2023年考研数学心得体会(优质8篇)

格式:DOC 上传日期:2024-01-04 11:14:14
2023年考研数学心得体会(优质8篇)
时间:2024-01-04 11:14:14     小编:JQ文豪

学习中的快乐,产生于对学习内容的兴趣和深入。世上所有的人都是喜欢学习的,只是学习的方法和内容不同而已。那么我们写心得体会要注意的内容有什么呢?下面我帮大家找寻并整理了一些优秀的心得体会范文,我们一起来了解一下吧。

考研数学心得体会篇一

对微积分中的基本概念重新过一遍。特别是在考纲中要求“理解”的概念更要重视。例如,函数(一元或多元)、极限、连续、导数(偏导数)、微积分(全微分)、各种积分;极值与最值、曲线的凹凸性与拐点;曲线的三支渐进线。曲率、曲率圆与曲率半径、梯度、散度、旋读;常数项级数的收敛与发散、任意项级数的绝对收敛与条件收敛。幂级数的收敛区间与收敛域。幂级数的和函数;微积方程的阶、解、通解和特解等。

对于微积分中的一些定理,要记住定理的条件和结论,知道怎样用这些定理解决有关问题。例如:在闭区间上连续函数的性质(有界性、最大值最小值定理、介值定理、零点定理)、微分中值定理(罗尔定理、拉格朗日中值定理、泰勒定理、柯西中值定理)、积分中值定理、隐函数存在定理等。

考研数学心得体会篇二

很多同学在进行考研数学复习时,总是陷入到题海战术的误区中,虽然做题在备考数学的过程中占据着重要的地位,但如果没有一定的技巧以及合适的方法,那么做题的意义和价值就无法很好地体现出来。考研辅导专家认为,考研数学讲求逆向思维,大家在复习中不要盲目做题,要一边思考,一边练习,这样才能让题目为你的复习创造有效的价值。

带着脑子做题。

很多学生都有这样的困惑,明明做了很多题,但不会的题还是很多,最可气的就是很多题明明做过,但是再遇到还是不会做。考研辅导专家认为,产生这种现象的原因就是大家做题时不求甚解,或者说做题时没带脑子,没有思考。有些考生总以为有的题目不会做,看着答案就会做了,并不会认真的思考为什么不会,解题技巧是什么,和它同类型的题自己能不能做对等问题。做不是主要目的,思考才是最重要的,俗话说“吃一堑长一智”,大家要学着记住自己曾经犯过的错误,学会举一反三,这样大家才能够做到有效做题,高效提升。

考研数学心得体会篇三

数学分析一直是考研数学复习中最重要的一部分,许多人选择参加数学分析考研班来提高自己的分析能力。我也参加了一家数学分析考研班,并在这段时间内收获颇丰。下面我将分享一下我的心得体会。

第二段:理论基础的强化。

在数学分析考研班的学习中,首先要做的就是对理论基础进行强化。在这个过程中,我发现系统地学习了分析学的基本原理和定理,强化了对实数、数列、数列极限等概念的把握。通过不断练习题目,我深刻理解了极限的概念和性质,并在证明题中灵活应用。这不仅对于考研有帮助,也对于以后的科研工作和学术研究具有重要意义。

第三段:题型解题技巧的掌握。

在数学分析考研班的学习中,我也学到了许多解题技巧。对于不同类型的数学分析题目,掌握解题的一些基本思路和方法非常重要。我在班级的练习中,通过对不同题型的讲解和解题过程的参与,逐渐学会了如何灵活运用不同的技巧和方法来解决问题。掌握了这些技巧后,我在课堂和考试中能够更加自信地应对各种问题,解题效率也大大提高。

第四段:逻辑思维的培养。

数学分析考研班的学习不仅仅是对原理和概念的掌握,更是对逻辑思维的培养。在解题过程中,时常需要找到问题的关键,有条理地进行推导,辨别出题目的隐含条件和约束条件。通过不断的练习和讨论,我逐渐培养了自己的逻辑思维能力,并在分析问题和解决问题时更加得心应手。

