通过总结,我们可以总结出规律和规则,指导未来的行动和决策。在写总结时,我们要注意客观真实地反映事实,避免主观色彩的夸大和减弱。以下是一些艺术家的经典作品欣赏,希望能够给你带来灵感和欣赏的乐趣。
数学模型感想与体会篇一
在新世纪之初,我国开始了建国以来第八次基础教育课程改革。作为成千上万的教育工作者中的一员,我将以高度的历史责任感和最大的热情投入到这场改革中去。数学作为人们生活、劳动和学习必不可少的工具,是一切重大技术发展的基础。新的数学课程标准要求数学教育面向全体学生,体现基础性、普及性和发展性的特点,实现:1)人人学有价值的数学;2)人人都能获得必须的数学;3)不同的人在数学上得到不同的发展。从小学数学过渡到初中数学,学习内容、研究方法,都是个转折,尤其是数学思想认识上要产生质的飞跃。初一数学新教材蕴含了通常的数学思想,这些数学思想在学生今后的数学学习中会不断地运用到。因此,教学好初一新教材中的数学思想是十分重要的。
在初一新教材中所包涵的数学思想概括起来主要有:1、合理的三维空间思想;2、数形结合思想;3、用字母表示数的思想;4、分类思想;5、方程思想;6、化归思想;7、概率统计思想。下面我将对新教材(北师大版)中的`几种数学思想及其教学谈谈我粗浅的想法和体会。
一、合理的三维空间思想
新的初一数学教材(北师大版)的第一章就是《丰富的图形世界》,作为衔接小学数学与初中数学的内容,与原来的教科书不同。这样安排,显然拉近了数学和学生的距离,消除学生刚踏入初中时学习第一节数学课所产生的陌生和恐惧感。实际的图形给同学们“看得见,模得着”的感觉,但要从其中抽象出具体的数学模型,就得让学生通过不断的观察,在展开与折叠、切截等数学活动过程中,认识常见的基本几何体及点、线、面和一些简单的平面图形等,形成一定的空间思想。同时,通过安排对某些几何体主视图、俯视图、左视图的认识,在平面图形和几何体的转换中发展学生的空间观念,提高学生的空间思维能力。
在我的实际教学中,我充分调动学生的个人思想和主观能动性,给予足够的空间和时间,通过每个学生自己的动手操作去体会教材所安排的内容,同时去发现新的问题。譬如在“面动成体”这一知识点上,在实际生活中很难找到相关实例,在上该课的前一天我就让学生去观察生活中的例子,在课堂上,我让学生充分讨论,学生就找到了“某些高档宾馆的旋转大门,面动起来就成为圆柱体”“校门口的自动门,将截面理想化为长方形,那么运动起来就是长方体”等等。这样,学生接受知识的同时,也提高了自主学习的能力。
二、用字母表示数的思想
[1][2][3]
数学模型感想与体会篇二
对数学中的模型思想的心得体会通过这次学习,我受益匪浅,特别是数学中的建模思想感悟颇深。现在就我这次的学习谈点心得体会。
1.25×3.2×2.5,2.5×1.6,1.25×16,6.45×102,6.45×99,4.52×99+4.52,4.52×77.2+4.52×22.8,3.6×2.8+2.8×6.4,0.888×1.6-0.222×2.4,6.8÷2.5÷4,等等都是五个预算定律的'翻版,而小学数学中的简便运算也只是这些题的变形,所以只要理解和掌握了这些数学模型,对数学中的简便运算就了如指掌了。
小学数学中的模型思想在图形中体现的也很明显。例如五年级在学习认识图形时,学习了长方形、正方形、三角形、平行四边形、梯形,老师会让学生们通过对模型进行分类,找出他们的区别和联系,其实这就是一种模型思想。其次我们学习的这五种基本图形的面积计算公式也是一种模型思想的教学,我们只要理解和掌握了这五种基本图形的面积公式,无论图形是大是小,无论是图形计算题还是生活实际操作,学生都可以用这个公式去解决,这大大节省了教学时间,提高了教学效率。
除了计算和图形方面外,在小学数学中的应用题中,模型思想也是到处都是,例如我们以前谈到的行程问题,还有工程问题、鸡兔同笼问题、植树问题、田忌赛马问题等等,这些都大大方便了我们做题的效率,可以达到举一反三的目的。
那么数学模型要具备什么样的特点呢?现在就这方面我谈一下自己的理解:
1、真实完整。
1)真实的、系统的、完整的,形象的映客观现象;
2)必须具有代表性;
4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。
2、简明实用。在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。
3、适应变化。随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况。
我们只要掌握了数学中的模型,就不会盲目的教学,不会在为做不完的数学题而苦恼,从此让题海战术成为历史,真正达到作业少而精,学生学的快乐,老师教的轻松的目的,让我们为能有一个高效的课堂而努力吧!
