人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
倒数的认识教学设计人教版篇一
这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。
本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程,培养学生的数学应用意识和激发学习热情,培养学生观察、归纳、推理和概括的能力。
认知目标:使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
能力目标:培养学生观察、归纳、猜想、推理和概括的能力。
情感目标:提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
一、 创设活动情景,引入概念
生(众):能!
师:好!(出示投影)请把下面的几个题目算一算,同位相互交换一下答案。
题目:3/8x8/3 7/15x15/7 5x1/5 1/12x12
生:进行计算。(完成后小组进行交流,学生汇报其发现的结论)
(通过计算,学生可能发现每组算式的乘积都是1,通过观察发现相乘的两个分数的分子和分母位置是颠倒的)
师:同学们发现了每组算式的两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做倒数。
出示倒数的意义:乘积是1的两个数互为倒数。
二、 探索研究,深入理解
师:同学们能不能说说你对倒数的意义的理解?
提示:“互为”是什么意思?
生:指的`是倒数表示两个数之间的关系,这两个数缺一不可,互相依存,单独的一个数不能叫倒数。
师:回答的很好,下面同学们来判断一下我说的话有没有错误:因为3/4x4/3=1,所以3/4是倒数,4/3也是倒数。
生:(争先恐后地)不对!
师:那我该怎么说呢?
生:3/4和4/3互为倒数。
师:还有其他的说法吗?
生:3/4是4/3的倒数,4/3是3/4的倒数。
师:好,大家说的都不错,那么我给你一个数你能找出它的倒数吗?
生:能!
师:好!我我来考考大家!
三、 运用概念,探讨方法
师:(投影,出示例2)
3/5 6 7/2 5/3 1/6 1 2/7 0
找一找,下面的哪两个数互为倒数?
(小组探讨交流,并说说是怎样找的?汇报交流结果。)
生:有两种方法来找一个数的倒数:
1、看看两个分数的乘积是不是1;
2、看两个分数的分子与分母是否分别颠倒了位置。
师:(征求意见)大家同意他的说法吗?
生:同意!
师:大家认为哪一种方法更快呢?
生:第二种。
师:好,那咱们就用第二种来求一个数的倒数。(板演方法,强化学生的理解。)
四、 出示特例,深入理解
师:同学们再观察一下刚才我们做的题目,还有没有没找到倒数的数据?
生:有!1和0。
师:(提问)那1和0有没有倒数呢?如果有,是多少?
小组讨论、汇报。
1、 关于1的倒数。
因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
2、 关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
五、 巩固练习
(用多媒体投影出示下列各题,学生先做,再全班交流)
1、 写出下列各数的倒数。
4/11 16/9 35 7/8 4/15
2、 下面说法对不对?为什么?
(1)7/12与12/7的乘积为1,所以7/12与12/7互为倒数。
(2)1/2x4/3x3/2=1,所以1/2、4/3、3/2互为倒数。
(3)0的倒数还是0。
(4)一个数的倒数一定比这个数校
六、归纳小结,交流共享
师:本节课你学到了什么,你有什么体会?
生:我认识了什么叫倒数,还学会了怎样求倒数。
七、布置作业:练习7第7题。
倒数的认识教学设计人教版篇二
数学第十一册19页----倒数的认识。
(1)知识目标:理解倒数的意义,掌握求倒数的方法。
(2)能力目标:会求倒数,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。
理解倒数的意义和怎样求一个数的倒数。
正确理解倒数的意义及0为何没有倒数。
一、游戏导入
教师:我知道同学们特别喜欢做游戏。今天我们一起做个游戏。这个游戏是这样的。如果我说1、2,大家就说2、1。那我说1、2、3,大家该怎么说?好!游戏正式开始。喜欢!我教育你!我吃西瓜!我打篮球!谁能说一说这个游戏的规则是什么?在数学当中,我们还可以怎样玩这个游戏?继续玩,我说分数,大家倒过来说。3/8、15/7、1/80、3(板书)
二、探究意义
1.找特点
师:请同学们观察黑板上四组数都有什么特点。
(生:分子、分母互相颠倒 )
师:请同学们把每一组中的两个数相乘,看乘积是多少?
(生:每一组中的两个数乘积都是1 )师及时板书
师:谁还能很快说出乘积是1的两个数吗?
(生回答)
师:同学们说得这么快一定找到了窍门,把你找到的窍门跟同学门说说好吗?
