每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
解方程的教学设计意图篇一
教学内容:教材第67—68页例1、2.
教学目标:
1、 知识目标: 结合具体图例,根据等式不变的规律会解方程。
2、 能力目标:掌握解方程的格式和写法。
3、 情感目标:进一步提高学生分析、迁移的能力。 教学重点:掌握解方程的方法。 教学难点; 掌握解方程的方法。 教学方法:质疑引导。 教学资源:课件、投影仪 教学流程:
作业设计:
1、 必做题:教材第67页做一做第一题
2、 选做题:解方程:x+0.3=1.8
解方程的教学设计意图篇二
北牌小学 徐方
教学目标:
1、结合天平示意图,在观察、用式子表示数量关系、归纳、类比等活动中,经历认识等式和方程的过程。
2、了解等式和方程的意义,能判断哪些是等式、哪些是方程,能根据具体的情境列出方程。
3、主动参与学习活动,获得积极的学习体验,激发学习新知识的兴趣。
教学重点:等式和方程的意义,能判断哪些是等式、哪些是方程。
教学难点:等式和方程的意义。
教学过程:
一、创设情境。
1、课前谈话(出示跷跷板图)
2、激情导入
师:同学们,大家对跷跷板都很熟悉,其实我们有一种仪器,它和跷跷板很相似,你们知道是什么吗?出示课件天平示意图,让同学们说出天平的作用。
二、:新授
利用天平设计一个闯关游戏 :
第一关:左边是一个20克和一个30克的物体,右边是一个50克的物体,请学第二关 : 左边是一个230克和一个x克的物体,右边是一个80克的物体,请学生说一说相等关系,并列出等式,学生在自己的练习纸上试着写一写。(30+x=80)
第四关:左边是一个20克和一个30克的物体,右边是一个50克的物体,让同学们先观察,独立思考,想想可以用一个什么算式表示。生说一说相等关系,并列出等式,学生在自己的练习纸上试着写一写。(20+30=50)
三、
等式和方程1.教师结合算式介绍等式。
2.让学生观察等式,说一说这些等式有什么相同点和不同点。
3.介绍方程的概念。
4.鼓励学生用自己的话说一说什么样的式子是方程。
四、方程与等式之间有什么关系呢?
2 根据学生的发言,教师加以引导,使学生明确:等式包括方程,等式的范围。
五、试一试
先让学生独立思考,再回答。说一说是怎样判断的六、练一练
第1题,先让学生看懂图,再尝试列方程。
第2题,让学生先读懂图,再试着列出方程。
七、这节课我们学习了什么?
八、
总结
走近方程,走近数学,原来数学知识无处不在,就像我们形影不离的一位老朋友,希望同学们能更近地走近数学,走进数学。更多地了解我们这位教会我们生活本领的朋友。
板书设计
等式
(左边=右边)
不等式 20+30=50
3 30+x=80
20+30
含有未知数的等式叫做方程。
解方程的教学设计意图篇三
课型:新授课
1、知识与技能
(1)明确直线方程一般式的形式特征;
(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;
(3)会把直线方程的点斜式、两点式化为一般式。
2、过程与方法:学会用分类讨论的思想方法解决问题。
3、情态与价值观
(1)认识事物之间的普遍联系与相互转化;(2)用联系的观点看问题。
问题
设计意图
师生活动
1、(1)平面直角坐标系中的每一条直线都可以用一个关于的二元一次方程表示吗?
(2)每一个关于的二元一次方程(a,b不同时为0)都表示一条直线吗?
使学生理解直线和二元一次方程的关系。
教师引导学生用分类讨论的方法思考探究问题(1),即直线存在斜率和直线不存在斜率时求出的直线方程是否都为二元一次方程。对于问题(2),教师引导学生理解要判断某一个方程是否表示一条直线,只需看这个方程是否可以转化为直线方程的某种形式。为此要对b分类讨论,即当时和当b=0时两种情形进行变形。然后由学生去变形判断,得出结论:
关于的二元一次方程,它都表示一条直线。
教师概括指出:由于任何一条直线都可以用一个关于的二元一次方程表示;同时,任何一个关于的二元一次方程都表示一条直线。
我们把关于关于的二元一次方程(a,b不同时为0)叫做直线的一般式方程,简称一般式(generalform).
