作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。那么教案应该怎么制定才合适呢?以下我给大家整理了一些优质的教案范文,希望对大家能够有所帮助。
鸡兔同笼教案人教版篇一
数也可以求出来。
6、小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。
* 古人是怎样解决“鸡兔同笼”问题的?
1、假如让鸡抬起一只脚,兔子抬起两只脚,还有94÷2=47只脚。
2、这时每只鸡一只脚,每只兔子两只脚。笼子里只要有一只兔子,则脚的总数就比头的总数多1。
课本105页“做一做”的1、2题。
师:通过今天的学习,你有哪些收获?
板书设计: 鸡兔同笼
化繁为简
列表法
假设法:1)假设都是鸡
2)假设都是兔
教学反思:人教版四年级下册第九单元数学广角中—《鸡兔同笼》
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在四年级下册数学广角中安排“鸡兔同笼”的教学内容,其教学方法与常规课不同。数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,在教学此内容时,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
“鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但是在数学的应用意识与应用能力方面需要进一步培养。
1、使学生了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、能尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设方法的一般性。
会用画图法、列表法和假设法解答“鸡兔同笼”问题。
用合理的方法解答生活中的“鸡兔同笼”问题。
多媒体课件、表格等。
一、创设情境、揭示课题。
2.播放视频,介绍:20xx年4月24日这期的《奔跑吧,兄弟》中,各位跑男被带到有密码的房间里,陈赫遇到了这样一道题。
这道题被收在《孙子算经》中,《孙子算经》是我国古代一部非常重要的数学名著, 今天,我们就来研究中国历史上著名的数学趣题 “鸡兔同笼问题”。(板书课题)
2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看。
出示题目:鸡兔同笼一共有8个头,一共有26条腿。 鸡和兔各有几只?
二、合作探究、学习新知:
活动一:探究用猜测列表法解决“鸡兔同笼”问题。
学习方式:自学教材,小组合作交流
1.师:请大家自由读题,你们都知道了什么信息?
生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?
师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。
2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?
学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有16条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有32条腿。
(1)师:我们采用列表法得出的答案,好吗?翻开书104页,按照顺序列表试一试。
(2)说一说你是怎么想的?从尝试举例过程中,你发现了什么规律?和小组的同学说一说。
(汇报交流)
小结讲解:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。
活动二:探究用假设法解决“鸡兔同笼”问题。
学习方式:自学教材,小组合作交流。
师:除了可以假设都是鸡,还可以怎样假设呢?
小组2:引导学生说出都是兔,并演示。
师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。
小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)
3、发散思考、加深理解。
下面我们来帮陈赫找到他房间的密码,解放他吧!
出示:鸡兔同笼,有35个头,94条腿,鸡兔各有几只?
生:是什么样的假设法,让我们先睹为快!
师:还有别的做法吗?怎样解答?
鸡兔同笼教案人教版篇二
1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。
2、通过列表举例、作图分析等方法,解决鸡与兔的数量问题。
通过列表举例、作图分析等方法,解决鸡与兔的数量问题。
一、呈现鸡兔同笼问题。组织学生探索解决问题的方法。
1、小组活动
2、交流方法
3、
二、做一做
独立完成第1—3题,并交流解决的方法。
第4题的答案有多种,启发学生找出不同的答案。
讨论第4题与前3题所给条件的不同,从而让学生知道哪些题的答案是唯一的,哪些题是有多种答案的。
鸡兔同笼问题
方法1方法2方法3方法4
鸡兔同笼教案人教版篇三
1、知识与技能
初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题,结合图解法理解假设的方法解决鸡兔同笼问题。
2、过程与方法
通过画图分析、列表举例、假设计算等方法理解数量关系,体会数形结合的方便性,体验解决问题方法的多样化,提高解决实际问题的能力。
3、情感、态度与价值观
培养学生的合作意识,在现实情景中,在交流的过程中,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,受到多种数学思想方法的熏陶,进而让学生体会数学的价值。
用画图法和列表法解决相关的实际问题。
体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。
课件
(一)问题引入,揭示课题
问:这段话是什么意思?谁能说说?(生试说)
师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头。从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。(板书课题:鸡兔同笼问题)
(二)主动探究、合作交流、学习新知
师:说明为了研究方便,我们先将题目的条件做一个简化。
(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?