第五段:综合能力的提升。

参加数学分析考研班的学习,不仅提高了我在数学分析上的能力,也提升了我的综合能力。在团队合作的讨论中,我从他人身上学到了不同的解题方法和思维方式,也提高了自己在团队中的合作与沟通能力。此外,考研班的辅导老师也给了我很多宝贵的建议和指导,让我对自己的学习目标和职业规划有了更清晰的认识,增强了为考研和未来的学术道路奋斗的动力。

总结:

参加数学分析考研班的学习经历让我受益匪浅。通过理论基础的强化、题型解题技巧的掌握、逻辑思维的培养和综合能力的提升,我不仅在考试中取得了好成绩,也在学术上得到了提高。我相信,这段宝贵的学习经历将对我的未来发展产生积极的影响,让我能够更好地面对各种挑战和困难。数学分析考研班的学习不仅是为考试冲刺,更是我一生的财富。

考研数学心得体会篇四

大家在做典型题时一定要精解精练,所谓精解精练,要求习题不仅要做出来,而且要多思多想,探索这道题到底是在考什么,关键是在考定理的哪一点,此题和以前做的哪些题类似。考研辅导专家提醒考生,只有精解精练才能掌握解题方法,使自己触类旁通。

固定解题套路。

备考数学应注重积累题型在夯实基础的前提下,还需要着力研究一些典型题型,提升能力。很多同学都在收集典型题型,都知道应该对典型题型进行研究,问题在于你如何研究它,我认为应该对典型题型进行全方位立体式的研究。面对一道典型例题,在做这道题以前你必须考虑,它该从哪个角度切入,为什么要从这个角度切入。做题的'过程中,必须考虑为什么要用这几个原理,而不用那几个原理,为什么要这样对这个式子进行化简,而不那样化简。做完之后,必须要回过头看一下,这个解题方法适合这个题的关键是什么,为什么偏偏这个方法在这道题上出现了最好的效果,有没有更好的解法。专家提醒考生,就这样从开始到最后,每一步都进行全方位的思考,那么这道题的价值就会得到充分的发掘。学习数学,重在做题,熟能生巧。对于数学的基本概念、公式、结论等也只有在反复练习中才能真正理解与巩固。数学试题虽然千变万化,其知识结构却基本相同,题型也相对固定,往往存在一定的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。

不能钻牛角尖。

考生应该针对复习的内容,注重基础,多练习一些基本题,不要死钻一些偏题及怪题。有选择性的做些巩固知识点的题目,这样才能让知识得到更深入的理解和掌握,才能真正消化吸收成为自己的知识,也才会具有独立的解题能力。专家提醒考生,教材每章每节的后面都有配套习题,在基础阶段复习时要认真做一遍,除了做课后习题外在基础阶段还应做一些考研基础过关之类的题目,这些题难度与考研真题难度基本相当,可以利用这些题目检查你复习过程中对知识点的综合运用能力,所以如果只看课本,在综合能力上要受一些影响。另外,数学复习我们不提倡搞题海战术,但是我们要记住一点:不做够一定量的题目可能就无法对知识点完全理解透彻。

考研数学心得体会篇五

从整体来看,今年的试题线性代数部分在数一、数二、数三中的考试内容是一致的,虽然数一没有单独考查向量空间,但与大纲要求也是相符的。今年的线性代数试题整体看来难度不大,计算量也不是很大。其实线性代数最注重各个章节之间的联系,这点我们考研的数学老师在授课的时候一直强调。事实上,今年的线性代数命题人也是按这个思路命制考题的。

