平面直角坐标系北师大版数学初二教案(汇总14篇)

格式:DOC 上传日期:2023-12-15 04:06:10
平面直角坐标系北师大版数学初二教案(汇总14篇)
时间:2023-12-15 04:06:10     小编:QJ墨客

教案是教学活动的重要组成部分,它起到指导学生学习的作用。教案的编写要结合学科特点,合理安排知识点和教学重点。通过研究这些教案范文,我们可以发现不同教学模式的优缺点。

平面直角坐标系北师大版数学初二教案篇一

学习目标:

1、能说出平面直角坐标系,以及横轴、纵轴、原点、坐标的概念。会画平面直角坐标系,并能在给定的平面直角坐标系中由点的位置写出它的坐标,以及能根据坐标描出点的位置。

2、知道平面直角坐标系内有几个象限,清楚各象限的点的坐标的符号特点。

3、给出坐标能判断所在象限。

学习重点:

1、在给定的平面直角坐标系内,会根据坐标确定点,根据点的位置写出点的坐标。

2、知道象限内点的坐标符号的特点,根据点的坐标判断其所在象限。

学习难点:

坐标轴上点的坐标的特点。

学习方法:自主学习合作探究。

学习过程:

一自主学习:

1、画一条数轴,在数轴上标出3,-3,0,2。

数轴上的点可以用个实数来表示,这个实数叫做___________。

2、思考:直线上的一个点可以用数轴上一个实数来表示点的位置,能不能找到一种办法来确定平面内的点的位置呢?(例如图7.1-3中a、b、c、d各点)。

(1)我们可以在平面内画两条互相_____、_____重合的数轴,组成________________,水平的数轴称为_____轴或_____轴,习惯上取向____为正方向;竖直的数轴称为____轴或____轴,取向___方向为正方向;两坐标轴的交点为平面直角坐标系的________。

(2)如何确定点的坐标。(阅读课本第66页最后一段)如图7.1-4写出点b、c、d的坐标_______________________。

思考:原点o的坐标是什么?x轴和y轴上的点的坐标有什么特点?

平面直角坐标系北师大版数学初二教案篇二

要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。

对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。

(1)仔细审题。注意题目中的关键词,准确理解考题要求。

(2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。

(3)给出结论。注意分类讨论的问题,最后要归纳结论。

(4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。

平面直角坐标系北师大版数学初二教案篇三

2、教师展示知识结构图。

活动2:知识落实。

1、基础训练。

复习各个知识点及平时解题应注意的地方,进行巩固各知识点的基础题训练。

2、能力提高。

把本章内容和以前的知识点联系起来,解决问题。

3应用拓展(合作探究)。

春天到了,七年级二班组织同学们到公园春游,张明王丽李华三位同学和其他同学走散了,同学们已经到了中心广场,而他们仍在牡丹园赏花,他们对着景区示意图在电话中向老师说明了他们的位置。

活动3:知识检测。

游戏环节(快乐之旅)。

活动4:小结提升。

通过本节复习课,你对本章知识是否有了更深的认识呢?谈谈你的体会。

活动5:布置作业。

1、必做题:p96—3、4、7。

2、选做题:p97—9、10。

3、探究题。

利用本章的基础知识分析问题,解决问题。

学生思考交流。

提出解决问题的策略。

学生先读题独立思考,再通过合作探究,分析问题,得到问题的解决方案,利用已学的知识分析问题,阐述解题的思路,进而完善问题的答案。

平面直角坐标系北师大版数学初二教案篇四

复习各个知识点及平时解题应注意的地方,进行巩固各知识点的'基础题训练。

2、能力提高

把本章内容和以前的知识点联系起来,解决问题。

3应用拓展(合作探究)

春天到了,七年级二班组织同学们到公园春游,张明王丽李华三位同学和其他同学走散了,同学们已经到了中心广场,而他们仍在牡丹园赏花,他们对着景区示意图在电话中向老师说明了他们的位置。

游戏环节(快乐之旅)

7个金蛋你可以任选一个,如果出现“恭喜你”的字样,你将直接过关;否则将有考验你的数学问题,当然你可以自己作答,也可以求助你周围的老师或同学.