数学模型感想与体会篇三
为期一月的中级党校学习与挂职即将结束,因为我是学院学生会办公室的干事,所以免去了挂职的环节;但在党校学习的过程中我对自己的学习有了更高的要求,更加积极的投入到学生会为大家同学服务的活动当中,平时积极向班里的优秀同学学习靠拢,在生活上我以党员的要求严格对待自己,不敢有丝毫的松懈;期间我充分利用课余时间认真学习《中国共产党章程》,受益非浅同时深受鼓舞、更加坚定了自己要求入党的决心。
对党章的学习使我深刻的理解了中国共产党是中国工人阶级的先锋队,同时是中国人民和中华民族的先锋队,是中国特色社会主义事业的核心,代表中国先进生产力的发展要求,代表中国先进文化的前进方向,代表中国最广大人民的根本利益。而且更加端正了入党动机,让我对入党有了一个更新更高的认识,明确了自己如何才能成为一名合格的共产主义战士,时刻要求自己要有为共产主义和中国特色社会主义事业奋斗终身的坚定信念,要有全心全意为人民服务的思想,要有在生产、工作、学习和社会生活中起先锋模范作用的觉悟,让自己的思想认识不断的提高,同时坚定了我的世界观、人生观和价值观,就是全心全意为人民服务,无私奉献,为实现共产主义而奋斗。
而在实践工作中,我更是深切的体会到党的“全心全意为人民服务”宗旨。我用党的标准要求自己要更好的完成每一项学生会组织的活动,这个月的经管学院的超级明星班级比赛,每一个学生会成员都积极地参加到了其中,我当然不甘落后,坚持克服困难每一次彩排,每一个会议都按时参加,最后虽然很辛苦劳累,但是活动在大家通力合作下取得了圆满的成功,到场的班级都度过了一个快乐,难忘的夜晚,二另一方面作为班级的一份子,我也积极的和班集体一起参加了这次比赛,最后班级取得了不错的成绩,看到大家的笑脸,我深刻的体会到了为大家服务的快乐。而在学习中,我也认识到自己离一名合格的共产党员还有很大的差距,当前,全党和全国人民正在为全面建设小康社会,加快推进社会主义现代化,开创中国特色社会主义事业新局面而努力奋斗,过去我一直认为只要好好的工作和学习,在工作上让领导放心,在学习上自己满意就万事大吉了,现在我知道了作为一名合格的共产党员不仅要有过硬的业务素质,更要有合格的政治理论素质。作为一名入党积极分子仅仅有入党的愿望是不够的,还必须付诸行动,特别是要先在思想上入党,然后才争取在组织上入党。必须树立共产主义伟大理想和中国特色社会主义坚定信念,在任何情况下都不能有丝毫的动摇,用此信念作为立身之本,站得高、眼界宽。在实践中不断用切身体验来深化对党的认识,进一步端正自己的入党动机,看淡个人名利得失,以满腔的热情为党的事业而奋斗。
此外,在全面建设小康社会的今天,作为一名当代大学生。我应该做到不断创新,与时俱进,刻苦学习专业知识的同时用马列主义、毛泽东思想、邓小平理论和“三个代表”重要思想指导自己的学习、工作和生活,时时严格要求自己,树立甘愿“吃亏”、不怕“吃苦”,为人民无私奉献的价值观,以吃苦在前,享受在后的实际行动,来体会共产党员不惜牺牲一切的高尚情操,学习先进模范人物的事迹来激励自己。与时俱进,用良好的作风,求真务实的学习、工作态度来实践党的宗旨,全心全意为人民服务,争创佳绩,不断提高自己的政治素质,在困难和挫折面前不动摇自己的信念,严于律己,,多做贡献,勇于同一切消极腐败现象作斗争。在学习和工作中以共产党员为榜样,拥有宽阔的胸怀和宽阔的眼界,拥有高的思想境界和高的觉悟。
数学模型感想与体会篇四
摘要:了解数学建模相关概念,发展学生模型思想,针对该老师建模教学存在的问题,教师要积极渗透建模思想,精心选取建模教学的内容,提高自身素养,更新各种知识,科学设计丰富的建模教学的环节,为学生以后的学习打下坚实的基础。
关键词:数学建模;数学老师;科学
顺应国际课程改革大趋势的必然要求,重视学生已有的经验,把数学应用到客观世界中,在实践中进行探索,建立较完整的小学数学建模思想理论,有助于促进学生全面发展,为新课标的实施提供新的理论依据。有助于培养学生的创新意识,建立逻辑思维方法,培养学生用数学的能力,培养学生用数学的能力,从而推动小学数学教育改革,激发学生学习数学的兴趣与自尊心,促进小学数学教师教学水平的提高。
1数学建模相关概念
