化,这就去看看!
1、功能位置
报告常用工具百度收录量查询new!
2、功能优势
通过本功能,将能查询到迄今为止,最精准最权威的百度收录量数据:
1、现有通过site语法得到的搜索结果数,只是收录量的估算值,与实际有较大偏差,
建议站长今后不再使用site命令查询百度收录量,请以本功能提供数据为准;
其他详情请参考功能界面说明。
更多强大功能升级,敬请期待!
大数据实施方案篇十三
毫无疑问,我们正处在一个真正意义上的大数据时代。徐子沛先生的《大数据》这本书给了我们一个很好的启发,面对信息技术的迅猛发展,存储能力的日渐膨胀,网络传输的高效便捷,我们当今时代的每个人都应该认清局势,顺势而为,主动驾驭数据,让数据创造更大价值。
对比《大数据》,结合平时工作和学习的实际情况,我认为我们应该认真思考和解决好以下三个问题:
一、什么是大数据? 以前我们总认为不相关的数据是没有用,但是徐子沛先生却彻头彻尾的颠覆了我们的固有思维,他告诉我们不需要强求每条数据都那么真实准确,从大量的数据中我们就可以得出相对准确的结果。例如:google通过汇总分析某个地区的人们搜索和流感有关的词汇等关键字提前一周准确的预测了这个地区流感的爆发。通过学习,我深刻意识到大数据无处不在,只要我们细心,就可以轻松挖掘出我们身边的那些大数据,并做一些有意义的关联,就像书中说的那样,未来成功的公司必定是是那些拥有大量数据、并使用那些数据为大众提供服务的公司。
二、如何收集数据?
面对信息大爆炸时代的海量数据,我们必须充分利用高科技手段,高效有序地收集整理各种数据,以满足现实工作中越来越广泛的信息需求。为此,建议我们广电系统可以规范文档备案和上传制度,建立统一的文档共享中心。通过互联网、电子计算机等现代技术手段搜集汇总各部门的纵向数据以及部门间的横向数据,通过纵横交错的数据网络,针对特定主题,持续不断地收集相关数据,增加现实工作的高效性和便捷性。
三、怎么利用数据?
收集数据的目的是为了分析利用数据。这里举一个现代财务发展史上的伟大发明,财务三大报表,通过分析财务报表,阅读者可以直观的了解到企业的财务全貌,大大加快了现代公司制企业发展的进步步伐。当今社会,依托于现代计算机技术的高速发展和现有社会结构的深刻变革,我们可以大力引入中介机构,通过培训,定制软件等方式,向员工贯彻新理念,普及新知识,迅速改变落后工作状态,加快提升业务运行效率。
综上,大数据时代是我们信息化社会发展必然趋势,身处其中的我们还有很多知识需要学习,许多思维需要转变。只有紧跟时代潮流,迅速响应调整,才能在新一轮市场竞争中把握主动,脱颖而出。成就更伟大的事业,收获更宏伟的人生。
2015年11月23日
大数据实施方案篇十四
2014级经济管理专业 李学堂 学号20140238
短短几天把涂子沛先生的《大数据》这本书浏览一遍,结合去年北大继续教育学院进行现代管理学科学习时,老师介绍这本书时的精髓、内涵时的情景,写这篇
心得体会
。现将浅薄体会与老师同学们一起交流,部分内容参考了书内容和涂子沛先生的观点,希望老师同学给予批评指正。“一个真正的信息社会,首先是一个公民社会”,这是全书的一个出发点,这个出发点就是说,“信息社会最大的特点就是,信息的自由流动。”涂子沛在书中的观点是:如果没有人的平等,没有人的自由,信息能够自由流动吗?如果没有人的平等,我们这个社会彼此另外压抑另外一个人,我们的创造力怎么迸发出来?我们每个人都面临大数据时代思维变革的挑战。
涂先生在书中说出 “大数据时代的公民生活”,题目他在书中来演绎公民生活的时候,它的背景是“大数据”时代。首先他讲了“什么是大数据时代”,在研究一个现象的时候,首先要研究它的定义,研究它的内涵,咱们就先把数据给它抽走,看看代表是什么。数据不是数字,数据是有跟列的数字,当他在书中谈到数据的时候,我们想到的是它代表计算,代表精确,代表理性,代表科学,代表事实。大家说姚明很高,到底有多高,你最后说两米多左右,这就是一个精确的事实。数据的出现也是人类认识这个世界,不断地向前推进的需要,人类发现需要精确的数字,就好像回到刚才的例子,你说很高很高,到底有多高,我们看,人类历史上很多重大的文明推进和演进都跟数据离不开,比如说度量衡的发明,货币的发明,再比如二进制的发明最后导致计算机的发明,最背后就是数据。
