2023年数学计划300字左右(模板四篇)

格式:DOC 上传日期:2023-04-07 11:53:37
2023年数学计划300字左右(模板四篇)
时间:2023-04-07 11:53:37     小编:zdfb

做任何工作都应改有个计划,以明确目的,避免盲目性,使工作循序渐进,有条不紊。什么样的计划才是有效的呢?下面是小编带来的优秀计划范文,希望大家能够喜欢!

数学计划300字左右篇一

数学思想是数学的灵魂,而数学方法则使数学思想得以具体落实,二者相互依存,成为中考数学永恒的主题。初中数学思想方法主要有:转化、分类讨论、数形结合、类比归纳、建模、配方、待定系数法、方程与函数、消元法等。这些数学思想方法都是用来解题的“工具”,不能只知道有关名词,而应知道其实质和用途。在复习过程中,弄清什么样的问题用什么样的工具来解决,不断积累,让学生逐步形成自身的解题经验,达到将数学思想方法灵活运用到解决问题中去的目标。在中考数学复习中,应有意识、有目的、适时地注意数学思想方法的渗透和归纳,在解题时有效地利用数学思想方法,进一步达到“知识、能力”全面提高的目的。

解答题在中考中占有相当大的比重,主要由综合性问题构成,就题型而言,包括计算题、推理证明题和应用解答题等。他的题型特点和考查功能决定了审题思考的复杂性和解题设计的多样性,正确解题的前提是正确理解题意,即审题。这就要求教师在复习备考中引导学生阅读要准确,注意隐含条件。善于将书本知识与实际问题联系起来,多涉及探究性试题和开放性试题,独立思考,并学会用数学的思维方式去观察图像、整理信息,抽象出数学问题。从而解决综合性的实际问题。

中考复习前,初三数学组要进行考法研究,研究近几年中考数学命题的走向,研究考纲,研究中考复习策略。平时考试中,教师可以模拟中考命题,试题来源于课本改编及自编,注重信息的收集和新题型的探索,着重考查学生基本的数学思想和方法,每次考完后教师与学生都要及时做总结,这样既让教师对中考复习的把握更深,又有利于学生寻找差距,奋力拼争。

理解与掌握各种数学思想方法是形成数学技能技巧。提高数学能力的前提。初中数学教学中已经出现了不少思想。如转化的思想、函数与方程的思想、分类的思想、数形结合的思想……还出现了不少方法。如配方法、换元法、图像法、解析法、反证法、列举法……这些思想与方法要按要求灵活运用。因此复习中要分层次训练,对学生进行数学思想与方法的训练可以采用以下方法:

1 采取不同的题型训练。经常改变题型。如填空题、选择题、判断题、解答题、证明题、探究题、阅读题等。并进行变式训练,增强学生训练的兴趣,并且把这些思想与方法渗透到每一个章节的复习中。

2 适当进行一些专题训练。如函数与方程专题复习、数形结合专题复习、阅读型题专题复习等。使这一方面得到强化,加深学生的印象。使之掌握更快、更深、更牢。

数学计划300字左右篇二

专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点

函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。

一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。

不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。

专题二:数列。以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。

专题三:三角函数,平面向量,解三角形。三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。

专题四:立体几何。立体几何中,三视图是每年必考点,主要出现在选择,填空题中。大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。

另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。

专题五:解析几何。直线与圆锥曲线的位置关系,动点轨迹的探讨,求定值,定点,最值这些为近年来考的热点问题。解析几何是考生所公认的难点,它的难点不是对题目无思路,不是不知道如何化解所给已知条件,难点在于如何巧妙地破解已知条件,如何巧妙地将复杂的运算量进行化简。当然这里边包含了一些常用方法,常用技巧,需要学生去记忆,体会。

专题六:概率统计,算法,复数。算发与复数一般会出现在选择题中,难度较小,概率与统计问题着重考察学生的阅读能力和获取信息的能力,与实际生活关系密切,学生需学会能有效得提取信息,翻译信息。做到这一点时,题目也就不攻自破了。

专题七:极坐标与参数方程,几何证明。这部分所考察的题目比较简单,主要出现在选择,填空题中,学生需要熟记公式。

数学计划300字左右篇三

(1)使所学知识系统化、结构化、让学生将三年的数学知识连成一个有机的整体,更利于学生理解;