面对实际生活中杂乱无章的现象,只要我们仔细去观察就会发现其中可以用数学语言来描述的关系,而做为数学研究者从中抽象出恰当的数学关系,然后再按照相应关系,将这个实际问题化成一个数学问题这样我们就能够按关系组建这个问题的数学模型的过程就是数学建模。从数学的产生,数学内部发展,数学外部关联,建立并求解模型的意识与观念,也就是让数学走出数学世界,是学生应该掌握的一种数学思想方法。我们分析数学内容,首先要说数,数是小学生接触的第一个抽象概念,对数有了一定的抽象认识后,就可以接触到数的运算,数的计算既包括计算方法,也包括计算法则小学生还需要掌握一些常见的数量关系,小学阶段一系列的编排都是为了学生之后学习整数打下基础,也就是要逐步培养学生建立抽象模型的意识,使他们掌握这些数量关系模型,一步步的渗透建模思想,能够根据具体的情境对模型进行变形,还要掌握常见的量及它们间的换算关系。图形与几何部分中可以抽象为数学模型,这体现在运用模型分析问题的.过程,在具体情境中构建数学模型,是学生逐步发展自己建模思想的过程,比如我们常用到的图形,学生先是了解图形的特点,更好的分析问题,从具体事物中抽象出图形,找出解决问题的最佳方案。对图形有了一定的了解后,学生具备了运用数学模型分析问题能力,能够理解并建立抽象的数学模型。
2小学数学建模教学存在问题及原因
从实际背景中抽象出数学问题,运用建模思想指导自己的教学实践,寻求结果、解决问题的过程,培养的建模意识,提高建模的能力。经调查研究表明,小学数学建模教学存在一些问题。表现为:建模教学的目标不明确,没有将数学建模纳入考虑范围,设计的教学目标缺乏操作性,不够具体,设计的教学目标模糊不清,没有针对其特点具体设计教学目标,在教学效果上造成学生很容易混淆;很多老师还采用传统的讲授法,学生在很大程度上是被动的。没有注意适度的安排练习的分量、次数与时间;教学环节的设计单一、陈旧,放大了练习法难以调动学生积极性,师并没将有提取数学信息作为重点,只简单讲解模型的应用过程,只是按照课本知识的排列顺序,讲授时也是按分析题意,画图,列算式;建模教学的效果不明显,没有,培养学生严谨的数学精神,没有多加练习并强调画图准确性的重要性,对于用图形表示数量关系还不熟练。究其原因,在教学中缺乏系统地渗透模型思想意识,没有精心选取能够进行建模教学的内容,不能围绕数学建模的过程性这一特点展开,学生很可能根本接收不到教师的这种潜在的想法,选择的教学方法也不适合开展建模教学,不利于学生把新的知识纳入已有的认知结构,学生学会的只是单一的知识点,不能使学生自己经历做数学、学数学,教师很少研读义务教育小学数学课程标准,不清楚数学模型建立的过程,没有充分了解小学数学课程的实质,不能让学生亲身经历建模的过程,没有注重发展学生的数感、符号意识,也很难深入理解模型的意义。另外,日常教学依据自己从前的教学经验,教师无法针对建模教学的特点设计教学,教师又很少主动更新自己的知识,因而导致建模教学效果较差,也就无法完成数学建模思想的渗透等基本要求。
3小学数学建模教学建议
小学数学老师要学会运用数学的环境,加强数学与生活的联系,增强建模意识,加强学生的合作交流能力、数学语言表达能力,因此必须培养教师的建模教学意识。这需要需要小学各年级教师通力协作,认真研读义务教育数学课程标准,更应该与时俱进,不断以新知识充实自己。提高学生建模能力,解决实际应用问题,小学数学教师也要注意在日常教学中提高学生数学化能力,合情推理能力,顺利建立模型,要帮助学生养成良好的阅读习惯,在各种不同性质的现象中建立联系,教师要精心设计概念教学,提高合情推理能力,提高数学化能力,灵活调整模型,教师要教给学生概括的方法,提高数学模型的求解能力,锻炼学生的阅读理解能力,顺利解决问题,教师要引导学生养成良好的计算习惯,很好地将数的运算内容贯穿于整个小学阶段,提升小学生数学运算的速度与正确率,从而达到好的教学效果。
参考文献:
[1]d.a.格劳斯.数学教与学研究手册[m].陈昌平,等译.上海:上海教育出版社,1999.
[2]王学军.师风教艺初探兼谈中国人民大学师德风范建设[m].北京:中共党史出版社,2013.
[3]李宁.陪学生一起做研究——小学数学综合实践活动探索[m].北京:北京大学出版社,2012.
[4]朱旭平,徐旭琴.小学数学教学中基于问题情境的建模范式解读[j].新课程研究(教师教育),2007(2).