通过本节复习课,你对本章知识是否有了更深的认识呢?谈谈你的体会。

1、必做题:p96—3、4、7

2、选做题:p97—9、10

3、探究题

利用本章的基础知识分析问题,解决问题。

学生思考交流

提出解决问题的策略。

学生先读题独立思考,再通过合作探究,分析问题,得到问题的解决方案,

利用已学的知识分析问题,阐述解题的思路,进而完善问题的答案。

平面直角坐标系北师大版数学初二教案篇五

1.知道利用数轴上确定直线上一个点的位置用一个数就可以了.

3.理解坐标的概念.

4.能利用平面直角坐标系表示点的位置,也能根据坐标找到坐标平面上它所表示的点.

【过程与方法】。

先利用数轴确定直线上一点的位置,进而利用两条共原点且互相垂直的两条数轴确定平面点的位置,再学习平面直角坐标系及相关概念,最后用坐标表示平面上的点或根据坐标找到坐标平面上它所表示的点.

【情感态度】。

体验从易到难,从简单到复杂的数学探究过程,提高举一反三的数学能力,增强数学学习信心.

【教学重点】。

【教学难点】。

各象限及坐标轴上点的坐标特征,建立适当的平面直角坐标系,表示平面上点的坐标.

平面直角坐标系北师大版数学初二教案篇六

教学目标:

1、理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2、掌握坐标法解决几何问题的步骤;体会坐标系的作用。

教学重点:

教学难点:

能够建立适当的直角坐标系,解决数学问题。

授课类型:

新授课。

教学模式:

启发、诱导发现教学、

教具:

多媒体、实物投影仪。

教学过程:

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动。

学生回顾。

刻画一个几何图形的位置,需要设定一个参照系。

1、数轴它使直线上任一点p都可以由惟一的实数x确定。

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置。

2、确定点的位置就是求出这个点在设定的坐标系中的坐标。

四、数学运用。

例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练。

变式训练。

2在面积为1的中,,建立适当的坐标系,求以m,n为焦点并过点p的椭圆方程。

例3已知q(a,b),分别按下列条件求出p的坐标。

(1)p是点q关于点m(m,n)的对称点。

(2)p是点q关于直线l:x—y+4=0的对称点(q不在直线1上)。

变式训练。

用两种以上的方法证明:三角形的三条高线交于一点。

思考。

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小结:本节课学习了以下内容:

六、课后作业:

平面直角坐标系北师大版数学初二教案篇七

1:认识并能画出平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。

2:经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合意识、合作交流意识。

二:教学重点。

能画出平面直角坐标系;会根据坐标描出点的位置,由点的位置写出它的坐标。

三:教学难点。

能能建立平面直角坐标系;求出点的坐标,由点的位置写出它的坐标。

四:教学时间。

三课时。

五:教学过程。

第一课时。

一)引入新课。

1:要在平面内确定一个地点的位置需要几个数据?

二)新课。

1:我们可以以“中心广场”为原点作两条互相垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,你能表示出“碑林”的位置吗?“大成殿”的位置吗?(学生回答,老师小结)。

2:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。(通常两条数轴成水平位置与铅直位置,取向上或向右为正方向,水平位置的数轴叫横轴,铅直位置的数轴叫纵轴,它们的公共原点叫直角坐标系的原点。)。

3:两条坐标轴把平面分成四部分:右上部分叫第一象限,其它三部分按逆时针方向依次叫第二象限、第三象限、第四象限。

4:怎样求平面内点的坐标?

对于平面内任意一点,过该点分别向横轴、纵轴作垂线,垂足在横轴、纵轴上对应的数分别叫该点的横坐标、纵坐标。

例1写出多边形abcdef各顶点的坐标。

y

ab。

focx。

ed。

5:想一想。

(1)点a与b的纵坐标相同,线段ab的位置有什么特点?

(2)线段db的位置有什么特点?

(3)坐标轴上点的坐标有什么特点?

6:练习p131做一做。

(2)怎样求平面内点的坐标?

(4)知道点的坐标怎样描出点?

四:作业p132。

第二课时。

一:复习。

(2)怎样求平面内点的坐标?

y

a

bc。

ox

已知等边三角形的边长为2cm,求出各顶点的坐标?

(3)道点的坐标怎样描出点?