师:同学们先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)
学生初步交流,教师提炼:可以用画图法、列表法、假设的方法。
师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。
学生思考、分析、探索,接下来小组讨论、交流。
小组活动充分后进入小组汇报、集体交流阶段。
学生汇报探究的方法和结论:
1、 画图法:
给每只动物先画上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。一次增加2条腿,一只鸡就变成了一只兔,要把10条画完,要把5只鸡变成兔。
总结:画图的方法非常便于观察、非常容易理解。
2、列表法:(展示学生所列表格)
学生说明列表的方法及步骤:
学生汇报:我们先假设有8只鸡这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。
3、假设法:(随学生能否出现此种情况作为机动出示)
板书:方法一:假设8只都是鸡,那么兔有:
(26-8×2)÷(4-2)=5(只)
鸡有8-5=3(只)
板书:方法二:假设8只都是兔,那么鸡有:
(4×8-26)÷(4-2)=3(只)
兔有8-3=5(只)
小结方法:刚才我们用这么多的方法解决了鸡兔同笼问题,你最喜欢哪一种方法,说说你的理由。
现在我们重新总结一下这些方法:数目比较小时,用画图和列表的方法比较快,数目比较大时,用假设法比较好。
(三)解决实际问题、课堂延伸
看看我国古人是怎么解这个题的。
(四)课堂小结
通过今天的学习,你有哪些收获?
师总结:这节课,我们一起用画图法、列表法和假设法解决了我国古代著名的“鸡兔同笼”问题。其实在1500年以来,我们中国历代的数学家都在不断的研究和探索这个问题,也得出了许多的解决“鸡兔同笼”问题的方法,而且从中得到了很多的数学思想。希望同学们在今后的学习中,善于思考,善于发现,善于总结方法。
鸡兔同笼教案人教版篇四
方法:边看书边完成下面要求:
1、“鸡兔同笼”这四个字是什么意思?
2、书上用了种方法来解决这个问题。
3、我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些信息?
生理解:
(1)鸡和兔共8只;
(2)鸡和兔共有26只脚;
(3)鸡有2只脚;
(4)兔有4只脚;
(5)兔比鸡多2只脚。(课件演示)
师:那问题是什么?
生:鸡和兔各有多少只?
3、猜一猜:
4、介绍列表法:
师:你们猜出的结果鸡和兔的总只数都是8只,但是你们猜想的结果都正确吗?到底哪个是正确的呢?下面请同学们把你们的猜想整理到这张表格中,并进行调整,看看哪个结果才是共有26只脚。(学生活动)
学生汇报整理后的表格,教师板书学生整理后的表格。(边板书,边理解填表过程)
鸡
兔
脚
5、观察发现,列式计算
三、合作交流:5分钟
假设全是兔,怎样解决?试一试。
四、质疑探究:5分钟
解决鸡兔同笼这类问题,有几种假设的方法?
五、小结检测:20分钟
1、小结方法:
同学们真了不起,刚才我们在解决鸡兔同笼的问题时,用到了多种方法:列表法,假设法。
2、检测:
a、问答:
为什么不选择列表法?难?为什么难?(要列举的情况很多)有没有好的办法?(有没有不用列举那么多就能找到答案呢)
(2)如果一定要你用列表法解答你有什么办法?学生讨论。(教师引导列表折半调整。)
(注:如果前面出现了折半列表,就把这个环节提前讲。)
b、解决问题
作业:p106;1、2、3。
板书:
鸡兔同笼
假设全是鸡,就有脚8×2=16(只)
比实际少26―16=10(只)
一只鸡比一只兔少4―2=2(只)
兔子:10÷2=5(只)
鸡:8―5=3(只)
鸡兔同笼教案人教版篇五
学生1:列表法能很清晰地解决这个问题。
学生2:因为数字比较简单,所以列表法还可以用,但是数字变大时,列表法就会比较麻烦,会浪费很多时间。
教师:说得非常好,那我们就来尝试研究一下更简洁的方法吧。同学们再来观察自己刚才列的表格,看看这些数量之间是否存在着一些数学规律,请将你的想法跟同组的同学相互交流一下。
学生小组交流汇报。
学生1:鸡的数量每减少1只,兔的数量就增加1只,脚的数量也跟着增加2只。
学生2:兔的数量每减少1只,鸡的数量就增加1只,脚的数量反而减少2只。
鸡兔同笼教案人教版篇六
1、今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
生模仿古人读题,说说自己的理解。
2、揭示课题
1、简化鸡兔同笼。
2、探究方法
(1)列表法
鸡876543210兔012345678
(2)画图假设
现在,我想请一位同学来说说看,接下来该怎么办了?
师根据学生的述说添画脚,并适时地提问、板书:
少了几只脚?
2只2只地添,得添几个这样的2只?
