实数北师大版数学初二教案(热门15篇)

格式:DOC 上传日期:2023-12-14 11:44:03
实数北师大版数学初二教案(热门15篇)
时间:2023-12-14 11:44:03     小编:FS文字使者

教案应具备清晰的结构和明确的教学目标,以及恰当的评估手段。教案的编写要充分考虑学生的学习背景和学习能力,确保教学内容的针对性和有效性。小编整理了一些教案示范,为大家提供一个教学设计的参考。

实数北师大版数学初二教案篇一

1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.

2.能判断给出的数是否为有理数;并能说出现由.

过程与方法。

1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.

2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.

情感与价值观。

1.激励学生积极参与教学活动,提高大家学习数学的热情.

2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.

3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.

教学重点。

1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.

2.会判断一个数是否为有理数.

教学难点。

1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.

2.判断一个数是否为有理数.

教学方法。

教师引导,主要由学生分组讨论得出结果.

教学过程。

一、创设问题情境,引入新课。

[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?

[生]在小学我们学过自然数、小数、分数.

[生]在初一我们还学过负数.

[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.

二、讲授新课。

1.问题的提出。

[生]好.(学生非常高兴地投入活动中).

[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.

同学们非常踊跃地呈现自己的作品给老师.

[师]现在我们一齐把大家的做法总结一下。

实数北师大版数学初二教案篇二

课件出示教材第75页图4-1及相关问题,并由学生讨论完成题目.

师:在现实生活中一个量随另一个量的变化而变化的现象大量存在.函数就是研究一些量之间确定性依赖关系的数学模型.(板书课题)。

二、探究新知。

函数的相关概念.

(1)课件出示教材第76页“做一做”第1题.

师:层数n和物体总数y之间是什么关系?

引导学生得出:只要给定层数,就能求出物体总数.

(2)课件出示教材第76页“做一做”第2题.

师:在关系式t=t+273中,两个变量中若知道其中一个,是否可以确定另外一个?

一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.

表示函数的方法一般有:列表法、关系式法和图象法.

对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a时的函数值.

理解函数概念时应注意:

(1)在某一变化过程中有两个变量x与y.

(2)这两个变量互相联系,当变量x取一个确定的值时,变量y的值就随之确定.

(3)对于变量x的每一个值,变量y都有唯一的一个值与它对应,如在关系式y2=x(x0)中,当x=9时,y对应的值为3或-3,不唯一,则y不是x的函数.

师:上述问题中,自变量能取哪些值?

指出要根据实际问题确定自变量的取值范围.

实数北师大版数学初二教案篇三

4.如果一个实数的平方根与它的立方根相等,则这个数是()。

a.0b.正整数c.0和1d.1。

答案:a。

解析:解答:0的平方根是0,0的立方根还是0,故只有0的平方根和它的立方根相等。

分析:考察特殊数的平方根和立方根,注意0的平方根和立方根.

5.有下列说法正确的是:()。

a无理数就是开方开不尽的数;b无理数是无限不循环小数;。

c带根号的数都是无理数d无限小数都是无理数。

答案:b。

分析:考察算术平方根的计算.

实数北师大版数学初二教案篇四

1.认识二次根式和最简二次根式的概念.

2.探索二次根式的性质.

3.利用二次根式的性质将二次根式化为最简二次根式.

过程与方法。

1、经历二次根式的基本性质,运算法则的探究过程,培养学生从具体到抽象,从特殊到一般的抽象概括能力。

2、体验归纳、猜想的思想方法。

情感态度与价值观。

通过多种方法化简二次根式,渗透事物间相互联系的辩证观点。

教学重难点。

教学重点。

探索二次根式的性质。

教学难点。

利用二次根式的性质将二次根式化为最简二次根式.