2、直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?
使学生理解直线方程的一般式的与其他形
学生通过对比、讨论,发现直线方程的一般式与其他形式的直线方程的一个不同点是:
问题
设计意图
师生活动
式的不同点。
直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与轴垂直的直线。
3、在方程中,a,b,c为何值时,方程表示的直线
(1)平行于轴;(2)平行于轴;(3)与轴重合;(4)与重合。
使学生理解二元一次方程的系数和常数项对直线的位置的影响。
教师引导学生回顾前面所学过的与轴平行和重合、与轴平行和重合的直线方程的形式。然后由学生自主探索得到问题的答案。
4、例5的教学
已知直线经过点a(6,-4),斜率为,求直线的点斜式和一般式方程。
使学生体会把直线方程的点斜式转化为一般式,把握直线方程一般式的特点。
学生独立完成。然后教师检查、评价、反馈。指出:对于直线方程的一般式,一般作如下约定:一般按含项、含项、常数项顺序排列;项的系数为正;,的系数和常数项一般不出现分数;无特加要时,求直线方程的结果写成一般式。
5、例6的教学
把直线的一般式方程化成斜截式,求出直线的斜率以及它在轴与轴上的截距,并画出图形。
使学生体会直线方程的一般式化为斜截式,和已知直线方程的一般式求直线的斜率和截距的方法。
先由学生思考解答,并让一个学生上黑板板书。然后教师引导学生归纳出由直线方程的一般式,求直线的斜率和截距的方法:把一般式转化为斜截式可求出直线的斜率的和直线在轴上的截距。求直线与轴的截距,即求直线与轴交点的横坐标,为此可在方程中令=0,解出值,即为与直线与轴的截距。
在直角坐标系中画直线时,通常找出直线下两个坐标轴的交点。
使学生进一步理解二元一次方程与直线的关系,体会直解坐标系把直线与方程联系起来。
学生阅读教材第105页,从中获得对问题的理解。
7、课堂练习
巩固所学知识和方法。
学生独立完成,教师检查、评价。
问题
设计意图
师生活动
8、小结
使学生对直线方程的理解有一个整体的认识。
(1)请学生写出直线方程常见的几种形式,并说明它们之间的关系。
(2)比较各种直线方程的形式特点和适用范围。
(3)求直线方程应具有多少个条件?
(4)学习本节用到了哪些数学思想方法?
巩固课堂上所学的知识和方法。
学生课后独立思考完成。
归纳小结:
(1)请学生写出直线方程常见的几种形式,并说明它们之间的关系。
(2)比较各种直线方程的形式特点和适用范围。
(3)求直线方程应具有多少个条件?
(4)学习本节用到了哪些数学思想方法?
作业布置:第101页习题3.2第10,11题
课后记:
解方程的教学设计意图篇四
列方程解应用题
发表时间:-4-159:45:06来源:小西一校作者:代春艳
教学目标:1、使学生通过自主探索学会列方程解比较容易的两步应用题2、培养学生的主体意识,创新意识,合作意识以及分析能力,观察能力,发散思维能力,表达能力3、使学生体验到生活中处处是数学,体验到数学的应用价值,体验到数学学习的乐趣和成就感。教学重点:掌握列方程解应用题的方法步骤。教学难点:根据题意分析数量间的相等关系。
教学准备:多媒体课件
教学设计:教师创设生活情境,使孩子在一个充满鼓励,充满肯定,充满分享,充满赞美的环境中学习。培养他们感悟生活的能力。
教学过程:
一、创设生活情境,复习旧知,导入新课
1、师:同学们,休息日的时候,你们都做些什么?生:看电视、补课等。