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
数学模型感想与体会篇五
夏建平(作者系中共长沙市天心区委书记)
解放思想引领社会实践,攸关事业成败,是发展中国特色社会主义事业的一宝。笔者以为,解放思想就是通过解剖自我、解放自我,达到新境界、增强新活力、提升新水平,更好地形成发展推动力。
剖析思想追求,提升发展的科学性。解放思想是对传统思维和惯性思维的突破,需要奋斗、需要拼搏、需要牺牲、需要成本,平平淡淡、求稳怕乱,不可能解放思想。近年来,我区积极抢抓长株潭经济一体化、省府新区开发建设、长沙“南进”等重大历史机遇,坚持在解放思想中创新观念,在创新观念中破解难题,在破解难题中推动发展,连续多年实现了高基数上的新增长,展现了较好的发展态势和喜人来势。但越发展我们越深刻地感觉到,现状与科学发展观的高要求、与长株潭“两型社会”核心区建设的高标准还有很大差距,尤其是产业结构不合理、体制机制欠优化是我们不容回避的问题。有差距并不可怕,关键是要能够知难而进、知耻后勇,化压力为动力,变差距为潜力。在思想解放大讨论活动中,我们坚持解放思想首先就要从自身入手,主动把自己摆进去,敢于亮丑、善于揭短,自觉把天心区发展放在全市、全省乃至全国范围内来审视,真正把思想解放的追求定位到“两型社会”建设上,把思想解放的归宿落实到实践科学发展观上,全力推动又好又快发展。
剖析思维方式,提升发展的针对性。针对客观存在的不科学但惯性起作用的发展观、政府就是经济社会的管制者等陈旧观念,进一步解放思想,务求不能用滞后的眼光来看待新一轮思想解放,不能用习惯的思维来考虑新一轮思想解放,不能用陈旧的方法来实现新一轮思想解放,不能用简单的标准来衡量新一轮思想解放。在发展的方式上,我们要充分发挥长株潭城市群核心区的地缘优势、保护良好的生态优势、率先发展的基础优势和先行先试的工作优势,致力改变目前依然存在的经济发展过分依赖投资增长的不利局面,坚决摒弃先污染再治理、先破坏再整治的老路,积极地试,大胆地闯,力争为省、市“两型社会”综合配套改革试验探索新经验、争做新贡献。在破解难题上,我们着力建立项目准入制度、大力发展“两型产业”、拓宽融资渠道、坚持先安后拆等措施来推动难题破解。在体制机制上,我们积极探索体现区别和差别的利益分配机制、凸现有为位的选人用人机制、坚持求实和求成的办事决策机制、善断失误和耽误的是非评判机制,构建解放思想、推进发展的长效机制。
剖析思路定位,提升发展的有效性。思想有多远,发展就能走多远。天心区多年来的发展历程就是一个不断解放思想、完善提升、创新突破的发展过程。近年来,虽然我区产业含量在经济发展中的比重稳步增长,基础设施得到了极大完善,群众的幸福指数明显提高,但我区作为长株潭三市融城的核心区,在科学发展观和“两型社会”建设中不能满足眼前发展,追求一般要求。立足新起点,面对新形势,我们应当在经济发展上瞄准最高标准,在社会建设上追求最大和谐;要强化基础先行理念,打造功能辐射区;要强化统筹发展理念,特别是要强化以人为本理念,打造和谐示范区。
数学模型感想与体会篇六
在高中数学教学中渗透数学思想龙逸东
摘要:数学思想是对数学事实与理论经过概括后产生的本质认识,基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。所以,在数学教学中,我们要让学生明确数学思想是非常重要的。
关键词:高中数学;数学思想;函数思想
数学思想,是指现实世界的'空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。然而,在实际教学过程中,我们经常发现这种情况,同一类型的试题,同一学生上次可以完整、正确地完成,这次就出现了各种各样的错误。这是为什么呢?仔细想一想,不难发现学生当时只是记住了教师讲授的解题技巧甚至可以说是解题过程,根本没有掌握实质的解题思想。从而,时间一长,学生就容易忘记,容易找不到解题的方向。然而,真正地掌握数学思想之后,学生就会灵活地进行解题,也将会大大提高解题速度。本文以函数思想为例进行简单介绍。
所谓的函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。函数一直都是数学教学过程中的重要组成部分,始终贯穿于整个数学的过程中。所以,在教学过程中,教师要重视函数思想的渗透,使学生能够在熟练掌握基本的数学思想的过程中,提高学生的解题能力。
如,解答有关三角函数的试题时,已知游艇的航速为每时34千米,它从灯塔s的正南方向a处向正东方向航行到b处需1.5时,且在b处测得灯塔s在北偏西65°方向,求b到灯塔s的距离(精确到0.1千米)。这是一道与实际有关的试题,教师要引导学生找到等量关系,让学生画出相对应的图,借助图中所示的各个量之间的关系,列出函数方程。解题过程简单如下:设b到灯塔s的距离为xcos(90°-65°)=1.5×34/x,解得:x=56.3,所以,b到灯塔s的距离为56.3千米。