二:新课。

例在直角坐标系中描出下列各点,并将各组内的点用线段依次连接起来。

(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5)。

(2)-9,3),(-9,0),(-3,0),(-3,3)。

(3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9)。

(4)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7)。

(5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

观察所得的图形,你觉得它像什么?

y

ox。

三:练习p134做一做。

四:作业p135习题5.4(1、2)。

第三课时。

一;新课引入与复习。

1)怎样画平面直角坐标系?画平面直角坐标系时应注意些什么?

2)怎样求平面内点的坐标?(对于平面内任意一点,过该点分别向横轴、纵轴作垂线,垂足在横轴、纵轴上对应的数分别叫该点的横坐标、纵坐标。)。

二:新课。

例3如图,矩形abcd的长与宽分别是6,4。建立适当的直角坐标系,并写出各个顶点的坐标。

y

ba。

解:如图:以点c为坐标原点,分别以cd、cb所在。

o

cdx。

由cd长为6,cb长为4,可得d,b,a的坐标分别为d(6,0),b(0,4),a(,4)。

思考:(还可以建立直角坐标系吗?与同学交流)。

例4对于边长为4的正三角形abc,建立适当的直角坐标系,并写出各个顶点的坐标。

a

bc。

三:小结建立适当的直角坐标系,求的坐标要注意以下几点?

1)要找出坐标原点。

2)要说明横轴与纵轴的位置。

3)要求出必要的线段的长度。

四:练习p161(议一议)与随堂练习。

p162习题的第一题。

五:作业p162习题的第二题。

六:课外练习p162(试一试)。

鱼的变化第二课时。

一:复习点的坐标的特征。

1)关于横轴对称的两点横坐标相等,纵坐标相反。

2)关于纵轴对称的两点纵坐标相等,横坐标相反。

3)关于原点对称的两点横坐标相反,纵坐标相反。

二:看图确定点的坐标。

ac。

bd。

y

ad

bc。

x

三;练习。

1)p142做一做。

2)p143随堂练习。

四:小结p143议一议。

五:作业p144习题(做在书上)。

第五章回顾与思考。

一:学生看书回答问题。

1)在平面内,确定点的位置一般需要几个数据?举例说明。

2)在直角坐标系中,如何确定给定点的坐标?举例说明。

3)在直角坐标系中,横、纵坐标系轴上点的坐标各有什么特点?举例说明。

4)在直角坐标系中,将图形沿坐标轴方向平移,变化前后的对应点的坐标有什么异同?举例说明。

5)在直角坐标系中,将图形上各点的横坐标或纵坐标加上一个数(或乘-1),变化前后的`图形有什么关系?举例说明。

二:练习。

p145复习题a组。

三:小结点的坐标。

平面直角坐标系北师大版数学初二教案篇八

3、情感态度与价值观目标:感受代数与几何问题的相互转换。体会品面直角坐标系在解决实际问题的作用,培养数学学习兴趣。

难点:根据坐标描出点的位置,以及坐标轴上的点的坐标特点。

教师准备四张大的纸质坐标格子。

游戏导入:上一节课我们学习了有序数对,大家学习积极性很高,今天老师先考考你们,看你们掌握了多少。

我们将教室里的座位分为八列七排。a排b号记做有序数对(a,b),同学们先找准自己的数对号。听老师报数对,若是你自己的数对号,就快速站起来。反应太慢和站错了都算失败,扣一分;反之加一分。最后以组为单位,比比哪组得分最高。

我们可以发现,通过教室平面内的有序数对,可以唯一的确定与之对应的同学。

课本例子:我们知道数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。例如点a数轴上的坐标是—4,点b数轴上的坐标是2;我们说坐标是3。5的点,也可以在数轴上唯一确定。

教师活动:引导学生思考,怎么才能用同一标准,方便的确定每一点的位置?

结合横纵排编号以及数轴,我们可以综合考虑,引出一个横纵的数轴?