我们来看看线性代数的两个解答题,即是数一、数三的21、22题,数二的22、23题。我们先看一下第一大题,这是一道有关线性方程组解的判定与求解问题。此题形式上是一个矩阵方程的问题,并且未知矩阵出现了两次,这在往年的试题中是不多见的。本题的关键是将的元素都设为未知数,利用矩阵乘法将其转化为线性方程组的求解。第二大题考查二次型,其中第一小题很简单,大家可以直接将所给的二次型对三项和的平方展开化简,然后按定义即可将二次型的矩阵写出,写出矩阵也就完成了第一小题的证明;也可以按矩阵乘法将所给二次型表达成矩阵形式,直接从矩阵形式写出二次型对应的矩阵。第二小题主要是利用特征值、特征向量的定义求出二次型的特征值,另外还要仔细观察题目中所给的已知条件,充分利用起来;此外,考生也可以求出与题中正交的单位向量(实际上是证明这个的存在即可),以它们为行向量作正交变换(即),从而可以直接将原二次型中的两个三项和改写成与。本题也考查了二次型的标准形,这里考生只需知道在正交变换下得到的标准形中的系数就是二次型矩阵的特征值即可。

我们再来看看线性代数的三个选择、填空题,即是数一、数三的5、6、13题,数二的7、8、14题。第一题考查分块矩阵的的运算与向量组的线性表示,第二题考查矩阵的相似(这里是实对称矩阵的特殊情况),第三题考查伴随矩阵与矩阵的行列式,考查内容简单明确、覆盖面广,与解答题互为补充。

从今年的线性代数部分的出题情况我们可以看出,线性代数题的难度不大,都是一些基础的知识,但是由于计算比较复杂,极易出现错误,考生因为粗心大意而算错的概率很大。在此,我们给2014届的考生提出如下建议。

一、注重基础,构建知识体系。

基本概念、基本方法、基本性质一直是考研数学的重点。线性代数的概念比较抽象,方法与性质也有相应的适用条件。有些同学在考场上,不知道试题要考查什么,该怎样下手,不知道该用哪个公式。我们建议考生在复习中一定要重视基础知识,要复习所有的定义、定理、公式,做足够多的基础题来帮助巩固基本知识。

线性代数的知识点是三大科目里最少的,但基本概念和性质较多,他们之间的联系也比较紧密。考生特别要根据历年线性代数考试的两个大题内容,找出所涉及到的概念与方法之间的联系与区别。例如:线性方程组的三种形式之间的联系与转换;行列式的计算与矩阵运算之间的联系与差别;实对称阵的对角化与实二次型化标准型之间的联系等。掌握他们之间的联系与区别,对大家处理其他低分值试题也是有助益的。

二、参照大纲,提高综合能力。

大纲作为指导性文件,对命题、应试双方都是有约束力的。数学的复习要强化基础,随时参考适当的教科书,比如同济版的《线性代数》(第三版)或北大版的《高等代数》(上册)。有的考生认为复习到这个阶段就可以抛开课本搞题海战术了,这是舍本逐末。建议大家要边看书、边做题,通过做题来巩固概念、方法。同时,考生最好选择一本考研复习资料参照着学习,这样有利于知识能力的迁移,有助于在全面复习的基础上掌握重点。

三、分类训练,培养应变能力。

近十年特别是近三年的研究生入学考试试题,加强了对考生分析问题和解决问题能力的考核。在线性代数的两个大题中,基本上都是多个知识点的综合。从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。建议在打好基础的同时,加强常见题型的训练(历年真题是很好的训练材料),边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握,这样才能够做到举一反三,全面地应付试题的变化。

总之,考生在复习线性代数的时候要注重基础,打好基本功,并结合一些综合性的试题培养自己的分析解决问题能力,加深对知识的理解。一些考生在复习时过分追求难题,而对基本概念,基本方法和基本性质重视不够,投入不足,考研的老师警醒大家这样做是不对的,应该及时纠正。

此外,数学的学习不是看明白资料就行的,必须独立完成足够量的习题。此外,做完题后不要急不可耐地对答案,要养成勤于思考的习惯。拿到题时,应该整理出明确的思路,问问自己:命题人用这道题考什么,以前我在这个知识点上出错过吗?遇到一时无法独立解决的问题,应该有针对性地与学友讨论或者请教老师。

1.

2.

3.

6.

9.