因此,在教学过程中,教师要有意识地给学生渗透函数思想,使学生能够在解答试题的过程中能够明确该类型试题的解题思路,进而使学生的解题能力得到大幅度提高。
总之,在数学教学中,教师要转变以往单纯的知识传授,要采用多种教学模式,调动学生的学习积极性,使学生在熟练掌握基本数学思想的过程中,得到更大空间的发展。
参考文献:
饶品炉。新课标下如何在高中数学教学中渗透数学思想方法[j]。新课程学习:中,(9)。
(作者单位贵州省松桃苗族自治县松桃民族中学)
数学模型感想与体会篇七
火灾是一件令人非常害怕的事情,而蔓延的速度和规模往往是不可控的。在现代社会,火灾防控和救援已经成为了一个非常严峻的问题,因此,科学家们和研究人员开始通过数学模型来研究控制火灾和救援的最佳方案。在这篇文章中,我们将谈论“火灾蔓延数学模型心得体会”,通过深入剖析这些成果,探讨这些模型带来的变革和启示。
第二段:数学模型的应用
数学模型在品管和金融领域已经被广泛采用,但是在火灾防控方面的应用则比较有限,一方面是因为火灾的蔓延过程比较难以预测,另一方面是因为火灾防控工作本身就是人性化的工作。但是,随着科技的进步,人们发现,数学模型所带来的精确和有效性也能够被应用到火灾防控领域中。而且,这些数学模型在支持消防队员实现有效救援、提高逃生时间、确定人员疏散路径、改进策略等方面发挥了非常关键的作用。
第三段:数学模型的分析
火灾蔓延数学模型的核心思想是以微分方程为基础,采用复杂的计算机算法来计算火灾扩展的时空变化规律。这种方法在建筑设计和城市规划领域也同样适用:只要能预测火灾的蔓延,从而计算出哪些区域或建筑物容易引起火灾,哪些区域需要增加消防设备和沙发,那么就可以通过规划调整来最大程度地减小火灾的威胁,并防止火灾扩散。
第四段:数学模型的应用实例
数学模型在火灾防控中的应用具有实际意义,由于这种方法无法精确预测灾害的下一个行动,因此,我们需要通过实际例子和数据来验证这个数学模型的适用性。例如,在苏州大学附属无锡医院,消防员对医院进行了一次火灾模拟演练,他们利用微分方程模型来考察火灾的扩散,从而得出了救援最佳方案。这些演练帮助消防员适应火灾的扩散规律,从而更好地应对火灾的应急情况。
第五段:结论
火灾无论在何时何地都会造成极大的伤害,因此,研究以及应用数学模型来控制火灾是至关重要的。这个过程也要针对具体问题具体分析,逐步完善模型,体现每个地区、建筑的特点,最终得出高效的数学模型,利用科技的进步来提高地区火灾防控的能力,而这也是包括人工智能、大数据在内的现代科技在建筑规划领域中的应用。在未来的日子里,数学模型应用可以帮助我们预测和减少火灾发生的机会,也可以更好地通过火灾检测和消防预报系统来减少人员牺牲和财产损失,让人类生活变得更加安全和舒适。
数学模型感想与体会篇八
作为一名上海海洋大学的大一新生学生,我很荣幸能够在进入大学的第一学期就参加中级党校的学习和挂职实践。中级党校学习与挂职即将结束,在党校学习的过程中我对自己的学习有了更高的要求,同时也是外国语学院学生会的干事,此后将更加积极地投入到学生会为大家服务的活动当中,平时积极向班里的优秀同学学习靠拢,在生活上我以党员的要求严格对待自己,不敢有丝毫的松懈;期间我充分利用课余时间认真学习《中国共产党章程》,受益非浅同时深受鼓舞、更加坚定了自己要求入党的决心。
在中党挂职的同时,我利用课余时间广泛地阅读了党章、中国共产党党章发展史以及部分党史,对党章的学习使我深刻地理解了中国共产党是中国工人阶级的先锋队,同时是中国人民和中华民族的先锋队,是中国特色社会主义事业的核心,代表中国先进生产力的发展要求,代表中国先进文化的前进方向,代表中国最广大人民的根本利益。而且更加端正了入党动机,让我对入党有了一个更新、更高的认识,明确了自己如何才能成为一名合格的共产主义战士,时刻要求自己要有为共产主义和中国特色社会主义事业奋斗终身的坚定信念,要有全心全意为人民服务的思想,要有在生产、工作、学习和社会生活中起先锋模范作用的觉悟,让自己的思想认识不断的提高,同时坚定了我的世界观、人生观和价值观,就是全心全意为人民服务,无私奉献,为实现共产主义而奋斗。