得出结论:我们可以在平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上为正方向;两坐标轴的交点为平面直角坐标系的原点。

那有了这样的平面直角坐标系,平面内的点就可以用之前学的有序数对来表示了。例如:由a分别向x轴和y轴作垂线。垂足m在x轴上的坐标是3,垂足n在y轴上的坐标是4,我们说a的坐标是3,纵坐标是4,有序数对(3,4)就叫做a的坐标,记作a(3,4)。

教师提问2:同学们按照这种做法,在坐标纸上标出b、c、d的坐标。

教师活动:走下讲台,关注学生的汇坐标过程方法,指出学生出现问题的地方,并予以改正。

教师提问3:在横纵坐标轴上各标一点e、f,问:坐标原点以及这两点的坐标是什么?

教师活动:引导学生思考归纳坐标轴上的点的坐标的特点。

得出结论:原点的坐标是(0,0),x轴上的点的坐标的纵坐标为0;y轴上的点的坐标的横坐标为0。

师生互动:与学生一起回忆平面直角坐标系的各部分的意义,平面内的点怎么对应坐标,以及坐标轴上的点的坐标特点。

“练一练”:

在黑板上贴出四张事先准备好的纸质坐标格子,在上面标出任意的abcdefg等点,每组我点一个按坐标序列对,对应的同学上黑板,来描出各点的坐标。对一个加一分,错一个扣一分,得分相同的看用时,时间短者胜,过程中下面的学生不能提示,提示一次扣2分。比赛看哪组学生代表得分最多。

(1,2)、(3,4)、(5,6)、(7,8)四位同学上黑板来描点。

教师活动:规范课堂气氛,公平的评判,对于表现好的小组代表予以表扬,表现稍逊的学生不要气馁,给予鼓励,争取下一次可以获胜。

思考平面直角坐标系中坐标与点的对应关系,如何由坐标值确定点的位置。下节课我们会探讨这个问题。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;

竖直的数轴称为y轴或纵轴,取向上为正方向;

平面直角坐标系北师大版数学初二教案篇九

2.渗透对应关系,提高学生的数感。

难点:正确画坐标和找对应点。

一。利用已有知识,引入。

1.如图,怎样说明数轴上点a和点b的位置,

2.根据下图,你能正确说出各个象棋子的位置吗?

二。明确概念。

由数轴的表示引入,到两个数轴和有序数对。

点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。

例1写出图中a、b、c、d点的坐标。

建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。

你能说出例1中各点在第几象限吗?

()a(3,4);b(-1,2);c(-3,-2);d(2,-2)。

问题1:各象限点的坐标有什么特征?

练习:教材49页:练习1,2。

三。深入探索。

教材48页:探索:

识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。

1.教材49页习题6.1——第1题。

2.教材50页——第2,4,5,6。

2.点的坐标及其表示。

3.各象限内点的坐标的特征。

4.坐标的简单应用。

必做题:教科书50页:3题。

(教材51页综合运用7,8,9,10为练习课内容)。

明确点的坐标的表示法。

仿照例题,画坐标轴,描点,要求能正确画平面直角坐标系。

通过探究,发现坐标不但能代表点的位置,而且能反映他所在的直线的特征。

平面直角坐标系北师大版数学初二教案篇十

【投影】合作探究:

有了空间直角坐标系,那空间中的任意一点a怎样来表示它的坐标呢?

(设问)平面直角坐标系中的点与坐标有着一一对应关系,那么在空。

间直角坐标系中点与三维有序实数组之间也有一一对应关系。

吗?(学生自行阅读教材p134)。

【点拨】是一一对应关系。

3、坐标平面及坐标轴上的点的特征。

(师生共同完成后,投影幻灯片)。

【投影】想一想?

在空间直角坐标系中,x、y、z坐标轴上的点、xoy、xoz、yoz坐标平面。

内的点的坐标各有什么特点?

(学生思考、讨论后教师总结)。

(三)典型例题、解释应用。

坐标及bb1的中点m的坐标和a1aoo1的对角线的交点n的坐标..目标:学生在教师的指导下完成,加深对点的坐标的理解.

(解的分析和过程见投影)。

原子.如图建立空间直角坐标系,试写出全部钠原子所在的位置的坐标.

点的坐标.