2、师:出去玩同样会学到知识,只要你留心,生活中处处都是数学,上周日小明和妈妈去公园玩就遇到了好多数学问题。(课件显示)小明最喜欢坐飞机了,于是妈妈给了他一些钱,让他自己去买票。(课件显示)他花了5元钱,还剩15元,妈妈给了小明多少钱,你们知道吗?学生汇报,解题思路并列式师:谁还有不同的方法?学生用含未知数x的方法进行汇报肯定学生的发言,引出课题。
二、合作学习,探索新知
教学例题(课件显示)玩下一项游乐项目,先去买票,票价6元,买两张,还剩38元,你知道这次妈妈又给了小明多少钱吗?想一想,这组信息中蕴含着怎样的关系呢?学生汇报。师肯定学生发言。下面,我们就用列方程的方法来解决这个问题吧!你们认为应该怎样做?学生猜想。师:现在,请同学们用自己找出的数量关系,根据刚才讨论的结果来列方程解决这个问题吧?。学生汇报,老师板书。归纳步骤.师:学到这,请同学们回顾并讨论一下,刚才我们用列方程的方法解题时经过了哪些步骤?学生充分讨论后汇报。师:看看数学专家是怎么归纳的呢?(出示投影)肯定学生,赞扬学生。
三、实际应用
1、师:小明玩了半天,他和妈妈都感到口渴了,不知买什么饮料好。谁愿意帮小明出出主意?师:现在我们虚拟购买饮料的场景。我当售货员,各小组派一名同学买饮料。用今天学习的知识求每瓶水的价钱。学生在小组内合作,共同解决问题。汇报时让学生说说是怎么思考的,请其他同学针对他们的思考方法和解答过程提出意见。
2、(课件演示)小明选择了买酸奶。(出示小票)看了小明的.购物小票,从中你知道了什么?还有什么是不知道的?(数量)学生解决问题,独立完成后小组成员互评,并给有困难的同学帮助。教师巡视指导。学生汇报。
3、最后,妈妈还剩下38元钱,要买些水果回去,看到苹果每千克3元;梨每千克2元;香蕉每千克6元;桔子每千克4元,可还要剩下20元钱买生日蛋糕。如果你是小明,你想卖哪种水果呢?利用本节课所学的知识算一算,看看能买几斤?学生可讨论,可试做。做后汇报。
四、全班总结
师:通过这节课的学习,你有哪些收获?学生从各方面回答。师:今天,同学们的收获可真不小!课后让我们继续运用今天所学的知识去解决生活中的实际问题吧!最后我送给大家一句话:生活中处处充满了知识,要学会做一个生活中的有心人,你才能成为学习上的成功者。
解方程的教学设计意图篇五
"义务教育课程标准实验教科书数学"五年级上册p53~54方程的意义
方程的意义对学生来说是一节全新的概念课,让学生用一种全新的思维方式去思考问题,拓展了学生思维的空间,是数学思想方法认识上的一次飞跃.方程的意义是学生学了四年的算术知识,及初步接触了一点代数知识(如用字母表示数)的基础上进行学习的,同时也是学习"解方程"的基础,是渗透用方程表示数量关系式的一个突破口,是今后用方程解决实际问题的一块奠基石.
根据新课标的要求,结合教材的特点和学生原有的相关认识基础及生活经验确定本节课的教学目标:
1,使学生在具体的情境中理解方程的含义,体会等式与方程的关系,并会用方程表示简单情境中的等量关系.
2,经历从生活情境到方程模型的构建过程,使学生在观察,描述,分类,抽象,交流,应用的过程中,感受方程的思想方法及价值,发展抽象思维能力和增强符号感.
3,让学生在学习中体验到数学源于生活,充分享受学习数学的乐趣,进一步感受数学与生活之间的密切联系.
教学重点:理解方程的含义,以及在具体的情境中建立方程的模型.
教学难点:正确寻找等量关系列方程.
概念教学本来就比较抽象,而且方程思想作为一种全新的思维方式又有别于学生一贯的算术思路,因此在教学时要重视学生在理解的基础上感知方程的'意义,充分利用学生原有的认识基础,关注由具体实例到一般意义的抽象概括过程,尽量直观化,生活化,发挥具体实例对于抽象概括的支撑作用,同时又要及时引导学生超脱实例的具体性,实现必要的抽象概括过程.经历从具体-----抽象------应用的认知过程.
:课件,天平,实物若干等
课前准备:利用学具(简易天平)感受天平平衡的原理.