(2)精讲多练,巩固基础知识,掌握基本技能;

(3)抓好方法教学,引导学生归纳、总结解题的方法,适应各种题型变化;

(4)做好综合题训练,提高学生综合运用知识分析问题的能力。

1、挖掘教材,夯实基础,重视对基础知识的理解和基本方法的指导

通过将近3年的学习,学生已经掌握了一定基础知识、基本方法和基本技能,但对教材的理解是零碎的、解题规律的探究是肤浅的。因此,在组织学生进行总复习的时候,首先引导学生系统梳理教材、构建知识结构,让各种概念、公理、定理、公式、常用结论及解题方法技巧,都能在学生的头脑中再现。例如:分式的化简求值,学生应想到分解因式的方法、提公因式法、公式法等,证明三角形全等马上想到全等三角形的所有判定。教学中,要立足课本,充分挖掘和发挥教材例、习题的潜在功能,引导学生归纳、整理教材中的基础知识、基本方法,使之形成结构。例如:课本上课题学习等。坚决克服那种重难题、重技巧、轻课本、轻基础的做法。

2、抓好教材中例题、习题的归类、变式的教学。

在数学复习课教学中,挖掘教材中的例题、习题等的功能,是大面积提高教学质量的需要。因此在复习中根据教学的`目的、教学重点和学生实际,引导学生对相关的例题进行分析、归类,总结解题规律,提高复习效率。对具有可变性的例习题,引导学生进行变式训练,使学生从多方面感知数学的方法、提高学生综合分析问题、解决问题的能力。

3、强化训练,注重应用,发展能力

数学教学的最终目的,是培养学生创新意识、应用意识,及综合能力。教师可以自觉地、有目的地加以培养。这样,就可以大大地加快数学能力的形成和发展,使各种思维方法合理、简捷,最大限度地发挥学生创造性能力。分析近几年来各省市的中考能力题:在学生已有的基础上,可以通过阅读理解,推理分析,总结规律,归纳其结论;联系实际,注重应用,培养探索、发现、创新能力是中考命题必然趋势。因此在组织学生进行复习时,利用创意新颖、贴近学生生活的应用性、实践性、创造性、开放性问题来激活学生的思维。

4、进行各种数学思想与数学方法的训练,提高学生的数学素质。

理解掌握各种数学思想和方法是形成数学技能技巧,提高数学的能力的前提。初中数学中已经出现和运用了不少数学思想和方法。如转化的思想,函数的思想,方程思想,数形结合思想等。数学方法有:换元法、配方法、图象法、解析法、待定系数法、分析法、综合法。这些方法要按要求灵活运用。因此复习中针对要求,分层训练。

(1)采取不同训练形式。一方面应经常改变题型:填空题、判断题、选择题、简答题、证明题等交换使用,使学生认识到,虽然题变了,但解答题目的本质方法未变,增强学生训练的兴趣,另一方面改变题目的结构,如变更问题,改变条件等。

(2)适当进行专题训练。用一定时间对一些方法进行专题训练,能使这一方法得到强化,学生印象深,掌握快、记忆牢。

5、面向全体学生,实行分层教学

由于学生学习数学能力差异较大,我们应该具体研究现阶段各层次学生最欠缺什么知识与能力,最需要提高哪方面的数学技能,寻找出他们存在的差异和问题,进而有选择、有重点地实行突破性分层教学,对不同层次的学生提出不同的要求,优等生可鼓励他们超前学习,中等生进行引导,后进生进行帮扶,特别要关心数学学习困难的学生,通过学习兴趣的培养和学习方法的指导,使他们达到最基本学习要求。例如:学困生平时我们应多鼓励少些打击,发现优点及时表扬和肯定,增强他们的学习自信心和学习兴趣,中等生应给予他们更多的引导和关心,让他们觉得只要在努力以下自己会更优秀,那么对待优等生就应该严格要求他们,让他们要做好其他同学的榜样。