考研数学心得体会篇六

如何用好真题?建议大家两轮,第一轮真题可以按照高学、线代、概率章节做。尽快尽早做。

第二轮近十年真题按照套卷做,三小时能不能完成,遇到困难怎么办?高分学员建议数1数2数3,都要做,只要考纲要求的。试卷之间有差异,只要考卷要求。

对真题要做归纳和总结。

大家如果在真题学习过程当中有困难可以关注数学历年真题经典题、重难点题精解精练。

第二要做12套左右高质量的模拟卷。真题在强化课程当中引用过、老师讲过。做的时候感觉做过吗?但是模拟卷都是全新的。为什么要交错做。真题做一套感觉自己考清华的,做做模拟题信心又没了。模拟卷是打击你的,真题提升你信心的。交错使用效果会更好。

第三不要偏科,不能放弃线代或者概率。特别是概率,一直同学们把概率当做小三,概率永远爬不上去,然后说概率放弃。线代和概率大题很容易把握很容易拿分。所以同学们一定要记住考场上要把会做的题拿下,复习的时候把可能考的题先拿下,千万不要放弃线代和概率。

命题专家2013年到2016年都说了考生分析问题和解决问题的能力比较差,特别是处理概率题的能力很差。你做题是不是可以考虑高学留在最后,今年得分率0.08,不做也无所谓了。

资料舍取,真题是必须的,真题是最核心的,真题两遍不能完成的话,其他资料让位。模拟卷也是,是打击你的,上了考场不至于崩溃。

提高学习效率,一定要独立做题。看懂不等于做出来,看看都懂,一本数学书看得很快,如果我选择我宁愿从第一步独立做到最后。

整理错题本,周一到周五做新题,双休日整理错题。由厚到薄,看需要注意什么。

计算错误照片集,每次拍一张照,考前定期看自己的错误,如果想发朋友圈也可以。所以这是一些提高学习效率的方法。

考研高等数学的重要定理证明。

高数定理证明之微分中值定理:。

这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。

费马引理的条件有两个:1.f'(x0)存在2.f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x)-f(x0)0(或0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。

费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。

该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。

前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。

那么最值和极值是什么关系?这个点需要想清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。

拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。

以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值换成x,再对得到的函数求不定积分。

高数定理证明之求导公式:。

2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。

当然,该公式的证明并不难。先考虑f(x)_(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)_(x)在任意点的导数公式。

高数定理证明之积分中值定理:。

该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量x换成中值。如何证明?可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。

若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?这里有个小的技巧——看中值是位于闭区间还是开区间。介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。那么何去何从,已经不言自明了。

若顺利选中了介值定理,那么往下如何推理呢?我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数a。我们自然想到把积分中值定理的结论朝以上的形式变形。等式两边同时除以区间长度,就能达到我们的要求。当然,变形后等号一侧含有积分的式子的长相还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。这个数就相当于介值定理结论中的a。

接下来如何推理,这就考察各位对介值定理的熟悉程度了。该定理条件有二:1.函数在闭区间连续,2.实数a位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到(即a为闭区间上某点的函数值)。再看若积分中值定理的条件成立否能推出介值定理的条件成立。函数的连续性不难判断,仅需说明定积分除以区间长度这个实数位于函数的最大值和最小值之间即可。而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。

高数定理证明之微积分基本定理:。

该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。

变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。

“牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。

该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是f(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。

注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以f(x)等于f(x)的变上限积分函数加某个常数c。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。

考研数学心得体会篇七

第一,对概率论与数理统计的考点要整体把握。考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算就可,把大量精力放在随机变量的分布上。数理统计的考查重点在于与抽样分布相关的统计量的分布及其数字特征。

第二,在学习概率论与数理统计的时候不要一头扎入古典概型的概率计算中不可自拔。概率论的第一部分就是关于古典概型与几何概型的计算问题,有很多问题是很复杂的,一旦陷入这一类问题的题海中,要么你的脑瓜会越来越聪明,要么打击你的信心,对概率论失去兴趣。一般同学都会处于后一种状态。那么怎么办呢?请转阅第二条。