他在书中有一个新的词叫database--数据库。这个词完全是一个外来的词,1
计算机最早是计算数字和处理数字,那时候就存在database,后来随着计算机能力的不断增强,它可以处理文字、图片、视频、声音等等,但所有这些都放在database,所以他在书中把这所有的一切都称为数据,这时候数据的内涵扩大了。其实大家要知道数据的内涵在扩大,还有一些其他的事情也在发生变化,就是说数据的容量在增大。八十年代的时候就有人提出big data这个概念,那时候的“大数据”的还不是现在“大数据”的概念。“大数据”这个概念不断的演变,最早有人就预见到说有一天数据会比程序更加重要,比软件更加重要,它是指重要性。所以我们往大了说,可以说这是一个大的机器,一个大的房子,也可以说是一个大容物。书中说的:到2000年的时候,宾夕法尼亚大学有一个教授出来定义,那时候企业的数据已经到泰了,他说200泰的数据就是大数据了,那泰到底是什么样的单位呢?比如全世界最大的图书馆是美国国会图书馆,美国国会图书印刷品的含量,不包括电子图书加起来是15泰,北师大应该是2个泰或者更少,这个数据就叫“泰”。
2 代公民的生活。data在五年的时候,应该有一个创始人,他发现一个东西:同一个计算机芯片,同一个面积上晶体管的数量每一到两年就要增加一倍,这意味着什么?意味着计算机处理的能力越来越强,存储的能力也越来越强,同一个面积上东西越来越多,越来越密,一到两年就增加一倍,物力存在器的性能不断上升,价值不断的下降。有一个考证说,从五十年代起最早的存储器发明到现在,存储器的价格下降了300万倍,大家可以想想,历史上还有什么商品它的价格能在半个世纪下降300万倍?而摩尔定律也成为了一个代名词,呈指数形发展的变化,急剧变化的状态,剧变的变化。我们可以看看,这个图代表摩尔定律,是条直线,为什么是直线呢?因为没办法画,如果严格按刻度来画的话应该是一条横轴的曲线。涂先生在书中分析了:“1988年一个科学家提出了普适计算,普适计算提的不多,大家都提物联网。物联网是普适计算一个子概念,人家计算机的浪潮是分阶段的:第一个阶段是主机阶段,到80年代由于微软、苹果一直到个人电脑的阶段,88年互联网之后,科学家说这不是结果”。
“一个主动你就能改变的时代,因为资源就在那里,你不能去等其他的人”这是涂先生的观点。他说说影响公民的第一点:公民最主要的精神是什么?是积极地介入,积极地改变。影响我们公民的第二点,书里面有很多关于“大数据”时代的隐私文化,有的专家说87%都不能定位,只要通过“大数据”挖掘就会定位,这是影响我们公民生活的一个巨大的挑战,就是隐私权的挑战,而隐私权是一个非常重要的问题,是对个人自由的凭照。他为什么用这么大的篇幅来写隐私权利呢?也是因为我觉得,我们中国社会特别需要隐私权利,不仅是政府在侵犯公民的隐私权利,我们公民彼此之间也在不停地侵犯隐私权,而且大家习以为常。但是隐私权是一个文明社会的标志,越文明的社会,越注重隐私权,个人才越有自由,隐私权是把自己跟公共生活划分开的一条界线,保障个人的自由。社交媒体让我们进入一个前所未有人文相连的时代,这影不影响我们的公民生活?这是最大的隐患,为什么?它把我们人跟人连接起来,我们知道人跟人一旦连接起来,1+1大于2的作用。
总之,使我感受到当前我们正生活在,每天都不同、都高速度发展、激烈竞
4 争和大数据时代。我们每个人都必须面对大数据时代、结合实际面对挑战,要相信“想不到事情会发生,想不到的速度会发生”。要及时更新知识、广纳信息、梳理思维及时做出正确判断、做好工作学习生活中的精准决策。
【本文地址:http://www.xuefen.com.cn/zuowen/4034956.html】