6、对能力有差异的学生进行分层要求

每次考试结束,我们老师都会对试卷进行分析,但我们也应更多的让学生反思自己,学困生的基础题做对了几道,能力题突破了多少,成绩是否达到了自己的预期目标,卷面整齐程度如何;中等生对难题做到了哪一问,和上次比较有哪些进步和不足;优等生为什么没拿满分,为什会出现小失误,简单的计算题为什么会做错。不同层次的学生通过反思自己存在的问题,每次减少不必要的失误,使得成绩能稳步提高。

7、合理使用好纠错本

纠错本是毕业班学生必备的一个东西,学生把每次考试的错题进行归纳、整理,最好把自己的错误答案也能摘录下来,用不同颜色的笔来区分错误答案和正确答案,每次考试前,复习时只需要翻阅,看自己曾经那类问题掌握的不好,下次一定要注意,使得每次的失误减到最少。

数学复习课怎么上?怎么上效果最好?是所有数学老师头疼的问题,我觉得主要从以下几个方面入手:

1、复习整理

本环节主要是解决基础知识的梳理问题,教师要采用不同的形式,引导学生整理本单元的每课时基础知识,使内容条理画,清晰地呈现在学生面前,最好是让学生提前去预习。对重点、难点、疑点和关键,要有针对性地进行讲解,提高对基本知识、基本方法和知识点理解准确性。教师通过引导学生揭示所复习内容的知识结构,既可加深学生对知识的理解,又有利于学生对知识的记忆。

2、精选例题,揭示规律

通过典型例题的讲解,进一步巩固复习内容,熟练掌握数学思想方法,提高学生分析问题、解决问题的能力。

(1)精选例题要有利于抓准基础知识

数学的基本概念、法则、定理、性质和公式等,分散在各个章节中,复习的选例就要围绕和含盖这些知识来选例,使每道例题都尽可能包含若干知识点,并注意在覆盖所有知识点的基础突出重点与难点。精选例题要包含最基本的数学思想方法,不必追求偏、怪、难;不要贪多,要重视一题多解、一题多变在培养学生解题能力中的作用。

(2)例题的讲解不是要让学生会做这道题,而是要引导学生切实掌握解题的核心和本质,培养学生分析和解决问题的能力,解题规律要总结,例题解答之后,要引导学生反思、总结解题的经验教训,对一些常用的数学思想方法、解题策略要予以归纳概括、揭示规律,提示学生今后注意运用。

3、强化训练

在完成模拟训练后要留下自我纠错和消化的时间,做好自我整理,并有跟踪练习,确保下次遇到类似题型绝不再错。学数学的目的是为了用数学,近年来各地中考涌现出了大量的形式活跃、趣味有益、启迪智慧的好题目,对这些热点题型认真复习,专项突破。

4、课堂总结

这是对整节课的系统和概括,是全部教学活动的落脚点和归宿,课堂总结应从以下几个方面考虑:

(1)完整地归纳概括复习内容,阐明复习内容与其前后知识间关系。

(2)概括总结数学思想方法,说明适应范围和应注意的问题。

(3)对复习中暴露出的突出问题要进一步强调,必要时可选配一些有针对性的课外练习。

总之,在初三数学总复习中,发掘教材,夯实基础是根本;共同参与,注重过程是前提;精选习题,提质减负是核心;强化训练,发展能力是目的。只有这样,才能以不变应万变,以一题带一片,开发学生的思维空间,真正训练学生的综合能力及水平,达到预期复习的效果。

数学计划300字左右篇四

各位同学,当你打开这份学习计划时就意味着你已经迈开了考研的第一步,凡事预则立不预则废,科学的学习计划是我们考研最终取得成功的有效保障,数学复习尤其如此。

考研数学满分为150分,在研究生入学考试中具有举足轻重的作用。考研数学主要包括高等数学、线性代数、概率论与数理统计三个科目,合理分配时间至关重要。

其中,主要是系统复习,夯实基础。通过对高等数学、线性代数、概率论与数理统计本科教材的完整复习,以及配套练习基础过关和能力优化的题目训练,把基本概念、基本理论、基本方法的内涵与外延弄清楚,加强对知识点的把握,提高解题速度及正确率。

每天至少应该花2.5-3.5个小时左右来复习数学,这样才能保证在基础阶段把整个数学的基础知识复习完。其中用1.5-2个小时左右的时间理解掌握概念、定义等,用1-1.5小时左右来做习题巩固。对于数学基础较薄弱的同学建议每天再加一个小时的复习时间用来做习题并总结。