教学过程
学生活动
设计意图
解方程的教学设计意图篇六
教学目标:
1、知识目标:在理解化学方程式意义的基础上,使学生掌握有关反应物、生成物质量的计算。
2、能力目标:掌握解题方法和解题格式,培养学生解题能力。
思想教育:
从定量的角度理解化学反应,了解根据化学方程式的计算在工、农业生产和科学实验中的意义,学会科学地利用资源。
教学重点:
由一种反应物(或生成物)的质量求生成物(或反应物)的质量。
情况分析:
通过前一节的学习,学生对化学方程式有了一定的了解。理解化学方程式的意义是根据化学方程式计算的关键,教师应紧紧结合化学方程式意义,引导学生对如何根据化学方程式进行计算这一问题进行探究。通过分析题意,理清解题思路,教给学生解题方法,培养学生分析解决计算问题的能力;通过解题训练,培养学生正确、简明地表达能力。
教学方法:
1、探究法:通过对问题的合理设计,使学生在教师的引导下逐步探究关于化学方程式计算的解题思路和解题格式。
2、边讲边练法:通过边讲边练,及时反馈信息,达到师生互动,争取在课堂40分钟解决本节课大部分问题。
教学辅助设备:小黑板、学生课堂练习资料。
教学过程:
教师活动
学生活动
教学意图
提问引入:
前面我们学习了化学方程式,化学方程式表示的意义是什么?试从定性和定量两个方面来说明。
请书写出氢气还原氧化铜的化学方程式,计算出反应物和生成物各物质之间的质量比,并指明该化学方程式所表示的意义。
过渡:根据化学方程式所表示的量的意义,我们可以在已知化学方程式中某物质的质量的情况下,计算别的物质的质量。这就是我们今天要探究的问题。
提出问题:同学们,我们现在用学过的知识试着去
解决下面的问题。
例题1:用足量的氢气还原氧化铜制取铜,如果得到128kg的铜,至少需要多少氧化铜?(同时需要多少克氢气?)
让学生自己试着去解决该问题,教师作适当引导。并请一位学生上台演算。
引导提问:
你们是以什么样的思路去解决这个问题的呢?
让学生分组讨论一会儿,然后让学生对解题思路进行总结。
总结:
解题思路:
1、写出化学方程式
2、找出已知量、未知量(设为x),并根据化学方程式计算出已知量、未知量的质量比。分两行写在对应的化学式下面。
3、列出比例式,求解x。
巩固练习:
现在我们就用刚才总结的`解题思路再来解决一个问题,并请同学们按照你们认为正确的解题格式将解题过程书写出来。
例题2:13g锌和足量的稀硫酸反应可制得多少克氢气?
让学生分组讨论,然后总结出解题格式,并请学生回答。
解题格式:
1、设未知量为x
2、写出化学方程式
3、找已知量、未知量,并计算其质量比
4、列比例式,求解未知量
5、简明地答
点拨:对解题格式中的相关事项作进一步强调。
现在我们就用刚学过的解题思路和解题格式知识,完成下列两个练习题。
巩固练习:
1、电解1.8g水可得多少克氢气?
2、在空气中燃烧多少克木炭可得22g二氧化碳?
让两位学生到台上演算。
引导:指导学生做课堂练习,随时纠正学生在练习中出现的问题,对于学习稍差的学生要进行个别的帮助。
解题辨析:
下题的两种计算的结果都是错误的,请指出其中错误,并进行正确的计算。
内容:略
(如果时间不够,则将该部分内容移到下节课进行。)
通过前面的学习,对根据化学方程式进行计算中应注意的事项,请同学们总结一下。
对学生的小结,教师作适当引导和补充。
小结:
本节课的主要内容可以用下面几句韵语加以记忆。
化学方程要配平,需将纯量代方程;关系式对关系量,计算单位不能忘;关系量间成比例,解设比答需完整。
课外练习:
教材习题。
根据提出的问题进行思考,产生求知欲。
学生书写化学方程式,并请一位学生上台书写,另请一位学生回答意义。
学生对以小黑板出示的例题略作观察,稍加思考。
可让一个学生上台来演算。
让学生思考、讨论一、两分钟,请一、两位学生回答。
学生仔细体会解题的思路过程。
学生进行练习,请一位学生上台演算,并写出解题过程。
学生在解题过程中注意使用正确的解题格式。