第三,在心理上重视。考研数学试题中有关概率论与数理统计的题目对大多数考生来说有一定难度,这就使得很多考完试的同学感慨万千,概率题太难了!同时也为学弟学妹们传达了概率题目难的信息。所以同学们在复习之前就已经有了先入为主的看法:概率比较难!但同学们没有注意到,在自己复习之初做得准备都是关于高等数学(微积分)的,在概率上的时间本身就不足。而且如果你的潜意识中觉得一件事情难的话,那么那件事情对你来说就真的很难。人的潜力是非常巨大的,这也与“有多少想法,就有多大成就”的说法相合。如果你相信自己,那么概率复习起来是简单的,考试中有关概率的题目也是容易的,数学满分不是没有可能的。那么,从现在开始,在心理上告诉自己:概率并不难!

中值定理包括费马引理、罗尔定理、拉格朗日定理、格西中值定理、泰勒中值定理,这四个定理之间的联和区别要弄清楚,罗尔定理是拉格朗日中值定理的特殊情况。除泰勒定理外的三个定理都要求已知函数在某个闭区间上连续,对应开区间内可导。柯西中值定理涉及到两个函数,在分母上的那个函数的一阶导在定义域上要求不为零,柯西中值定理还有一个重要应用——洛必达法则,在求极限时会经常用到。而且同学们需要掌握的不单单是这五个中值定理,而且关于他们本身的证明也是需要重点掌握的,尤其是费马引理、罗尔定理、拉格朗日定理、格西定理的证明过程,这个过程在教科书上都有证明的过程,同学们需要自己把这个都完全能够掌握,不仅仅是因为在09年的真题考查过这个的证明,而是这几个的证明思想是之后类似题目证明反复使用的。而闭区间上的连续定理主要是指的最值定理、介值定理、零点存在定理。

一般来讲闭区间上连续的定理是直接用的,也就是用来直接证明一些类似与存在一点在某个区间内使得某个函数是等于零的。而中值定理的应用一般是需要通过构造函数的,一般来讲都是三步走,第一步去构造函数,合理的去构造函数是能够做出这个证明题目最最关键的一步,而构造函数的方法一般是通过对要求的那个等式积分得到,同时也要注意两遍同时乘以一个函数,比如同时乘以ex,因为这个函数积分是不变的,所以会有这个。构造完成后就是第二步去检验条件,看是用那个定理,一般来讲,如果是求一阶的导数等于0优先想到的就是罗尔定理,如果是让你求高阶的一个式子等于零或者等于某个式子,那么优先想到的就是泰勒公式了,因为上面的五个中值定理中,只有泰勒公式是会涉及到高阶的,其他的几个都是一阶,如果知道的是一阶,最多也是求解二阶的。第三步就是求导验证自己求出来的是否是要求证明的结果。

1、函数必须在该点处有定义;

2、函数必须在这个点附近存在极限;

3、是前面1、2两点的内容必须相等,同时满足这三个条件,才叫做函数在某点处连续。

看到,判断函数连续,要先求极限,所以,如何求函数在该点处的极限值或是用极限存在的充要条件(左右极限存在且相等),是一个隐含的知识点。

1、函数在该点处没有定义;

2、若函数在该点有定义,但函数在该点附近的极限不存在;

3、虽然函数在该点处有定义,极限也存在,但是二者不相等。

对于间断点,根据左右极限存在与否,我们把它分为两类。若左右极限都存在的间断点,称为第一类间断点;若左右极限相等,这个间断点称为第一类间断点中的可去间断点;若左右极限不相等,这个间断点称为第一类间断点中的跳跃间断点。若左右极限中至少有一个不存在(包含极限等于无穷的情形)的间断点,称为第二类间断点;若其中一个极限是趋于无穷的,这个间断点就称为无穷间断点;若极限是在两个常数之间来回振荡的,就称为振荡间断点。

对于上面的知识点,我们看看在考研中是怎么考察的。对于连续的概念,难度上属于简单知识点。

首先,在十五年前,对于连续性的考查,更多的是给一个分段函数,然后判断分段点处函数的连续性,这是一个基本题型,只需判断连续的三个条件即可,其实主要是考查求函数某点处左右极限的值。