而在实践工作更是使我深切的体会到党的“全心全意为人民服务”宗旨。我在日常的挂职中体验到了平凡工作者工作的辛苦,这是我在生活当中所看不到,也体会不到的。此外,学生会也为我提供了一个实践的大舞台,而我更是积极投身学生会的工作,用党的标准要求自己要更好的完成每一项学生会组织的活动,为活动做宣传,为虽然很辛苦劳累,但是活动在大家通力合作下取得了圆满的成功。另一方面作为班长,我深知班级凝聚力的加强对于一个班级的重要性,因此我积极的组织了一些活动,尽可能的调动大家的积极性,使大家团结在一起,入学后的第一次聚会,世博主题班会……,最后取得了不错的效果,增进了本班同学们的友谊,我深刻地体会到了为大家服务的快乐。而在实践学习中,我也认识到自己离一名合格的共产党员还有很大的差距,当前,全党和全国人民正在为全面建设小康社会,加快推进社会主义现代化,开创中国特色社会主义事业新局面而努力奋斗,我知道了作为一名合格的共产党员不仅要有过硬的业务素质,更要有合格的政治理论素质。仅仅有入党的愿望是不够的,还必须付诸行动,特别是要先在思想上入党,然后才争取在组织上入党。必须树立共产主义伟大理想和中国特色社会主义坚定信念,在任何情况下都不能有丝毫的动摇,用此信念作为立身之本,站得高、眼界宽。在实践中不断用切身体验来深化对党的认识,进一步端正自己的入党动机,看淡个人名利得失,以满腔的热情为党的事业而奋斗。
通过中党的学习,我知道要不断创新,与时俱进,刻苦学习专业知识的同时用马列主义、毛泽东思想、邓小平理论和“三个代表”重要思想指导自己的学习、工作和生活,时时严格要求自己,树立甘愿“吃亏”、不怕“吃苦”,为人民无私奉献的价值观,以吃苦在前,享受在后的实际行动,来体会共产党员不惜牺牲一切的高尚情操,学习先进模范人物的事迹来激励自己。与时俱进,用良好的作风,求真务实的学习、工作态度来实践党的宗旨,全心全意为人民服务,争创佳绩,不断提高自己的政治素质,在困难和挫折面前不动摇自己的信念,严于律己,多做贡献,勇于同一切消极腐败现象作斗争。在学习和工作中以共产党员为榜样,拥有宽阔的胸怀和宽阔的眼界,拥有更高的思想境界和更高的觉悟。
数学模型感想与体会篇九
建构数学模型是现代数学的一个重要分支,它通过现实问题,将数学理论与实际应用相结合,从而推动数学的发展与应用。作为一名学习数学的学生,我有幸接触到了建构数学模型,通过学习和实践,我深刻意识到这门学科的重要性和应用前景。因此,本文将从个人角度谈谈我对建构数学模型的心得体会。
第二段:数学模型化的意义
数学模型是数学与现实世界的桥梁,具有广泛的应用领域。数学模型能够解决现实问题,预测未来发展趋势,更好地指导我们的决策和实践。此外,数学模型的发展也推动了数学理论的不断进步,促进了数学的发展,促使数学更加贴近实际应用。因此,应用数学模型不仅有现实应用的意义,而且对数学学科的发展也有重要的意义。
第三段:建构数学模型的思路
建构数学模型不是简单地从书本上学习数学知识,而是将数学理论与实际应用相结合,通过实践探索数学知识在实际应用中的价值与作用。建构数学模型的过程包括确定问题,选择模型,设定假设,进行数据采集与分析,以及不断修正和优化模型,最终得到与实际情况相符合的模型。这种模型思维方式不仅强调了数学理论的实际应用,也培养了我们的创新思维和解决问题的能力。
第四段:实际体验
在建构数学模型的学习中,我经历了不少的挑战和思考。其中,最具代表性的便是数据采集与处理的阶段。当我第一次进行数据采集时,我发现数据的质量和完整性都不理想,这给我的模型设计带来了不小的压力。因此,我重新审视数据的来源和可靠性,采用更加科学和系统的方法进行数据的筛选和处理。最终,经过多次测试和优化,我的模型得出了很好的结果。这种实践经验不仅锻炼了我的数据处理能力,也让我更加明白了模型设计中的一个重要环节。
第五段:结语
建构数学模型是一门通过实践探索的学科,它促进了数学的实际应用,也让我们的思维方式更加灵活和创新。在建构数学模型的学习过程中,我们需要学习和积累一定的数学理论知识,同时也需要保持对实际应用问题的敏感度和创新性。这样,我们才能在实际应用中发挥数学的重要作用,更好地为社会发展做出贡献。
数学模型感想与体会篇十
近日,本人有幸参加了一场关于数学模型的科普讲座,讲座涉及了数学模型的定义、构建与应用等方面,让我对数学模型有了更深入的了解。下面,我将从五个方面谈谈心得体会。
首先,数学模型是什么?数学模型是指使用数学语言来描述具有一定规律性的实际问题。在讲座中,主讲老师用一个生活中的例子来说明数学模型的概念:假设有一辆汽车在直线上行驶,那么我们可以用一条直线来描述汽车的移动轨迹。这里,直线就是数学模型。从这个例子中,我们可以看出数学模型是将实际问题进行抽象化、数学化,将问题用符号的形式表达出来的方法。
其次,数学模型的构建需要遵循什么原则?在讲座中,主讲老师提出了数学模型构建的三大原则:简化原则、逼近原则和适度复杂原则。其中,简化原则就是在构建数学模型时,要尽可能将实际问题进行简化,为问题去除冗长不必要的部分;逼近原则是指在构建数学模型时,要尽量让数学模型与实际问题的解趋于一致;适度复杂原则是指在构建数学模型时,要在简化原则和逼近原则的基础上,考虑实际问题中的一些复杂、难以简化的部分,尽可能接近实际情况。