(生:两个数分子分母颠倒位置乘积是1)
师:那么乘积是1 的两个数数学给它起个什么名呢?
(生回答,师板书:乘积是1 的两个数叫互为倒数)
师:在这个概念中你认为哪个词比较重要?让学生自由说出自己的想法。
重点讲解“互为”的意思,就是互相是的意思。例如:
3/8×8/3=1 我们就说3/8是8/3的倒数,或者说3/8的倒数是3/8,也可以说8/3和3/8互为倒数。而不能说8/3的倒数,或3/8是倒数。
师:谁来把黑板上的后三组数仿照老师刚才叙述的来说一遍,用上“因为”“所以”一词。
(指名叙述)
师:根据同学们的叙述,我们可以看出倒数不是指某一个数,而是指两个数相互依存的关系,是相对两个数而言,不能孤立的说某一个数是倒数。
三、探究求倒数的方法。
师:现在我们已经理解了倒数的意义,那么怎样求一个数的倒数呢?继续观察黑板上的四组数,看互为倒数的两个数有什么特点,(分子,分母调换了位置)根据这个规律我们试着求下面几个数的倒数。
出示:3/5 7/2 8/6 5/12 10/4
(指名回答师板书)
师:你们是怎么找出每个数的倒数的?
(说自己的方法)
师:除了这些分数外我们还学过哪些数?(整数、小数、带分数)怎样求它们的倒数呢?求同学们试着求下面书的倒数。
出示:6 0.5 2 7/8 1
(生回答,师板书)并说说你是怎样求的?
师:是不是所有的数都有倒数呢?同桌讨论
0为什么没有倒数?(0和任何数相乘都不得1)
师:通过同学们的练习,谁来总结求一个数的倒数的方法?
(生总结,师板书)
四、小结并揭示课题
同学们我们今天重点认识了什么?(板书课题:倒数的认识)你们在这节课都学会了什么?下面老师想知道你们是否真正的掌握了没有,所以老师要考考你们,。
五、巩固练习。
1、填空
1、乘积是()的两个数叫()倒数。
2、因为7/15 x 15/7 =1 所以7/15和15/7( )
3、 5的倒数是( )。 0.2的倒数是( )。
4、()的倒数是它本身。()没有倒数。
5、8×()=1 0.25×()= 1
()×2/3=1 7/2×( )=( )×8=( )×0.15 =1
2、当把小医生。
1、得数是1的两个数叫互为倒数。()
2a是一个整数,它的倒数一定是 1/a 。()
3、因为2/3×3/2=1,所以2/3是倒数。()
4、1的倒数是1,所以0的倒数是0。()
5、真分数的倒数都大于1。()
6、2.5和0.4 互为倒数。()
7、任何真分数的倒数都是假分数。()
8、任何假分数的倒数都是真分数。()
3、面各数的倒数
2.5 4 1/8 2 6/7 0.12
4、列式计算
1、7/6加上它的倒数的和乘2/3,积是多少?
2、 1减去它的倒数后除以0.12,商是多少?
3、已知a×3/2=b×3/5,(a、b都是不为0的数)
求a、b的大小
六、教学反思:
倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。
“倒数的认识”这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。“倒数的求法”中求一个小数或带分数的倒数学生可能有些困难。
今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义。现在想起来有一种牵着学生鼻子走的感觉。通过新课标理论的学习,我重新设计了教案。我觉得这样设计才是让学生自己通过观察、比较、归纳总结出倒数的意义,是学生自己通过参与整个学习过程后有了真正的收获。特别是通过游戏的形式激发学生的学习兴趣,学生发现了算式的特点,并让学生举例后发现,有这样特点的算式是写不完的。然后让学生仿照老师的样子,通过例子说倒数的意义,并强调说倒数的关键字词。这对学生掌握概念是非常必要的。当学生很高兴的自认为是掌握了求一个数的倒数的方法时,我又给学生设计了障碍:怎样求带分数、小数和整数的倒数。虽然教材新授内容没有这些知识,但在以后的练习中出现了。我把它提到前面来,大家一起研究。我觉得很有必要。这样,使学生避免把带分数的倒数也用把分子分母颠倒位置的方法来求。这样就不会给学生的认知造成误导。学生在知道了分数、带分数、整数、小数的求倒数的方法以后,我又提出是不是所有的数都有倒数么?使学生想到0的倒数问题。以前我是直接问学生“0“有倒数吗?好像暗示学生”0“没有倒数。改换成今天这样问,学生通过自己思考,得出两种答案,”0“有倒数,另一种是”0“没有倒数。有了分歧意见,又一次把学生带入了问题王国。学生分别发表自己的见解。最后,大家一致认为”0“没有倒数。因为“0”和任何数相乘都不等于1,也就是0不能作分母。我觉得这节课的教学比以往教学有了本质的转变,就是发挥了学生的主体作用。
倒数的认识教学设计人教版篇三
1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。
2.学习求一个数的'倒数的方法,使学生能够正确地求出一个数的倒数。
3.培养学生的观察能力和概括能力。
1.正确理解倒数的意义及互为的含义。
2.正确地求出一个数的倒数。
(一)激发兴趣,引出概念
1.投影。哪个同学和老师比赛?谁说得快?