(解的分析和过程见投影)。

(四)随堂练习、巩固新知。

练习1、教材p136练习第2小题。

(五)课堂小结、温故知新。

3、空间直角坐标系中点的坐标表示方法及点与坐标的一一对应关系。

(六)布置作业。

教材p136练习第1、3小题。

(七)板书设计:

1、建立过程。

三、坐标系中特殊点的坐标特征。

1、坐标轴上点的坐标特征。

2、坐标平面上点的坐标特点。

四、例题分析。

平面直角坐标系北师大版数学初二教案篇十一

1.解有序数对的应用意义,了解平面上确定点的常用方法。

2.培养学生用数学的意识,激发学生的学习兴趣。

3.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程。

4.发展学生的形象思维能力,和数形结合的意识。

5.坐标表示平移体现了平面直角坐标系在数学中的应用。

掌握坐标变化与图形平移的关系;

有序数对及平面内确定点的方法。

利用坐标变化与图形平移的关系解决实际问题;

利用有序数对表示平面内的点。

1.有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)其中a表示横轴,b表示纵轴。

2.平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,竖直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4.坐标:对于平面内任一点p,过p分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点p的横坐标和纵坐标。

5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的'点不在任何一个象限内。

6.特殊位置的点的坐标的特点

(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。

(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。

(4)点到轴及原点的距离。

7.在平面直角坐标系中对称点的特点

(1)关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。(横同纵反)

(2)关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。(横反纵同)

(3)关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。(横纵皆反)

8.各象限内和坐标轴上的点和坐标的规律

第一象限:(+,+)正正

第二象限:(-,+)负正

第三象限:(-,-)负负

第四象限:(+,-)正负

x轴正方向:(+,0)

x轴负方向:(-,0)

y轴正方向:(0,+)

y轴负方向:(0,-)

x轴上的点的纵坐标为0,y轴上的点的横坐标为0.

原点:(0,0)

注:以数对形式(x,y)表示的坐标系中的点(如2,-4),"2"是x轴坐标,"-4"是y轴坐标。

9.坐标方法的简单应用:

(1)用坐标表示地理位置

(2)用坐标表示平移

10.平面直角坐标系其他公式

(1)坐标平面内的点与有序实数一一对应。

(2) 一三象限角平分线上的点横纵坐标相等。

(3)二四象限角平分线上的点横纵坐标互为相反数。

(4)一点上下平移,横坐标不变,即平行于y轴的直线上的点横坐标相同。

(5)y轴上的点,横坐标为0.

(6)x轴上的点,纵坐标为0.

(7)坐标轴上的点不属于任何象限。

平面直角坐标系北师大版数学初二教案篇十二

本节课从实际生活中常见的表示位置出发,引出有序数对的概念,指出利用有序数对可以表示物体的位置。围绕着这些内容,我设置了五个活动,活动一游戏“找朋友”——探究如何确定位置,活动二用数对表示位置,活动三用有序数对表示位置,活动四用有序数对表示位置的应用举例,活动五小结,布置作业。

上完课后,给我留下印象最深的`是第一个活动,我规定靠门口竖着第一列,横着第一行,我想找一个好朋友,首先,只给一个数据,他在第三行,请第三行的同学站起来,刷,同学们就迅速的站了起来,紧接着就听有的同学小声说,第三(四)列,他们都想成为老师的好朋友,而我,“欲擒故纵”,问:只给一个数据,能否确定位置?找了刚才哪行的一个学生回答,他说“不能”。接着,我给两个数据第四列第二排,同学们高兴的站了起来,给两个数据能确定一个位置吗?为什么?最后,我让同学站起来说出自己的位置,很多同学跃跃欲试,积极性非常高,通过这个活动,让我觉得学生都愿意做老师的好朋友,而我更愿意做他们的良师益友,每一个学生,都愿意受到老师的关注,而我不管学生的基础如何,每一节都课会关注每一个学生。

平面直角坐标系北师大版数学初二教案篇十三

1、理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2、掌握坐标法解决几何问题的步骤;体会坐标系的作用。