实数北师大版数学初二教案篇五

学生的知识技能基础:学生在上节课学习了算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数,能解决有关平均数的实际问题。

学生活动经验基础:学生在算术平均数和加权平均数的学习活动中,解决了一些相关的实际问题,再次感受到了数据收集和处理的必要性和作用,又获得了一些从事统计活动的数学活动经验,具备了一定的自主探索与合作交流的能力。

二、教学任务分析。

本节课的教学任务是:进一步了解权的差异对平均数的影响,理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题,发展数学应用能力,达成有关的情感态度目标。为此,本节课的教学目标是:

1.知识与技能:会求加权平均数,体会权的差异其平均数的影响;理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题。

2.过程与方法:通过探索算术平均数和加权平均数的联系与区别的过程,培养学生的思维能力;通过有关平均数的问题的解决,发展学生的数学应用能力。

3.情感与态度:通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。

三、教学过程设计。

本节课设计了五个教学环节:第一环节:情境引入;第二环节:合作探究;第三环节:运用提高;第四环节:课堂小结;第五环节:布置作业。

第一环节:情境引入。

内容:请同学们回忆:什么是算术平均数?什么是加权平均数?

请同学们各举一个有关算术平均数和加权平均数的实例,与同伴交流。

在学生的复习交流中引入课题:本节课将继续研究生活中的加权平均数,以及算术平均数和加权平均数的联系与区别。

实数北师大版数学初二教案篇六

1.能运用列表分析法分析数量关系;。

2.能熟练地列二元一次方程组解决简单的实际问题。

3.掌握运用列二元一次方程组解决实际问题的技能。

过程与方法。

经历和体验列方程组解决实际问题的过程,体会方程是刻画现实世界的有效的数学模型,培养学习数学应用能力。

情感态度与价值观。

1.通过问题的解决进一步认识数学与现实世界的密切联系。

2.通过对问题的解决,培养学生的必要的经济意识,增强他们节约成本、有效合理利用资源的意识。

教学重点。

1.初步体会列方程组解决实际问题的步骤.

2.学会用图表分析较复杂的数量关系问题。

实数北师大版数学初二教案篇七

教学目标:

知识与技能:

1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.

2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。

过程与方法。

1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。

情感现价值观。

1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。

2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。

3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造。

教学重点:

经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。

教学难点:

由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。

一创设问题情境,引入新课。

『师』:在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标。

我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。

探索两个关于坐标轴对称的图形的坐标关系。

1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗。

2.在右边的坐标系内,任取一点,做出这个点关于y轴对称的点,看看两个点的坐标有什么样的位置关系,说说其中的道理。

实数北师大版数学初二教案篇八

七年级上学期已学习了有理数的加、减、乘、除、乘方运算,本学期又学习了有理数的平方根、立方根,认识了实数.这些都为本课时学习二次根式的运算公式提供了知识基础.当然,毕竟是一个新的运算,学生有一个熟悉的过程,运算的熟练程度尚有一定的差距,在本节课及后两节课的学习中,应针对学生的基础情况,控制上课速度和题目的难度.

二、教材任务分析。

本节分为三个课时。第一课时,认识二次根式和最简二次根式的概念,探索二次根式的性质,并能利用二次根式的性质将二次根式化为最简二次根式的形式;第二课时,基于二次根式的性质得到二次根式乘除的法则以及加减运算的法则,进而利用它们进行二次根式的运算;第三课时,进一步进行二次根式的运算,发展学生的运算技能,并关注解决问题方式的多样化,提高学生运用法则的灵活性和解决问题的能力.

为此,确定本节课教学目标是:

1.认识二次根式和最简二次根式的概念.

2.探索二次根式的性质.

3.利用二次根式的性质将二次根式化为最简二次根式.