师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)
2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。
板书:乘积是1两个数
3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?
生:两个数分子、分母颠倒位置就可以了。
师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)
4.举例说明,什么叫互为倒数?
师:3是倒数这句话对吗?为什么?
你们说得对,谁能说出几组倒数?
同桌互相说,每人说两组。(指名说)
问:怎样判断他们说得是否正确?
生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于
倒数的认识教学设计人教版篇四
一、创设情境、导入新课。
1、课件出示:吞———吴干———士杏———呆。
2、请同桌互相交流一下,找一找下面文字的构成有什么规律吗?
3、学生汇报。
4、同学们观察的非常仔细,这种现象在数学中也有,今天这堂课我们就来研究倒数的知识。(板书课题:倒数的认识)
二、出示学习目标
1、能够理解和掌握倒数的意义。
2、学习求一个数的倒数的方法,能正确地求出一个数的倒数。
三、探究新知识
1、课件出示例1的算式,开展小组活动:算一算,找一找,这组算式有什么特点?
2、小组汇报交流。(通过计算,发现每组两个数的乘积都是1,还发现了相乘的两个分数的分子和分母的位置是颠倒的)
3、同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,也发现了每组两个数的乘积都是1,我们现在就可以得出倒数的定义了:乘积是1的两个数互为倒数。(板书)
4、提问“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。
5、强调“两个数”“乘积是1”
6、出示0.4×2.5=1,让学生说一说0.4和2.5可不可以说互为倒数。
7、随堂练习:判断:(1)得数是1的两个数叫做互为倒数。(2)因为10×1/10=1,所以10是倒数,1/10是倒数。(3)因为1/4+3/4=1,所以1/4是3/4的倒数。
8、出示例题2,找一找哪两个数互为倒数?再说一说你是怎么找的?
9、以小组为单位进行讨论交流。
10、分组汇报:
第一种方法:看两个分数的乘积是不是1。
第二种方法:看两个分数的分子与分母是否分别颠倒了位置。
哪一种方法比较快?
11、观察书中的找倒数的方法,强调:3/5的倒数是5/3,不能用等号相连。
1、真分数、假分数。
2、整数
3、小数
4、带分数(板书)
12、例2中还有哪些数没有找到倒数?
13、提问:1和0有没有倒数?如果有,是多少?(小组讨论、汇报。)
四、巩固练习
我们现在应用今天学习的知识解决一些问题。
五、课堂总结。
板书设计成知识树。
倒数的认识教学设计人教版篇五
2.能正确的求出一个数的倒数.
3.培养学生的观察能力和概括能力.
认识倒数并掌握求倒数的方法
小数与整数求倒数的方法
一、基本训练
(一)口算(略)
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数.
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系.
(板书:倒数)
三、新课教学
(一)乘积是1的两个数存在着怎样的倒数关系呢?
请看:,那么我们就说是的倒数,反过来(引导学生说)是的倒数,也就是说和互为倒数.
和存在怎样的倒数关系呢?2和呢?
(二)深化理解
教师提问
1.什么是互为倒数?
2.怎样理解这句话?(举例说明)
(的倒数是,的倒数是,不能说是倒数,要说它是谁的倒数.)
(三)求一个数的倒数
1.例:写出、的倒数
学生试做讨论后,教师将过程板书如下:
所以的倒数是,的倒数是.
(能不能写成,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.