第三,数学模型的应用范围有哪些?随着科技的不断发展,数学模型被广泛应用于各个领域,如天文学、生物学、物理学、经济学等。在天文学中,数学模型被用来预测行星的运动轨迹;在生物学中,数学模型被用来研究生物遗传与进化规律;在物理学中,数学模型则被用来解释自然现象等。由此可见,数学模型无所不在,其应用范围越来越广泛。
第四,数学模型的发展对社会产生了怎样的影响?在讲座中,主讲老师提到数学模型的发展,不仅在科学研究中发挥了巨大的作用,还对社会生活产生了积极的影响,例如在医疗、环保、财政等方面都有重要的应用。数学模型通过模拟真实情境,为人们提供科学的、有效的决策方式,成为现代科技进步和社会发展的重要支撑。
最后,我认为数学模型的学习不仅可以提高数学素养,更能够增强我们对实际问题的理解能力和解决问题的能力。在学习数学模型时,我们需要注重实践,理论与实践相结合,将所学知识应用于解决实际问题,发挥出最大的价值。同时,数学模型的建立也需要创新思维和团队合作,只有不断拓展视野,思考问题,才能在未来的科学研究中做出卓越的成果。
综上所述,我认为数学模型的学习与应用是非常重要的,它不仅能够培养我们的数学素养和创新能力,还能够为实际问题的解决提供有效的方法和思路。在未来的学习和工作中,我将认真学习数学模型的相关知识,不断提高自己的技能水平,为社会和人民做出更多贡献。
数学模型感想与体会篇十一
数学模型选修课是一门极富挑战性的课程,通过数学的工具和方法来描述和解决现实生活中的问题。在这门课上,我受益匪浅,不仅对数学领域有了更深刻的理解,而且也培养了解决实际问题的能力。下面我将结合自己的学习经历和体会,总结出了以下几点心得体会。
首先,学习数学模型选修课让我深刻认识到数学的应用和重要性。在过去的数学学习中,我更多地关注于理论的推导和运算技巧,但没有能够直接将所学的知识应用到实际中。而通过学习数学模型选修课,我明白了数学在现实生活中的广泛应用。无论是经济学、物理学还是工程学,都需要运用数学来构建模型、预测结果、优化方案。因此,学习数学模型选修课不仅仅是为了获得一个好的成绩,更是为了将所学的数学知识应用到实际中,解决现实生活中的问题。
其次,数学模型选修课培养了我们解决实际问题的能力。在课程中,我们需要在现实问题的基础上,抽象化、建立数学模型,再根据模型解决问题。这个过程需要我们分析问题、挖掘问题的本质,并将其转化为数学语言。然后,我们需要运用相关的数学方法和工具来解决模型,最终得到问题的答案。这个过程让我学会了在面对问题时能够深入思考、耐心求解,并培养了抽象思维和逻辑思维的能力,这对我今后的学习和工作都将大有帮助。
另外,数学模型选修课也锻炼了我们的团队合作能力。在解决复杂的数学模型问题时,往往需要团队合作来完成。每个人在团队中都起到重要的作用,大家需要相互配合、相互协作,在问题的建模、求解、分析过程中相互交流和讨论。在这个过程中,我们互相启发,互相学习,共同解决问题。通过团队合作,不仅能够将个人的能力最大化地发挥出来,而且也能够培养我们的合作意识和沟通能力,这种能力对我们将来的工作和生活都至关重要。
最后,学习数学模型选修课让我对数学有了更深刻的理解和兴趣。在过去的学习中,数学更多地是在课堂上堆砌和死记硬背公式和定理。而通过学习数学模型选修课,我意识到数学不仅仅是一门工具性的学科,更是一门富有创造性和探索性的学科。数学模型的建立需要我们运用创造力和想象力,通过不同的思维角度来解决问题。这让我对数学产生了浓厚的兴趣,也激发了我继续深入学习数学的动力。
综上所述,数学模型选修课让我对数学产生了更深刻的认识和理解。通过学习这门课程,我不仅培养了解决实际问题的能力,还锻炼了团队合作能力,并对数学产生了浓厚的兴趣。希望在今后的学习中,能够将数学模型的思维方法和能力应用到更多的领域,为解决现实生活中的问题贡献自己的力量。
数学模型感想与体会篇十二
建立数学模型是一项具有挑战性的工作,需要综合运用数学、统计学、计算机科学等多个学科的理论和技能。在这个过程中,我遇到了很多困难和挑战,但也收获了很多经验和体会。下面我将对我建立数学模型的心得体会进行总结,并分享给大家。
第一段:认真理解问题背景和数据来源
对于一项数学建模任务,首先需要认真理解问题的背景和数据来源,了解问题出现的实际背景、研究目的、可用数据来源等方面的信息。只有对问题做到心中有数,才能更加准确地确定模型的假设和变量,更加有效地指导建模和分析工作。在这个过程中,我认识到了数据质量和数据获取的重要性,也明白了对问题的深刻了解是建模工作的基础。
第二段:合理选择模型和方法
建立数学模型需要选择适当的数学方法和算法,这是建模中最为关键的步骤之一。不同的问题需要不同的模型和方法,需要综合考虑问题特点、数据分布特征、可用工具和技能等因素,选择最适合解决问题的方法。同时,要结合实际数据和结果进行不断的验证和修正,保证模型的有效性和鲁棒性。在这个过程中,我深刻认识到方法的选择和验证是数学建模能否成功的关键,也学会了通过实践不断提高建模的能力。