三、教学过程设计。

本节课设计了六个教学环节:第一环节:明晰概念;第二环节:探究性质;。

第三环节:知识巩固;第四环节:知识拓展;第五环节:课时小结;。

实数北师大版数学初二教案篇九

硫酸厂接到一批订单,急需一批浓度为60%的硫酸1200吨.厂长高兴地叫来生产科长告诉他快去准备.可生产科长一听就发愁了,说:“我们还有一大批浓度70%和浓度55%的硫酸,却没有浓度60%的硫酸,如果现在生产恐怕时间来不及了.”厂长一听就火:“我们已经订了合同,又收了人家的钱,如果到期交不了货,还得赔违约金,搞不好,这个月连工资都发不了,快去想想办法.”

生产科长愁眉苦脸回到车间.技术员小张忙过来询问发生了什么事.听科长一说,小张想了想,又拿出纸笔算了算,高兴地说:“科长,我们可以用现有的两种硫酸去配制呀!”“对呀,怎么我没想到呢?快来,我们仔细算一算.”

那么你知道这两种硫酸各需多少吨,才能配制成浓度为60%的硫酸1200吨吗?

实数北师大版数学初二教案篇十

本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动.学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础.

二、教学任务分析。

本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节.具体内容是运用勾股定理及其逆定理解决简单的实际问题.当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力.

本节课的教学目标是:

1.通过观察图形,探索图形间的关系,发展学生的空间观念.

2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.

3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点.

四、教法学法。

1.教学方法。

引导—探究—归纳。

本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:

(1)从创设问题情景入手,通过知识再现,孕育教学过程;。

(2)从学生活动出发,顺势教学过程;。

(3)利用探索研究手段,通过思维深入,领悟教学过程.

2.课前准备。

教具:教材、电脑、多媒体课件.

学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具.

五、教学过程分析。

本节课设计了七个环节.第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业.

实数北师大版数学初二教案篇十一

学生的技能基础:在七年级和八年级上学生学习了很多与几何相关的知识,为今天的进一步的学习作好了知识储备,同时,学生也经历了很多验证结论合理性的过程,有了初步的逻辑推理思维,合情推理能力得到了很大的提高,为今天系统的培养学生严谨的逻辑推理能力打下了良好的基础.

学生活动经验基础:在以往的几何学习中,学生已经参与了对几何图形的观察、比较、动手操作、猜测、归纳等活动,对今天本节课的分组讨论、自主探究等活动有很大的帮助.

二、教学任务分析。

学生的直观能力是数学教学中要培养的一个方面,但如果学生仅有对图形的直观感受而不能进行推理、论证,有时是会产生错误的结论,本课时安排《你能肯定吗》的教学是让学生的直观感受与实际结果之间产生思维上的碰撞,从而使学生对原有的直观感觉产生怀疑,从而确立对某一事物进行合理论证的必要性。因此,本课时的教学目标是:

1.运用实验验证、举反例验证、推理论证等方法来验证某些问题的结论正确与否.

2.经历观察、验证、归纳等过程,使学生对由这些方法所得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识.

3.了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.

实数北师大版数学初二教案篇十二

(本课适合有条件使用计算器的学校)。

学生知识技能基础:学生在七年级上学期已经学习了《计算器的使用》,学会了使用计算器进行有理数的加、减、乘、除、乘方运算,掌握了计算器的基本使用方法.

学生活动经验基础:学生在七年级上学期已经学过了使用计算器进行简单的有理数的计算并利用计算器进行了一定的探索活动,积累了一些活动经验.

二、教学任务分析。

本节是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》第5节,具体内容为:用计算器求平方根和立方根以及有关混合运算.经历运用计算器探求数学规律的活动,发展合情推理的能力.

为此,本课的教学目标是:

2.鼓励学生自己探索计算器的用法,经历运用计算器探求数学规律的活动,发展学生的探究能力和合情推理的能力.

3.在用计算器探索有关规律的过程中,体验数学的规律性,体验数学活动的创造性和趣味性,激发学习兴趣.