2.深化
你会求小数的倒数吗?(学生试做)
倒数的认识教学设计人教版篇六
1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。
3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。
教学重点:理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。
教学难点:掌握求倒数的方法
一、导入
课件出示:
1、找规律:指生回答。
2、找规律,填空,指生回答。
3、口算,开火车口算。
4、你能找出乘积是1的两个数吗?指生说。
今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识
二、新授
1、教学倒数的意义。
(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。
(2)学生汇报研究的结果:什么是倒数?生生说,举例说明。
乘积是1的两个数互为倒数。举例说明。课件出示。
观察每一对数字,你发现了什么?
像这样乘积是1的数字有多少对呢?
(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)
(4)互为倒数的两个数有什么特点?
像这样的每组数都有什么特点呢?
两个数的分子和分母交换了位置(两个数的分子、分母正好颠倒了位置)
2、教学求倒数的方法。试着写出3/5 、7/2的倒数。
(1)写出3/5的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。
(2)写出7/52的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。
想:写出6的倒数。独立完成。
先把整数看成分母是1的分数,再交换分子和分母的位置。 6
= 6/1 1/6
求一个数(0除外)的倒数,只要把这个数的分子、分母交换位置就可以了。
3、教学特例,
深入理解
(1)1有没有倒数?怎么理解?(因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)
(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)
4、课件出示,巩固练习:这些数怎样求倒数呢?
(1)学生独立解答,教师巡视。
(2)汇报时有意识地让学有困难的学生说一说求倒数的方法。
三、巩固应用
课件出示:
1、练习六第2题:填一填。
2、找朋友。
3、写出上面各数的倒数
4、辨析练习:练习六第3题“判断题”。
5、我的发现。
6、马小虎日记,开放性训练。
7、谜语:
五四三二一
(打一数学名词)
四、总结
你已经知道了关于“倒数”的哪些知识?你联想到什么?还想知道什么?
倒数的认识教学设计人教版篇七
教学目标:
(1)理解倒数的意义,掌握求倒数的方法。
(2)会求一个数的倒数,培养学生阅读理解的能力,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。
教学重点:理解倒数的意义和怎样求倒数。
教学难点:正确理解倒数的意义及0为何没有倒数
知识点:倒数的意义、导数的求法
教学过程:
一、导入
1、出示汉字“吞”“杏”,问:这是什么结构的字?交换上下两部分,观察是什么字?
2、汉字真奇妙,把一个字的上下部分交换就可能会变成另外一个我们认识的字,其实,在数学里也有这种奇妙的现象!
二、新授
1、出示分数,你能照刚才的操作方法,写出另外一个分数吗?你是怎么做的?
2、学生在本子上写出一组有这种特点的分数,请生说一说,多请几人说,老师板书。
3、迅速地算出这两个数的乘积,比比看谁算的快!
4、讨论:通过刚才的计算你发现了什么?
5、交流讨论结果,老师板书。(乘积是1两个数)
6、师由此引出倒数的意义,并出示课题,生齐读倒数的意义。
追问:(1)怎样的两个数才能称互为倒数?你是怎么理解“互为”倒数的?举例说一说你是怎么理解的。
如果学生说不出来,可由老师先说,然后学生再说(利用刚才黑板上的例子多说几个)
(2)说说看,刚才这几组数为什么互为倒数
7、出示例题:写出和的倒数。
8、学生讨论倒数的写法,然后再写出这两个分数的倒数(两名学生板演)
(1)说说你是怎样想的
(2)注意倒数的写法,部分学生会用“等号”表示
(3)小结出求一个倒数的方法。
有没有补充?你是怎么想的?
讨论并交流出0不能做倒数的两种原因并完善求倒数的方法。
(4)板书,生齐读。
9、口答出和6的倒数
10、完成书上的练一练
三、练习
1、练习六第一题(口答并用今天所学的知识,用因为所以说几句话)
第三题
2、综合练习。
的倒数是()。和()互为倒数。
()的倒数是5。()和互为倒数。
1的倒数是()。()没有倒数。
3、那你能写出2、0.8的倒数吗?
学生思考,说一说,并说出自己是如何想的?
小结:求带分数的.倒数,先要把带分数化成假分数,再调换分数分子与分母的位置,求出倒数。求小数的倒数,一般先要把小数化成分数,再求出倒数。
4、练习六第4题。
先找出每组数的倒数,再看看你能发现什么?
(1)每个人在书上先写出各数的倒数;
(2)同桌选一组数,观察原来的数有什么特点,再观察它们的倒数有什么特点?