第三段:适时调整和改进模型
建立数学模型是一个不断优化和改进的过程,需要对模型进行不断地调整和改进,以提高模型的预测准确性和适用性。在建模的过程中,要及时分析和评估模型的结果,发现和解决模型中的问题和局限,以确定调整和改进的方向和方法。通过这个过程,我充分认识到模型的不断优化和改进是建模的关键,也体会到了这个过程中可能会遇到的挫折和困难。只有持续不断地调整和改进,才能够使建立的模型更加有效和实用。
第四段:加强数据分析和结果解释能力
建立数学模型需要综合运用多种算法和技术,也需要对结果进行深入的数据分析和解释。在这个过程中,需要掌握一定的统计学基础和数据分析技术,能够熟练使用常见的数据分析工具和软件,以获得更准确、更完整的结果。同时,还需要从数据分析的角度来解释和表达模型结果,帮助决策者更好地理解和使用建模结果。这个过程对我来说是一次深入学习和实践的机会,也让我深刻认识到数据分析和结果解释是数学建模不可或缺的重要环节。
第五段:持续学习和创新,拓展应用领域
建立数学模型是一个不断创新和发展的过程,需要不断更新技术和方法,开拓应用领域。在这个过程中,需要不断学习和研究最新的建模技术和方法,也需要探索和拓展应用领域,深入理解与问题相关的领域知识和理论。只有持续学习和创新,才能更好地应对新的问题和挑战,也能够开拓更广阔的应用空间和发展前景。这个过程对我来说是一次重要启示,也让我深深地认识到数学建模是一个具有广泛应用和创新潜力的领域。
总之,建立数学模型是一项具有挑战性和创新性的工作,需要综合运用多个学科和技术的理论和方法,探索和解决各种实际问题和挑战。在这个过程中,我们需要认真理解问题背景和数据,合理选择模型和方法,适时调整和改进模型,加强数据分析和结果解释能力,持续学习和创新,拓展应用领域。这些经验和体会不仅可以帮助我们更好地完成数学建模任务,也能够激发我们的创新潜力和进一步发展。
数学模型感想与体会篇十三
数学作为一门学科,对于很多学生而言都是枯燥乏味的。然而,通过将数学与游戏相结合,学生们逐渐发现了数学的乐趣和实用性。最近,我们班上进行了一次数学游戏活动,让我对数学有了全新的体会和感受。在这个过程中,我体验到了数学是如何帮助我提高思维能力、培养耐心和培养团队合作的重要性。下面我将详细介绍我的感想和心得体会。
首先,数学游戏帮助我提高了思维能力。在游戏中,我们需要根据题目中的条件进行推理和计算,为了解决问题,我们必须运用到各种数学知识和技巧。通过不断思考,我们可以锻炼我们的逻辑思维和分析问题的能力。在游戏中,我们不仅需要找到解决问题的方法,还需要在规定的时间内迅速作出反应。这要求我们快速思考,找到最佳解决方案。通过这些思考和训练,我渐渐感受到了数学对于我的思维能力的提升,我变得更加敏捷和灵活。
其次,数学游戏培养了我的耐心。有时候,在游戏中遇到的问题可能并不容易解决,但是通过坚持和不断尝试,最终我们可以找到正确的答案。这个过程需要我们具备坚持不懈的毅力和耐心。在游戏中,我曾经遇到过很多设定了陷阱的难题,我需要不断摸索和推敲,才能找到解决的线索。通过这样的挑战和困难,我懂得了在面对数学问题时,不要急躁,要有耐心和恒心,相信自己终究能够找到答案。这种耐心的品质也是在日常生活中很重要的,它可以帮助我们面对困难和挫折时不退缩,勇往直前。
此外,数学游戏也教会了我团队合作的重要性。在游戏中,我们通常是以小组的形式进行比赛,每个小组成员需要充分发挥自己的优势和才能,相互协作以解决问题。团队中每个人都扮演着不同的角色和任务,只有我们齐心协力,才能在有限的时间内完成任务并获得胜利。在与队友的交流与合作中,我们相互帮助和借鉴,从中学到了很多。这样的团队合作培养了我的合作意识和沟通能力,使我懂得了团队的力量和重要性。
最后,数学游戏让我感受到数学的实用性。在日常生活中,我们时常会面对一些实际问题,通过数学游戏的锻炼,我们可以将数学知识应用于实际情境中。例如,在游戏中学到的计算技巧和推理能力会帮助我们更好地解决数学课堂上的问题,而且这也有助于我们更好地理解数学的规律和原理。此外,数学游戏也可以让我们明白,数学不仅仅是一门学科,更是一种思维方式和解决问题的工具。在今后的学习和生活中,我会更加重视数学的实际应用,并将其运用到我所遇到的问题中。
综上所述,数学游戏带给了我很多感悟和收获。通过数学游戏,我提高了自己的思维能力,培养了耐心和团队合作精神,同时也深刻体会到了数学的实用性。从此次活动中,我认识到了数学的乐趣和价值,我愿意在今后的学习中更加努力,提高自己的数学水平,并将数学所教给我的思维方式和解决问题的能力应用到更多的场景中。
【本文地址:http://www.xuefen.com.cn/zuowen/4004390.html】