学生分析总结出解题格式,一、两位学生代表作答。
对照教师给出的解题格式,学生仔细体会,并和解题思路作比较。
依照例题,严格按计算格式完成课堂练习。
强化训练,巩固知识,提高技能。
学生积极思考,并指出其中错误。
学生总结解题注意事项,请一、两位学生作答。
理解记忆。
独立完成课外练习。
问题导思,激发学生学习兴趣。
让学生回忆化学方程式的意义,加深对化学方程式意义的理解。因为理解化学方程式的意义对本节课有根本性的重要意义。
以具体的问题引导学生进入学习新知识情景。
结合具体的实例教会学生分析题意,学会如何解计算题。
充分发挥学生的主体作用,让学生在探究问题中体会到成功的乐趣。
重点引导学生从思维的特点出发,养成正确地审题、解题习惯,找准解题的突破口。
加深巩固,进一步强化用正确的思路去分析、解答计算题。
培养学生严格认真的科学态度和书写完整、规范的良好学习习惯。
掌握解题格式和解题方法,培养学生分析问题和解决问题的能力。
通过练习加深巩固知识,强化计算技能。通过练习发现问题,及时纠正。
辨析解题正误,发现典型错误,避免学生犯类似错误。
让学生自主学习,培养学生分析问题解决问题能力;教师只作恰当及时点拨。
在轻松、愉快中学会知识,会学知识。
加深、巩固知识,反馈信息。
课后反思:
解方程的教学设计意图篇七
教学理念:让学生在广泛的探究时空中,在明主平等、轻松愉悦的氛围里,应用已有知识经验,通过自主预习、质疑问难、释疑解惑、合作交流,理解并掌握方程的意义,知道等式和方程、方程的解与解方程之间的关系,并能进行辨析,学会用方程表示简单情境中的等量关系,提高观察能力、分析能力和解决实际问题的能力。初步建立分类的思想,进一步感受数学与生活之间的密切联系。
教学目标:
1、 借助天平明白等式的含义,并在分类的基础上充分感受、认识什么是方程。
2、 会用方程表示数量关系。
3、 培养学生观察、描述、分类、抽象、概括、应用等能力。
4、 感受方程与现实生活的密切联系,体验数学活动的探索性。
重点:理解方程是含有未知数的等式;
难点:方程的意义抽象的过程。
课前谈话:渗透平衡和等量(谈体验)
教学过程:
一、激情导入:
出示天平,(见过天平吗?在那里见过?有什么作用啊?)根据天平的状态列出不同的式子,(不平衡让学生想办法得出让天平两边平衡)。
二、探究新知:
1.对不同的式子进行分类(不要有任何要求)
让学生先独立思考,然后小组合作交流自己的想法。
2.小组汇报分类的想法。小组之间在倾听的过程中逐渐完善自己本组的想法。
让小组的代表说说自己组是怎样分类的?为什么这样分类?
3.教师根据各小组的分类进行小结:像这样的用等号连接左右两边的叫做等式。像这样的这一类叫方程。板书课题。(在学生分类的基础上)
4.小组探究“什么是方程?”(先观察式子,独立思考,后小组交流)
5.小组汇报各组的想法。在各组倾听的基础上逐渐完善自己的想法。
6.教师在学生小组汇报的基础上进行小结:像这样,含有未知数的等式叫方程。
7.生举例。
8、师举例,让学生说哪些是方程哪些不是方程,并说明理由。
9、通过刚才的几道算式,让学生说说对方程又有了哪些新的认识?
10、判断两句话:所有的方程都是等式,所有的等式都是方程。
11、画图表示方程与等式之间的关系。
三.应用练习
1.判断下列式子是不是方程。
2.看图列方程。
3.根据题意列方程。
四.拓展延伸
1、谈谈自己在知识和情感上的收获。
2、送给同学们一个方程:天才+x=成功。
解方程的教学设计意图篇八
"义务教育课程标准实验教科书数学"五年级上册p53~54方程的意义
方程的意义对学生来说是一节全新的概念课,让学生用一种全新的思维方式去思考问题,拓展了学生思维的空间,是数学思想方法认识上的一次飞跃.方程的意义是学生学了四年的算术知识,及初步接触了一点代数知识(如用字母表示数)的基础上进行学习的,同时也是学习"解方程"的基础,是渗透用方程表示数量关系式的一个突破口,是今后用方程解决实际问题的一块奠基石.