全班交流,看看你们能发现什么?
5、练习六第5题
6、判断
1、乘积是1的两个数互为倒数。(如果改成得数是1,行不行?)
2、5/2×2/5=1,所以5/2是倒数。(那你打算怎么改?)
3、因为1的倒数是1,所以0的倒数是0。(你是怎么分析这句话的)
4、0.25和4互为倒数。(说出你是怎么想的?你能再举一个这样的例子吗?)
5、所有真分数的倒数都比1大。(由这句话你还想到了什么?)
四、总结
本节课你有什么收获?
倒数的认识教学设计人教版篇八
1、通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2、使学生经历倒数意义的概括过程,提高衙门观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3、通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
1、谈话理解“互为”。
让一名学生(甲)说出自己的好朋友是谁?(乙)
(设计意图)学生对于互为两个字的理解比较难,是教学中的一个难点。在这里,我用你是我的朋友,我是你的朋友这一关系多次转化,在自然中创设情境,让学生有一种生活体验,让学生在生活情境中知道什么是“互为朋友”,这样调动了学生的积极性,让学生在不知不觉中理解了“互为”的含义,分散了教学的难点。
2、游戏,按规律填空。
吞———吴呆———()3/8———(/)10/7———(/)
(1)学生观察填空,指名回答,并说出是怎么样想的。
(2)师:你们能按照上面的规律再说出几组数吗?(学生举例,教师板书)
3、学生观察板书的几组分数,看看每组中的两个数有什么特点?
同桌讨论交流,然后全班汇报每组中两个分数的特点,教师注意引导。(主要是分子、分母的数字特点和两个分数的乘积方面。)
4、师:能根据每组中两个分数的特点,给这几组分数起一个合适的名字吗?
教师揭示课题:倒数的认识。
5、师:看到这个课题,大家想提什么问题?
(设计意图)问题是数学的心脏,是学生探究的起点和动力,在谈话、游戏情境中引导学生发现问题,提出问题。
1、探究倒数的意义。
(1)观察3/8与8/3,说说哪两个数互为倒数?还可以怎么样说?
(2)谁能说说10/7与7/10中谁和谁互为倒数?也可以怎么样说?
(3)小组讨论,什么是倒数?
学生独立思考后,组内交流。
全班汇报,教师根据学生的汇报点拨引导。学生可能有的答案是:
a:分子、分母相互调换位置的两个数叫做互为倒数。
b:乘积是1的两个数叫做互为倒数。
师生共同归纳倒数的意义:乘积是1的两个数叫做互为倒数。(教师板书)
2、探究求倒数的方法。
(1)学习例1:写出7/8、5/2的倒数。
a:学生试写,教师巡视,提醒书写格式。
b:指名回答,教师板书:7/8的倒数是8/7,5/2的倒数是2/5。
师:互为倒数的两个数相等吗?怎么样表示它的结果?也可用—(破折号)表示。
c:学生交流求一个分数倒数的方法。
(2)师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?(整数、小数、带分数),那么怎么样求整数、小数、带分数的倒数呢?选择一种,在小组内探究。
a:学生选择一种研究,教师巡视指导。
b:学生交流汇报,教师分别板书一例。
c:引导学生概括求倒数的方法。
(3)教师引导质疑:0有没有倒数?为什么?学生讨论释疑。
1×()=1,所以1的倒数是1。而0×()=1呢?
1的倒数是它本身,0没有倒数。
求一个数(0除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。
(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
1、下面哪两个数是互为倒数。
4/3,7/6,8,6/7,3/4,1/8
2、写出下面各数的倒数。
4/11,16/9,35,15/8,1/5
学生在课练本上写出这些数的倒数,指名回答,并说出是怎么样求的,集体评价。
3、争当小法官,明察秋毫。
(1)1的倒数是1。(2)所有的数都有倒数。
(3)3/4是倒数。(4)a的倒数是1/a。
(5)因为0.5×2=1,所以0.5与2互为倒数。
(6)7/5的倒数是7/2。
(7)真分数的倒数都大于1。(8)假分数的倒数都小于1。
(9)因为8-7=1,3÷3=1,所以8和7,3和3是互为倒数。
4、填空。
3/4×()=17×()=1
2/5×()=()×4=5/4×()=0.5×()=1
5、游戏:找朋友。
一名学生说出一个数,谁能又对又快地说出这个数的倒数,谁就和这名同学互为好朋友。
(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
这节课你们有什么收获?还有什么疑问?