主要目标:吃透考研大纲的要求,做到准确定位,事无巨细地对大纲涉及到的知识点进行地毯式的复习,夯实基础,训练数学思维,掌握一些基本题型的解题思路和技巧,为下一个阶段的题型突破做好准备。

从历年试卷的内容分布上可以看出,凡是考试大纲中提及的内容,都有可能考到,甚至某些不太重要的内容也可以以大题的形式在试题中出现。由此可见,任何的投机取巧到头来只会坑害自己,明智的做法应当是参照考试大纲,全面复习,不留遗漏。因此我们复习的主要思路就是以考纲为纲,先把数学课本从头到尾认真地学习一遍,主要先不针对重点和难点,而是一视同仁地对照课本和辅导资料对知识点进行事无巨细的复习。对一些重要的概念,公式要进行理解基础上的记忆,顺便做一些比较简单的习题,这些课后习题和辅导资料习题对于总结一些相关的解题技巧很有帮助,同时也有助于知识点的回忆和巩固。

第一,结合教材和前一年的大纲,先吃透基本概念、基本方法和基本定理。数学是一门逻辑性极强的演绎科学,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。对近几年数学答卷的分析表明,考生失分的一个重要原因就是对基本概念、定理记不全、记不牢,理解不准确,基本解题方法掌握不好。

第二,要大量练习,充分利用历年试题,重视总结归纳解题思路、套路和经验。数学考试不需背诵,也不要自由发挥,全部任务就是解题,而基本概念、公式、结论等也只有在反复练习中才会真正理解与巩固。做题时特别要强调分析研究题目和解题思路。数学试题千变万化,其知识结构却基本相同,题型也相对固定,往往存在明显的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。

第三,要初步进行综合性试题和应用题训练。数学考试会出现些应用到多个知识点的综合性试题和应用型试题。这类试题一般比较灵活,难度也要大一些。在数学首轮复习期间,可以不将它们作为强化重点,但也应逐步进行一些训练,积累解题思路,同时这也有利于对所学知识的消化吸收,彻底弄清楚有关知识的纵向与横向联系,转化为自己真正掌握的东西。

(1) 学习而不是复习

对于大部分同学而言,由于高等数学学习的时间比较早,而且原来学习所针对的难度并不是很大,又加上遗忘,现在数学知识恐怕已经所剩无几了,所以,这一遍学习,要拿出重新学习的劲头亲自动手去做,去思考。

(2) 复习顺序的选择问题

我们建议先高等数学再线性代数再概率论与数理统计。高等数学是线性代数和概率论与数理统计的基础,一定要先学习。我们并不主张三门课齐头并进,毕竟三门课有所区别,要学一门就先学精了再继续推进,做成“夹生饭”会让你有种骑虎难下的感觉,到时你反而会耗费更多的时间去收拾烂摊子。同学们也可根据自己的特殊情况调整复习顺序。

(3)注意基本概念、基本方法和基本定理的复习掌握

结合考研辅导书和大纲,先吃透基本概念、基本方法和基本定理,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。分析表明,考生失分的一个重要原因就是对基本概念、基本定理理解不准确,基本解题方法没有掌握。因此,首轮复习必须在掌握和理解数学基本概念、基本定理、重要的数学原理、重要的数学结论等数学基本要素上下足工夫,如果这个基础打不牢,其他一切都是空中楼阁。

(4)加强练习,重视总结、归纳解题思路、方法和技巧

数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。试题千变万化,但其知识结构却基本相同,题型也相对固定,一般存在相应的解题规律。通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。

(5)不要依赖答案

学习的过程中一定要力求全部理解和掌握知识点,做题的过程中先不要看答案,如果题目确实做不出来,可以先看答案,看明白之后再抛弃答案自己把题目独立地做一遍。不要以为看明白了就会了,只有自己真正做一遍,印象才能深刻。

(6)强调积极主动地亲自参与,并整理出笔记

注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要,并且要贯彻前三轮的复习,如果最后一轮复习我们有了自己整理的笔记,就会很轻松。有同学说学习线性代数最好的办法就是亲自推导,这话很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。

【本文地址:http://www.xuefen.com.cn/zuowen/2398455.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档