然后,进入20世纪,考查又倾向于在选择题当中,给一个函数,让大家来判断这个函数有多少间断点,间断点的类型是什么,这个又比之前考查的更高一层。

最后,就是在逻辑推理题中,考查零点定理,介值定理,通常,考查介值定理的时候也会用到最值定理。

我们归纳题型知道,判断方程根的情况的时候,一般用零点定理;题干中包含好几个函数值相加的时候,一般用介值定理。具体在证明题中怎么用,我们会在专门的证明题专题中讲解。

上面是对连续概念本身做出的分析。还有连续与极限存在,可导,可微的关系也是选择题中考查的热点,这个我们在后续一元函数导函数中详细说明。

考研数学心得体会篇八

你会从一些事情上得到感悟,就十分有必须要写一篇心得体会,就能通过总结,不断地丰富我们的思想。到底应如何写心得体会呢?下面是小编帮大家整理的数学中考研讨会心得体会范文,欢迎大家分享。

在校领导的关心与培养下,本人有幸于20xx年4月25日26日参加了xx市中考数学复习研讨会。两日学习内容如下:25日下午认真听取了xx四中两位老师观摩课堂教学(1)和观摩课堂教学(2),两节观摩课后又认真听取了刘xx等数学专家的评课交流,我感触很大,还有就是26日上午,以上几位专家的经验介绍和孙xx主任的20xx年数学复习方针的总结报告。这次研讨会指明了中考复习的'方向,理清了复习的思路,有利于指导我们在复习中更好的进行查漏补缺,以弥补教学的疏漏之处,也让我觉得教师不应该再是一味地进行无限量的题海战术,而是应该有针对性的复习。

复习建议:

把各位老师的复习建议梳理了一下,加之我自己的一些经验,我认为下段复习中应做到:

1、组织复习时,注重“通性通法”“双基”“概念”“运算”“数学思想”“解题策略”“思维方式的多样性”“实践应用能力”“数学建模能力”方面的复习。

2、复习要讲究策略,要提高复习课的有效性,剩下的只有一个多月,三年没有解决的问题我们不可能三十多天全部解决好,这就要求我们有效复习要讲究策略。如总分策略、改错策略,难度策略、差异化策略,补拙策略,提高考技策略等。

3、教师要处理好教材与复习资料的关系,要以《数学课程标准》为纲,九年义务教育课本为本,考纲解读,做到心中有数,课本解读明晰重点难点,实施单元复习,夯实学生基础。在此基础上对复习资料认真的研读,去掉不合适的题目,补充遗漏的题目,提高复习的效果。

4、复习要讲求方法:复习即要紧扣教材,又要跳出教材,重视例题教学。提高复习效率,解决例题技巧,力争正确规范,面向全体学生,分层设计复习,通过综合模拟,增强学生信心。

5、制定合理的复习计划,细分复习时间和复习目标,中考的数学复习分三轮进行,今年第一轮3月29日到5月18日(两个月)理清初中数学内容的脉络,进行基础知识的系统复习。第二轮5月19日至6月2日(两个周)进行综合训练(模拟练习)这一阶段,重点是提高学生的综合解题能力,训练学生的解题策略,加强解题指导,提高应试能力,第三轮6月3日至6月12日(两个周)进行查缺不漏,教师要对在练习中存在的问题进行荡扫,二轮、三轮复习同样不能脱离双基在最后冲刺阶段要做到学生会了不教,学生自己会的不教,教了学生不会的不教一定要有重点的专题复习。

所以我们要注意做到:低分学生“高“求:即低分学生必须做专题,一要读完题,二要做了简单的问,三要做好基础题部分;高分学生低求,中上等以上学生至少把课本上讲的专题完全掌握;专题也讲基本原理,基本方法,精讲精炼不图快,一步一脚印抓落实。

总之,这两天的中考复习研讨会让我收获多多,我还要花大量的时间去领会,消化各位老师的研讨成果,将这些成果尽快变成我教学中的财富。

【本文地址:http://www.xuefen.com.cn/zuowen/19773899.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档