三、教学过程设计。

教学准备:每位学生一个计算器,并按计算器的类型分小组。

目的:便于使用相同计算器的学生进行讨论,共同学习。

实数北师大版数学初二教案篇十三

课前预习:

熟读诗歌,了解作者以及诗歌的写作背景,体会诗歌中的作者表达的情感。

相关课程标准:

诵读诗词,注重积累、感悟和运用,提高自己的欣赏品位。在通读诗歌的基础上,理清思路,理解、分析主要内容,体味和推敲重要词句在语言环境中的意义和作用。

评价任务:

1、进行朗读,注意体会诗歌的语言,

2、再次朗读诗歌,引导学生理解诗歌内容,体会作者的思想情感。

教学目标:

1、了解边塞诗歌的特点。

2、整体感知诗歌,了解诗歌的写作背景,作者生平、思想,律诗的一些常识;。

3、通过反复读诗,让学生在吟咏之中加深理解,熟读成诵,品味诗歌语言;。

4、体会诗的意境,领会诗所表达的深刻思想情感。

教学重点:熟读成诵,理解作者所表达的思想感情。

教学难点:理解诗句所蕴涵的内涵,体会诗歌意境。

教学时间:2课时。

教学过程:

一、导入新课:

开元年间,诗人王之涣与王昌龄、高适齐名。一天,他们三人到酒店喝酒,遇到梨园伶人唱曲宴乐,三人便私下约定伶人演唱各人所作诗篇的情形定诗名高下。结果三人的诗都被唱到了,而诸伶人中最美德女子所唱的则为“黄河远上白云间”。王之涣甚为得意,这就是著名的“旗亭画壁”的故事。这个故事未必真有,但王之涣的诗歌确实是当时广为传唱的。今天我们就来学习他和其他三位有名的边塞诗人的作品。

二、简介作者:

实数北师大版数学初二教案篇十四

学生的技能基础:学生已经有了初步的统计意识,在第一课时的学习中,学生已经接触了极差、方差与标准差的概念,并进行了简单的应用,但对这些概念的理解很单一,认为方差越小越好.

学生活动经验基础:在以往的统计课程学习中,学生经历了大量的统计活动,感受到了数据收集和处理的必要性和作用。课堂主要采用实验讨论、自主探索、合作交流等学习方式,学生有一定的活动基础,具备了一定的合作与交流的能力。

二、教学任务分析。

在学生对极差、方差、标准差等概念都有了一定的认识之后,学生对这些刻画数据离散程度的三个统计量的认识上还存在一个误区,那就是认为方差或标准差越小越好。因此,本节课安排了学生对一些实际问题的辨析,从而使学生对这三个统计量有一个更深刻的认识,为此,本节课的教学目标是:

1.知识与技能:进一步了解极差、方差、标准差的求法;会用极差、方差、标准差对实际问题做出判断。

2.过程与方法:经历对统计图中数据的读取与处理,发展学生初步的统计意识和数据处理能力。根据极差、方差、标准差的大小对实际问题作出解释,培养学生解决问题能力。

3.情感与态度:通过解决现实情境中的问题,提高学生数学统计的素养,用数学的眼光看世界。通过小组活动,培养学生的合作意识和交流能力。

三、教学过程分析。

本节课设计了五个教学环节:第一环节:情境引入;第二环节:合作探究;第三环节:运用提高;第四环节:课堂小结;第五环节:布置作业。

第一环节:情境引入。

实数北师大版数学初二教案篇十五

1、进一步了解极差、方差、标准差的求法;。

2、用极差、方差、标准差对实际问题作出判断。

过程与方法。

经历数据的读取与处理提高解决问题的能力;。

情感态度与价值观。

通过小组合作,培养合作意识.

教学重点:

1、会计算一组数据的极差、方差、标准差;。

2、由极差、方差、标准差对实际问题作出。

教学难点:

对一组数据的极差、方差、标准差作出判断.

教学过程。

一、复习。

极差:指一组数据中最大和最小数据的差.

方差:各个数据与平均数之差的平方的平均数。

【本文地址:http://www.xuefen.com.cn/zuowen/19452291.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档