新授课。

启发、诱导发现教学、

多媒体、实物投影仪。

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动。

学生回顾。

刻画一个几何图形的位置,需要设定一个参照系。

1、数轴它使直线上任一点p都可以由惟一的实数x确定。

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置。

2、确定点的位置就是求出这个点在设定的坐标系中的坐标。

四、数学运用。

例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练。

变式训练。

2在面积为1的中,,建立适当的坐标系,求以m,n为焦点并过点p的椭圆方程。

例3已知q(a,b),分别按下列条件求出p的坐标。

(1)p是点q关于点m(m,n)的对称点。

(2)p是点q关于直线l:x—y+4=0的对称点(q不在直线1上)。

变式训练。

用两种以上的方法证明:三角形的三条高线交于一点。

思考。

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小结:本节课学习了以下内容:

六、课后作业:

平面直角坐标系北师大版数学初二教案篇十四

“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,数发展成式、方程与函数,点运动而成直线、曲线等几何图形,于是实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础。因此,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。直角坐标系的基本知识是学习全章及至以后数学学习的基础,在后面学习如何画函数图象以及研究一些具体函数图象的性质时,都要应用这些知识;注意到这种知识前后的关系,适当把握好本小节的教学要求,是教好、学好本小节的关键。如果没有透彻理解这部分知识,就很难学好整个一章内容。

这节课所选用的教学内容是:6.1.2平面直角坐标系(第二课时)。

知识目标:能根据坐标(都为整数)描出点的位置,能在方格纸中建立平面直角坐标系,描述事物的位置。

能力目标:通过多不同象限的点的坐标的符号的研究,培养归纳、概括能力。

思想目标:在教学中渗透分类的思想,初步体会数形结合的思想。

:总结各象限点及坐标轴的坐标的符号。

我认为本节课的教学重点是根据点的坐标在直角坐标系中描出点的位置,这是因为:

1.九年义务教育全日制初级中学数学教学大纲中明确规定要求学生掌握平面直角坐标系,能够使它成为有关论证思维工具。

2.学习知识的目的在于应用,而平面直角坐标系应用相当广泛,它是代数、几何学里最基本,最重要的解题的工具之一。

教学难点:总结各象限点及坐标轴的坐标的符号。是通过学生的探究实现的,用这种方法可以使学生更好的理解、记忆。

根据本节课的内容和学生的实际水平,我采用的是讲练结合的方法。

因为本节课的知识点之一是“象限”,这就需要教师的精讲。教师要引导学生去理解心知,并配合相关的练习,引导学生系统地掌握基础知识和基本技能,培养学生分析问题及解决问题的能力。

通过这节课的教学使学生“会质疑,会尝试”学生有得必先有疑,只有产生疑问学习才有动力。学生通过动手、动脑、动口,通过观察、分析、归纳得出结论,这样使学生感知知识的产生和发展过程,从而使学生达到理解消化的目的。教师不但要让学生学会、更应让他们会学。所以,在教学中我设计了两个探究问题,让他们自己探究,归纳。从而培养学生发现问题、分析问题、解决问题的能力。

利用上一节课对平面直角坐标系的初步认识,设计了一道口答题,(看图说出各点的坐标)设计意图是复习有关旧知识,可帮助学生理解新知,从而引出新课。

1.象限的概念。

以教师讲解的方式介绍四个象限的概念。

(设计意图:象限这种概念的教学还是以教师的讲解为宜。)。

2.各象限点的坐标的符号情况由学生探究。

具体安排是由例题、练习题作为铺垫进行探究,设计意图是通过学生自己的探究,已有利于对四个象限概念的理解,有有利于对点的坐标的理解。

3,同一图形在不同直角坐标系的坐标不同。也是由学生进行探究,具体由三步组成,一是找坐标轴,二是写坐标,三是从新建立坐标系并写出坐标,由浅入深的进行探究,符合学生认知水平的发展。

4、练习:一部分出现在新课几探究后,一部分出现在新课后,题是平面直角坐标系的变式练习,可考察思维的灵活性和全面性。又体现了平面直角坐标系的实用价值,突出考察思维的全面性和深刻性。

练习的要有一定的梯度,首先,基础型的题,找一名基础稍差的学生来说,增强其信心,其次,作图题,由于题的不是难点,由全体学生笔练完成,不必探究。

本节课的小结,由教师进行小结,一方面可以小结新知,另一方面小结平面直角坐标系的重要性及广泛用途。

a组b组两种领型,分两种层次,即利于面向全体,又利于分类推进。

板书:

【本文地址:http://www.xuefen.com.cn/zuowen/19571646.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档