24÷2=12
小结:看来,画图确实挺形象、直观的,同学们也容易理解。
“鸡兔同笼”问题不仅在中国非常有名,还流传到许多其他的国家。比方说
我们的邻国日本,有一种“龟鹤算”的数学问题,就是从“鸡兔同笼”演变过去的。
师:请你们用今天这节课学到的方法来解决这道题。
今天这节课,我们跨越了1500多年的历史,探讨了中国古代的数学名题。其实,像“鸡兔同笼”这样有趣的数学问题,在中国古代还有很多,有兴趣的同学可以多了解这方面的资料,我想,对你们的学习是很有帮助的。
本节亮点:
1、本节课,杨老师主要介绍的是”表格法“和”画图假设法“,让学生一一列举出来或者画图,化抽象为具体。
2、杨老师在处理”画图假设法“中,借助画图,把每一步列式所求的什么,引导学生说清楚。
鸡兔同笼教案人教版篇七
1、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
3、在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。
本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一列表法、跳跃式列表法、取中列表法等来解决问题。学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
五年级学生在三年级时已初步学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一列表法解决问题,还有一些学生在校外的奥数班中已经学习了相关的内容。因此,教学在这一内容时,学生的程度参差不齐。本班的学生思维活跃,敢想,敢说,有一定的小组合组经验。
(一)创设情境
生:鸡兔同笼就是鸡兔在一个笼子里。
(媒体出示课本第80页的情景图)
师:请你猜一猜,图中大约有几只兔子,几只鸡?
生1:我猜大约是7只,兔子5只鸡。
生2:不一定。因为有一棵树把鸡和兔子挡住了,所以我不知道各有几只。
(二)探求新知
师:如果告诉你:鸡兔同笼,有20个头,54条脚,鸡、兔各多少?能求出几只兔子,几只鸡吗?(媒体出示题目的条件)
师:想一想,要解决这个问题可以用什么方法?想好了,可以写在作业纸上。
师:请同学们把自己的想法在小组内交流一下,看那个小组的方法多样。
师:哪个小组说说你们的想法?
小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有1只鸡,19只兔子,脚就有78条。脚太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。
师:还有哪些小组采用不同的列表法?
小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从2只鸡,18只兔直接跳到10只鸡,10只兔。最后也得到了13只鸡,7只兔。
小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。
生1:列表可以帮助我们一一举例,从中找出需要的答案。
生2:列表也就是运用假设法,通过逐步的假设,最终找到符合条件的答案。
师:那么,这三种列表的方法有什么不同呢?
生3:我认为第一小组的列表方法的特点是逐一列表,这样不容易遗漏答案。
生4:虽说第一小组的方法可以完全地列出全部的答案,但比较麻烦。我认为第三组的方法比较好,可以根据题目的根据情况,确定假设的范围,这样可以很快寻找到需要的答案。
师:这两位同学说得都很有道理,其实同样选择列表的方法,我们因根据题目的实际条件,选择适当的方法,这样可以既快又准确地寻找到我们需要的答案。
(三)解决问题
师:根据刚才的讨论,下面两道题目,同学们可以用列表的方法独立地尝试解决。
媒体出示两道题
1、鸡兔同笼,有23个头,66条腿,鸡、兔各几只?请你列表的方法解决。
(学生练习后,教师组织全班进行交流。交流过程略)
(四)学习总结
师:通过今天的学习,你有哪些收获?