(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
《倒数的认识》教学反思:
本节课一开始创设“让学生找朋友”的情境,通过此活动帮助学生理解“互为”的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。
本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切真理都要由学生自己获得或由他们重新发现,至少由他们重建”。
“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
在课后的巩固练习中,我设计了“争当小法官,明察秋毫”、“填空”、“游戏:找朋友”等题型,通过这些多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
倒数的认识教学设计人教版篇九
(1)理解倒数的意义,掌握求倒数的方法。
(2)会求一个数的倒数,培养学生阅读理解的能力,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。
:理解倒数的意义和怎样求倒数。
:正确理解倒数的意义及0为何没有倒数
知识点:倒数的意义、导数的求法
1、出示汉字“吞”“杏”,问:这是什么结构的字?交换上下两部分,观察是什么字?
2、汉字真奇妙,把一个字的上下部分交换就可能会变成另外一个我们认识的字,其实,在数学里也有这种奇妙的现象!
1、出示分数 ,你能照刚才的操作方法,写出另外一个分数吗?你是怎么做的?
2、学生在本子上写出一组有这种特点的分数,请生说一说,多请几人说,老师板书。
3、迅速地算出这两个数的乘积,比比看谁算的快!
4、讨论:通过刚才的计算你发现了什么?
5、交流讨论结果,老师板书。(乘积是1 两个数 )
6、师由此引出倒数的意义,并出示课题,生齐读倒数的意义。
追问:(1)怎样的两个数才能称互为倒数?你是怎么理解“互为”倒数的?举例说一说你是怎么理解的。
如果学生说不出来,可由老师先说,然后学生再说(利用刚才黑板上的例子多说几个)
(2)说说看,刚才这几组数为什么互为倒数
(1)说说你是怎样想的
(2)注意倒数的写法,部分学生会用“等号”表示
(3)小结出求一个倒数的方法。
有没有补充?你是怎么想的?
讨论并交流出0不能做倒数的两种原因并完善求倒数的方法。
(4)板书,生齐读。
9、口答出 和6的倒数
10、完成书上的练一练
1、练习六 第一题(口答并用今天所学的知识,用因为所以说几句话)
第三题
2、综合练习。
的倒数是( )。 和( )互为倒数。
( )的倒数是5。 ( )和 互为倒数。
1 的倒数是( )。 ( )没有倒数。
3、那你能写出2 、0.8的倒数吗?
生思考,说一说,并说出自己是如何想的?
小结:求带分数的倒数,先要把带分数化成假分数,再调换分数分子与分母的位置,求出倒数。求小数的倒数,一般先要把小数化成分数,再求出倒数。
4、练习六第4题。
先找出每组数的'倒数,再看看你能发现什么?
(1)每个人在书上先写出各数的倒数;
(2)同桌选一组数,观察原来的数有什么特点,再观察它们的倒数有什么特点?
全班交流,看看你们能发现什么?
5、练习六 第5题
6、判断
1、乘积是1的两个数互为倒数。(如果改成得数是1,行不行?)
2、5/2×2/5=1,所以5/2是倒数。(那你打算怎么改?)
3、因为1的倒数是1,所以0的倒数是0。(你是怎么分析这句话的)
4、0.25和4互为倒数。(说出你是怎么想的?你能再举一个这样的例子吗?)
5、所有真分数的倒数都比1大。(由这句话你还想到了什么?)
本节课你有什么收获?
倒数的认识教学设计人教版篇十
学情分析:
本班级学生在学习本课时内容时,已经学会了分数乘法的计算,在具备分数乘法计算能力的基础上进行学习《倒数的认识》,我相信本班级学生能顺利地完成这一课时内容的学习,且学会这一课时也将为以后学习分数除法打下坚实的基础。
教学目标:
1、理解倒数的意义,掌握求倒数的方法,并能正确、熟练地求出一个数的倒数。
2、在充分的观察、思考、分析、讨论活动中,培养学生的思维能力和灵活解决问题的能力。
3、通过本节课的学习,激发学生学习数学的兴趣,让学生体验成功的快乐。
教学重难点:
重点:倒数的意义与求法。
难点:1、0的倒数,整数、小数、带分数的倒数的求法。
教具准备:课件(或练习张贴纸)
教学过程:
一、揭示倒数的意义
同学们,我们已经学会了分数乘法的计算。这节课我们将运用分数乘法的知识去解决新的问题,大家有信心学好吗?请看大屏幕。课件依次展示(一).(二):
(一)同学们认识以下各组汉字吗?请仔细观察每组汉字,你有何发现?