根据新课标的要求,结合教材的特点和学生原有的相关认识基础及生活经验确定本节课的教学目标:
1,使学生在具体的情境中理解方程的含义,体会等式与方程的关系,并会用方程表示简单情境中的等量关系.
2,经历从生活情境到方程模型的构建过程,使学生在观察,描述,分类,抽象,交流,应用的过程中,感受方程的思想方法及价值,发展抽象思维能力和增强符号感.
3, 让学生在学习中体验到数学源于生活,充分享受学习数学的乐趣,进一步感受数学与生活之间的密切联系.
教学重点:理解方程的含义,以及在具体的情境中建立方程的模型.
教学难点:正确寻找等量关系列方程.
概念教学本来就比较抽象,而且方程思想作为一种全新的思维方式又有别于学生一贯的算术思路,因此在教学时要重视学生在理解的基础上感知方程的意义,充分利用学生原有的认识基础,关注由具体实例到一般意义的抽象概括过程,尽量直观化,生活化,发挥具体实例对于抽象概括的支撑作用,同时又要及时引导学生超脱实例的具体性,实现必要的抽象概括过程.经历从具体-----抽象------应用的认知过程.
:课件,天平,实物若干等
课前准备:利用学具(简易天平)感受天平平衡的原理.
教学过程
学生活动
设计意图
一,创设情景,建立表象
1.认识天平.
2.同学们通过课前的实际操作你发现要使天平平衡的条件是什么
(天平两边所放物体质量相等)
3.用式子表示所观察到的情景:
情景一:导入等式
(1)天平左边放一个300克和一个150克的橙子,天平的右边放一个450克的菠萝
300+150=450
(2)天平左边放四盒250克的牛奶,右边放一盒1000克的牛奶
250+250+250+250=1000
或250×4=1000
情景二:从不平衡到平衡引出不等式与含有未知数的等式
(1)
在杯子里面加入一些水,天平会有什么变化
要使天平平衡,可以怎么做
情景三:看图列等式
(1)
x+y=250
(2)
536+a=600
直观认识天平
回忆课前操作实况理解平衡原理
观察情景图,先用语言描述天平所处的状态,再用式子表示
观察课件显示的情景图,小组合作交流用等式表示所看到的天平所处的状态
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.学生通过课前"玩学具"已建立天平平衡的条件是左右两边所放物体的质量相等的印象,通过天平的平衡原理引入等式是为下一步认识方程作好必要的铺垫,同时通过天平的直观性又进一步让学生体会等式的含义.
通过学生的观察以及对情景的描述并用等式表示,直观具体,生动形象,能充分调动学生的学习积极性和强烈的求知欲望同时又培养学生的语言表达能力及符号感(从具体情境中抽象出数量关系并用符号来表示,理解符号所代表的数量关系).
解方程的教学设计意图篇九
(1)使学生理解方程概念,感受方程思想。
(2)经历从生活情景到方程模型的建构过程。
(3)培养学生观察、描述、分类、抽象、概括、应用等能力。
一、创设情景,抽象数学模式。
1、出示实物天平。
(实物天平比较小,用屏幕上的天平来模拟实验。)
(说明两边的重量可能有三种不同的关系。)
用式子描述重量之间的相等关系。
3、一场篮球比赛,红、蓝两队打得还挺激烈的,你能来描述两队的情况吗?
用式子表示两队比分的关系。
用式子来表示比分的三种关系。
4、创设四个情景。
(1)每个情景中数量之间有什么关系?
(2)你能用关系式清晰地来描述吗?
二、引导分类,概括方程概念。
刚才我们对情景的描述得到了很多式子。
2801001204x25+x=7022y+720=1050
1、学生尝试第一次分类。
可能有几种不同的分法。
(1)看是否是等式。
(2)看是否含有未知数。
……
2、学生尝试第二次分类。
得到四组不同的式子。
3、描述每一组的特征。
4、引导概括方程概念。
含有未知数的等式叫方程。
三、抓等量关系,体会方程本质。
1、演示动态平衡。有等量关系,能用方程表示
2、出示情景(没有等量关系,不能用方程表示。)
出示情景120元正好买2个玩具企鹅。(有等量关系,能用方程表示)
3、通过今天这节课,你学到了什么呢?