1、充分调动学生的积极性
当新的问题提出后,我并没有急于讲解如何做的方法,而是先让学生独立思考,再在小组内交流,最后全班共同研究讨论。使同学们在民主、和谐的氛围中开拓了思维,实现了运用多种方法解决问题的目的。
2、关注每一个同学的发展。
由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同样的列表中,学生的认知水平也有一定的层次。但在教学的过程中,我并没有提出统一的要求,允许不同的学生采用不同的解题方法。在交流时,有些学生用逐一列表的方法,也没去指责他们,而是肯定他们想出好的方法;对于比较优秀的学生,则在课中请他们总结根据题目的条件选择适当方法的优点。这样做的目的,不同的学生在同一节课中就会都有不同程度地提高。
本节课有以下几个特点:
1、本节课从学的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。
2、让学生获得亲自参与探究学习的积极体验。探究性学习的过程是情感活动的过程,让学生自主参与类似于科学家研究的学习活动,获得亲身体验,逐步形成一种在日常学习与生活中喜爱质疑、乐于探究、努力求知的心理倾向,激发探究和创新的积极欲望。
鸡兔同笼教案人教版篇八
地点:大会议室
主备人:崔xx
参加人员:六年级全体数学教师
教研内容:“鸡兔同笼”问题
1.初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题。
2.结合图解法理解假设的方法解决鸡兔同笼问题。
3.在现实情景中,让学生初步体会画图、列表、假设等多种解题策略,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
教学重点:能用列表法和画图法解决相关的实际问题。
教学难点:结合图解法理解假设的方法解决鸡兔同笼问题。
重难点突破:借助已有数据利用列表尝试(枚举法)解决问题从中体会数据之间的变化特点,有意识的为下面的方法做好铺垫,通过适当地 引导和学生小组合作探究相结合,让学生在尝试、探索、交流中农动“鸡兔同笼”问题的基本结构,经历不同的方法结局问题的过程形成此类问题的一般性策略。
模式方法:提出问题——列举尝试——观察发现——讨论交流——寻找解法。
作业设计:有浅入深“鸡兔同笼”的基本题型多练。
1、引导学生理解提议,找出隐藏条件,帮助学生初步理解“鸡兔同笼”问题的结构特点。
2、列表虽然繁琐,但是一种重要的解决问题的策略的方法,是解法的基础,是重要教学内容之一,从中体会数量的变化规律。
3、假设法是学生应该掌握的一种方法,要让学生准确的说明算理,体会为什么假设的与所求的结果不是一致的道理。
4、列方程解时要借助实例,体会设x的技巧,因为学生学习内容的局限性,让学生体会设其中只数多的兔为x的道理,方法是设出一部分,根据总数列出方程(易列难解)
全体教师针对研究主题进行研讨,各抒己见,畅所欲言,结合自己以往的教学经验,探讨重点难点的突破方法,以教学中要注意的问题,让全体教师对刺客的教学内容有明确的思路。
鸡兔同笼教案人教版篇九
鸡兔同笼问题是我国民间流传下来的一类数学妙题,它集题型的趣味性、解法的多样性、应用的广泛性于一体,具有训练智能的教育功能和价值,是实施开放式教学的好题材。教材呈现三种解题思路:列表尝试法、假设法和方程法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐不宜采用;假设法是一种算术方法,计算比较简便,但理解算理有一定难度;方程法容易建立数量关系,有利于培养学生的分析能力,但求解过程对多数小学生而言较难。因此,本课设计的重点放在理解假设法的算理上。列表尝试法虽然有局限性,但它是假设法和方程法的基础,因此在引导学生用列表尝试法解决问题时,就要有意识地作好铺垫,为下面的教学埋下伏笔。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。
1.知识与技能:使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、方程法解决问题,初步形成解决此类问题的一般性策略。
2、过程与方法:通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性。渗透化繁为简的思想。
3、情感态度与价值观:使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
尝试用不同的方法解决“鸡兔同笼”问题,体会用列表法和假设法解决问题的优越性。
理解用假设法解决“鸡兔同笼”问题的算理。
同学们,你们知道吗?数学是思维的体操,它可以让我们的头脑越来越聪明。我们中国人自古以来就喜欢数学并且研究数学,早在1500年前就有一部数学著作《孙子算经》,那里面记载了许多有趣的数学名题,今天我们就一起研究其中的鸡兔同笼问题。(板书:鸡兔同笼)
你从这道题中,找到了什么数学信息?
(鸡的只数+兔的只数=20只,一只鸡2条腿,一只兔4条腿,鸡的腿数+兔的腿数=54条……)
这样一道1000多年前的数学名题要大家短时间内找到答案,确实不容易,就让我们先来猜测猜测。(板书:猜测)
谁先来猜一猜,鸡可能多少只?兔可能多少只?(鸡8只,兔12只)
能说说你猜测的依据吗?(鸡的只数+兔的只数=20只)
有了猜测的依据,还有谁想继续猜?(……)
给老师一个机会,我猜鸡是1只,那兔有几只?(19只)
怎么知道我猜得对不对?(通过计算来验证)
(板书并验证)计算的腿的条数是78条和实际的腿的条数不相符,说明我的猜测怎么样?(失败了)
虽然我的猜测失败了,但如果继续猜测下去,我的这次失败的猜测和验证对以后的猜测有什么启示和帮助吗?(因为78条腿比54条腿多,这就说明兔的只数多了,再猜测应该减少兔的只数,增加鸡的只数。)
现在,就请同学们在你的练习本上,继续老师黑板上的猜测,如果你有更简单的猜测方法,也可以重新列举一个猜测。
【本文地址:http://www.xuefen.com.cn/zuowen/3445768.html】