吴——吞杏——呆干——士
(二)仔细观察下列各组算式,再进行计算。
(三)计算过后,你们发现了什么?
(四)指出今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?
答后组织学生进行一场写乘积是1的任意两个数的算式的比赛。(限时1分钟)
(五)学生汇报,教师有选择地进行板书。
对学生的学习成果加以肯定表扬。进而追问:
1,如果给你们充足的时间,你们还能写出多少个这样的乘法算式?(指名让学生回答)
2,那么你们是根据什么条件写出这么多的算式呢?(思考后指名让学生回答并集体交流订正。)
(六)揭示倒数的意义:刚才同学们所写的两个数的乘积都是1。像这样乘积是1的两个数,我们把它们称之为互为倒数。
板书:乘积是1的两个数叫做互为倒数。(生齐读,师让生划出关键词进行交流熟记。)
(七)举例说明倒数的意义。
1,黑板上所写的两个数的乘积都是1,所以它们互为倒数。比如和乘积是1,我们就说和互为倒数,或的倒数是、是的倒数。
板出:和互为倒数的倒数是是的倒数
2,为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?(思考后指名学生回答)
3,指出倒数是表示两个数之间的关系,它们是相互依存的,所以必须说一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?(预设:约数和倍数。)
4,举例引导学生认识今天学习的倒数与约数、倍数一样都是表示两个数之间的关系,必须是相互依存,而不能独立地存在。5和的积是1,我们就说……(生说)×=1,这两个数的关系可以怎么说?(生说)
5,同学们都学得不错,现在老师要考考大家是不是真正理解了倒数的意义。
(八)课件出示测试题。
1、判断
1.得数是1的两个数叫做互为倒数。()
2.因为10×=1,所以10是倒数,是倒数。()
3.因为+=1,所以是的倒数。()
2、口答练习。
1×=1×()=1×()=1×()=1
下面哪两个数互为倒数。(连线)注:以下为例7学习内容。
二、探索求一个数的倒数的方法。
(一)引导观察,发现特征:
1,我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起观察一下刚才的这些例子,看有何发现?(观察后指名学生回答)
2、指出分子和分母调换了位置,相乘时分子和分母就可以完全约分,得到乘积是1。
3、根据这一特点你能写出一个数的倒数吗?
4、试一试:写出、的倒数。(完后指名板演,集体交流订正)
5、引导小结:求一个数的倒数的方法,只要把分数分子分母调换位置。
(二)思考讨论,延伸运用:1,除了真假分数外,其它数的倒数你们能写出来吗?
2,课件出示讨论题:
(1)18的倒数是什么?1的倒数是什么?0的倒数呢?
(2)的倒数是什么?
(3)0.2的倒数是什么?
3,练习:写出下列各数的倒数:
8370.31.2
4,我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。(生思后指名说)。
5,引导总结:求一个分数的倒数,只要把分子分母调换位置。如果是求一个带分数的倒数时要先化成假分数;求一个小数的倒数时要先化成分数(最简分数);求一个整数(0除外)的倒数时,可以把这个整数看成分母是1的分数;然后再调换分子分母的位置。(让生齐读)
三、练习巩固,加深认识。
1、请打开课本p50阅看,把你认为重要的划起来读一读。
2、完成“练一练”。
写出下面各数的倒数。
8
(1)完后问学生的倒数可以这样写吗?=。(预设:1除外互为倒数的两个数是不会相等的。)
(2)师:我们在书写时要写清谁是谁的倒数,或谁的倒数是谁。
3、先说说下面每组数的倒数,再看看你能发现什么?
(1)的倒数是();的倒数是();的倒数是();
(2)的倒数是();的倒数是();的倒数是();
(3)的倒数是();的倒数是();的倒数是();
(4)3的倒数是();9的倒数是();14的倒数是();
4、填空。
7×()=×()=()×=0.17×()=1
5、独立完成课本p51练习十第1-6题,师巡视。完后师问生答进行对照,共同订正。
四、课堂总结:今天我们学会了什么知识?还有不理解的地方吗?
五、布置作业:练习十第2、3题。
【本文地址:http://www.xuefen.com.cn/zuowen/3586074.html】