四、联系实际,应用与拓展。
1、周老师从无锡到徐州来上课。
(1)线段图。
(2)我乘火车从无锡站开出,每小时行x千米,7小时到达徐州站。无锡站到徐州站的铁路长525千米。
(3)到了徐州站,我买了3枝圆珠笔,每枝x元,付出20元,找回2元。
2、情景图。
本届奥运会上,中国台北队获得了x枚金牌,中国队获得了32枚,日本队获得y枚。男孩说:“中国台北队金牌数的16倍正好等于中国队的金牌数。”女孩说:“日本队的金牌数等于中国台北队的8倍。”
3、开放题。
小芳集邮共260张,小明集邮共300张。怎样才能使两人的集邮张数一样多?(用方程表示)
“方程的意义”教学设计的说明
在新课程背景下,学生概念的形成应具有更大的涵盖面、影响力和迁移性,由此通过自我理解、生成、连接,形成自己的知识系统。本课《方程的意义》的教学设计,基于对数学概念及概念教学的再把握,相对于传统的教学,有了比较大的变化。这是我们的尝试,也是一种思考和探索。
整体的把握:
数学概念不仅是局部的,而且是全局的;不仅是静态的,而且是动态的;不仅是学科的,而且是儿童的。所以对方程概念及其教学应从多个层面加以把握:
形式层面——含有未知数的等式(是关系的一种)。这是一种静态的结论。
发现层面——经历方程模式的生成过程,它来源于现实又回到现实,寻找等量关系并用方程来表示。这是一个动态的过程。
直观具体层面——举出正例或反例。
直觉层面——一种数学的意识、一种方程的感觉。
这样才能形成一个有力的认知结构(其中包含知识结构、方法结构和经验结构)
目标的把握:
经历从现实问题到方程概念建立的过程,(方程是从现实生活到数学的一个提炼过程,一个用数学符号提炼现实生活中特定关系的过程。)体会方程是刻画现实世界的数学模型。
渗透方程思想的三个方面:设立未知量,将其当作已知数,参与到问题中事实的表达;建立等量关系,用方程表示(方程是说明两件事情是等价的);区别未知量与己知量,只要经过运算,就可用已知数表示未知量。
过程的把握:
统揽全局基础上的局部聚集,突出“知识胚胎”的生成。学生的认识不是线性发展的,而是整体式推进的。各个部分知识的拼装不可能产生真正意义上的有生命的知识,只有胚胎式的整体推进才能领略到知识生命的意蕴。所以概念教学须克服原有的分割式、部分式教学,突出“知识胚胎”的生成。传统教学注重从部分到整体,形成一个结构。现代教学应更重视从整体到部分再到整体,形成更有意义和活力的结构。
本课方程概念的教学,力图围绕目标形成一个包括知识技能、思维方式和方程思想的整体结构,在其后的教学中再对方程的各个部分进行深化,形成所谓同心圆结构的知识生成模型,这是儿童认识的规律,也许可以解决数学教学中知识太“散”的问题。
经历“问题情景——数学模型——解释与应用”的全过程。从“问题情景——数学模型”展开数学化和结构化的过程。再从“数学模型——解释与应用”展开结合现实寻找意义的过程。方程整体概念生成必须经历这样的过程,才能使目标的各个部分协调地组合在一起,产生一种数学的意识和方程的观念。
解方程的教学设计意图篇十
1.理解和掌握等式与方程的意义,明确方程与等式的关系。
2.通过自主探究.合作交流激发学生的学习兴趣,养成合作意识。
3.感受方程与生活的密切联系,发展抽象思维能力和符号感。
理解和掌握方程的意义。
弄清方程和等式的异同。
符号化思想,转化的思想,数形结合的思想。
一.创设情境,引出问题
学生活动及达成目标
1.同学们,谁还记得《曹冲称象》的故事?
2.谁能简单地说一下曹冲是利用什么原理称出了大象的重量呢?
3.同学们其实在生活中有很多工具能帮我们测量出相同重量的物体。今天就先来认识其中的一种:天平。
简单介绍《曹冲称象的故事》
能说出让大象和石头的重量相等,再称石头的重量。
达成目标:创设贴近学生实际不仅能集中学生注意力,调动学生的积极性,激发学习兴趣,也为下面出示天平做好铺垫。
二.共同探索,总结方法
教师活动
学生活动及达成目标
1.出示天平:让学生说一说对天平有哪些了解?
如果学生说得不全教师做补充:使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡。
2.合作探究。
(1)在天平的右边放一个100g的砝码,怎样才能让天平平衡呢?
用算式怎样表示呢?
让学生观察式子,等号左边与右边相等,这样的式子就是一个等式。(板书:等式)
(2)把一个杯子放在天平的左边,右边放100g的砝码,让学生观察天平说一说发现了什么。
教师质疑:如果我往杯子里倒些水,观察天平现在的情况。
师:一杯水的重量是多少,怎样表示?你有办法吗?
追问:如果用未知数x来表示水的重量,那么杯子和水一共有多重,又该怎样表示呢?
教师让学生继续操作,怎样才能使天平平衡呢?
这说明了什么?
(一杯水的重量等于250g)
(5)你们能用数学算式来表示这天平的状况吗?
(师板书)
引导学生观察比较这三个算式有什么不同?
loo+x200
loo+x300
loo+x=250
师总结:像这样两边相等的算式我们把它叫做等式。(板书:等式)
(6)让学生比较50+50=100与loo+x=250两个等式,有什么不同?
教师小结:像loo+x=250这样的含有未知数的等式,称为方程。(板书:方程)
(7)引导学生思考归纳小结:
是不是所有的等式都是方程?
是不是所有的方程都是等式?
那么,方程有哪些特点?
(8)让学生仿照课本情境图,自己试着写一些方程。
自由发言,可能会说:天平有两个托盘,中间有指针;天平一边放物品一边放砝码,物品的重量与砝码的重量相等;天平可以称量物体的质量,还可以判断两个物体的质量是否相等。
让学生自主思考.交流操作,得出:在天平的左边放2个50g的砝码就可以保持平衡。
用算式表示:50+50=100。
学生认真观察,然后会发现:现在天平平衡,说明空杯子重100g。
学生看出在空杯里加一杯水后天平不平衡了。
思考得出:一杯水的重量=水的重量十杯子的重量。
学生汇报:loo+x
学生回答:天平两边不平衡,用数学算式来表示loo+x100
学生观察后分组讨论:
汇报时用式子表示:
loo+x200
loo+x300。
这时学生很容易发现这杯水的重量大于200g,小于300g。
引导学生把右边的砝码换成250g,使天平左右两边平衡。
学生自主思考,再全班交流汇报:loo+x=250
生观察后会发现:前面两个算式两边不相等,后面一个算式两边是相等的。
达成目标:通过直观演示活动,在老师引导,学生积极参与讨论.交流的过程中得出上面的式子,为下面的分类讨论环节做准备,同时培养学生观察思考.发现问题和解决问题的能力。
学生自主思考,并交流得出:第一个等式没有未知数x,第二个等式含有未知数x。
不是
是
达成目标:这样的设计我主要是给学生创造了一个大胆设想,敢于发现,抽象概括的机会,真正体会到自己获取知识,发现知识的成功乐趣。
三.运用方法,解决问题
教师活动
学生活动及达成目标
完成教材第63页“做一做”第1题。
完成教材第63页“做一做”第2题。
让学生说一说什么样的式子是方程,再自主判断,最后集体交流。
先说一说图意,再写方程表示数量关系。
达成目标:通过学生自主分类比较,
调动了学生的主动性和能动性,
让学生自己发现知识的形成过程,
层层递进,达到理解方程意义和掌握方程判断方法的目的,同时培养学生对比.概括能力和发散思维。
四.反馈巩固,分层练习
教师活动
学生活动及达成目标
基础练习:66页练习十四第1.2.3题。
拓展练习:见课件
五.课堂总结,提升认识
教师活动
学生活动及达成目标
这节课你运用了哪些学习方法,你有什么收获?你对自己这堂课的表现是怎么评价的?
达成目标:方程的特点:是一个等式,且含有未知数。
1.像loo+x=250这样含有未知数的等式叫做方程。
2.方程有两个重要条件:一个是等式,一个是含有未知数。
3.方程一定是等式,等式不一定全都是方程。
【本文地址:http://www.xuefen.com.cn/zuowen/3772455.html】