七年级上数学的教案(精选14篇)

格式:DOC 上传日期:2023-12-14 08:00:13
七年级上数学的教案(精选14篇)
时间:2023-12-14 08:00:13     小编:雅蕊

教案应该具备可行性和可操作性,便于学生理解和参与。教案中应当合理安排评估和反馈环节,及时了解学生的学习情况和掌握程度。以下是一些获奖教师自带的教案,经过实践检验,具有很高的实用性。

七年级上数学的教案篇一

2、初步培养学生观察、分析和抽象思维的能力。

重点:列代数式。

难点:弄清楚语句中各数量的意义及相互关系。

一、从学生原有的认知结构提出问题。

1、庇么数式表示乙数:(投影)。

(1)乙数比x大5;(x+5)。

(2)乙数比x的2倍小3;(2x—3)。

(3)乙数比x的倒数小7;(—7)。

(4)乙数比x大16%((1+16%)x)。

(应用引导的方法启发学生解答本题)。

二、讲授新课。

例1用代数式表示乙数:

(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%。

解:设甲数为x,则乙数的代数式为。

(1)x+5(2)2x—3;(3)—7;(4)(1+16%)x。

(本题应由学生口答,教师板书完成)。

最后,教师需指出:第4小题的答案也可写成x+16%x。

例2用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的与乙数的的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积。

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式。

解:设甲数为a,乙数为b,则。

(1)2(a+b);(2)a—b;(3)a2+b2;

(4)(a+b)(a—b);(5)(a+b)(b—a)或(b+a)(b—a)。

(本题应由学生口答,教师板书完成)。

例3用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数。

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n;(2)5m+2。

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)。

例4设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和。

分析:启发学生,做分析练习比绲1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

解:(1)3(a+5);(2)(a—1);(3)(5a+7);(4)a2+a。

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)。

例5设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)。

解:(1)m(m+6)个;(2)(m)m个。

三、课堂练习。

1鄙杓资为x,乙数为y,用代数式表示:(投影)。

(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商。

2庇么数式表示:

(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数。

3庇么数式表示:

(1)与a—1的和是25的数;(2)与2b+1的积是9的数;

(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数。

〔(1)25—(a—1);(2);(3)2x2+2;(4)y(y+3)薄。

四、师生共同小结。

首先,请学生回答:

1痹跹列代数式?2绷写数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

五、作业。

1庇么数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

2币阎一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积。

学法探究。

分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律。

当圆环为三个的时候,如图:

此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

解:

=99a+b(cm)。

七年级上数学的教案篇二

第1教案。

教学目标。

1.能结合实例,了解一元一次不等式组的相关概念。

2.让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。

3.提高分析问题的能力,增强数学应用意识,体会数学应用价值。

教学重、难点。

1..不等式组的解集的概念。

2.根据实际问题列不等式组。

教学方法。

探索方法,合作交流。

教学过程。

一、引入课题:

1.估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。

2.由许多问题受到多种条件的限制引入本章。

二、探索新知:

自主探索、解决第2页“动脑筋”中的问题,完成书中填空。

分别解出两个不等式。

把两个不等式解集在同一数轴上表示出来。

找出本题的答案。

三、抽象:

教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)。

七年级上数学的教案篇三

3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

数轴的概念和用数轴上的点表示有理数。

教学过程(师生活动)设计理念。

设置情境。

教师通过实例、课件演示得到温度计读数.

(多媒体出示3幅图,三个温度分别为零上、零度和零下)。

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。

(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学。

教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

寻找规律。

归纳结论。

问题3:

1,你能举出一些在现实生活中用直线表示数的实际例子吗?

3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

4,每个数到原点的距离是多少?由此你会发现了什么规律?

(小组讨论,交流归纳)。

归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

教科书第12页练习。

课堂小结。

请学生总结:

1,数轴的三个要素;

2,数轴的作以及数与点的转化方法。

本课作业。

1,必做题:教科书第18页习题1.2第2题。

2,选做题:教师自行安排。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级上数学的教案篇四

地位及作用:方程和方程组是第三学段数与代数的主要内容之一。一元一次方程是最简单、最基本的代数方成。它不仅在实际中有广泛的应用,而且是学习二元一次方程组等后继知识的基础。可以说它承前启后,有重要地位。还能培养学生的方程思想和建模能力,发展数感和符号感,提高分析问题和解决问题的能力。

本单元特点:本单元重视问题情境的设置,采用了问题情境---建立模型---求解、应用和拓展的内容呈现模式并逐步渗透方程思想、建模思想,发展数感和符号感,提高分析问题和解决问题的能力。

教材设计(课题组成)。

本单元教学目标:

知识和技能:

1、了解方程和方程的解、一元一次方程及其相关概念;会解一元一次方程;掌握解一元一次方程的步骤。

2、了解等式的基本性质及其在方程中的作用。

过程和方法:会根据具体问题中的数量关系列出一元一次方程并求解,能根据具体问题的实际意义检验结果是否合理。情感态度、价值观:

1、在经历建立方程模型解决实际问题的过程中,体方程思想、建模思想,并体会方程的应用价值。通过学习培养自己学习数学的兴趣和信心。

2、提高学习能力,增强和他人合作的意识。

本单元重点、难点:重点是根据具体问题中的数量关系列出一元一次方程;解一元一次方程的步骤;运用一元一次方程解决实际问题。难点是根据题意找出等量关系,列出一元一次方程解应用题。

教学关键:等式的基本性质;根据实际问题中的数量关系正确的列出代数式;根据实际问题中的等量关系正确列出等式。

重视问题情境的设置,采用问题情境---建立模型---求解、应用和拓展的内容呈现模式;让学生的思维真正动起来,让学生通过感知概括应用的思维过程去发现并掌握规律;抓住教学关键:等式的基本性质;根据实际问题中的数量关系正确的列出代数式;根据实际问题中的等量关系正确列出等式。

让学生的思维真正动起来,让学生通过感知概括应用的思维过程去发现并掌握规律。

方程和方程的解(1课时);一元一次方(1课时);等式的基本性质(1课时);一元一次方程的解法(3课时);一元一次方程的应用(6课时);回顾与总结(1课时)。共13课时。

七年级上数学的教案篇五

重点:列代数式。

难点:弄清楚语句中各数量的意义及相互关系。

本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。

列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。

如:用代数式表示:比的2倍大2的数。

分析本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2+2.

(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。

(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。

(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。

(4)在代数式中出现除法时,用分数线表示。

列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

七年级上数学的教案篇六

a、准备活动:

1、师生游戏“唱反调”:我们知道在小学学过的0以外的数前面加上负号“-”的数就是负数。现在我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。

2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可建议生择两组在数轴上表示以后作答(在原点两侧到原点的`距离相等,真可谓从原点背道而驰“唱反调”)。

提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?

归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。

b、学习概念:

1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称合适呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。

一般地,a和-a互为相反数。“-a”可读成“a的相反数”。

2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)。

3、从上述意义上看,你看如何规定0的相反数更为合理?

商讨得:0的相反数仍是0,即0的相反数等于它本身。

c、应用举例:

1、两人一组,一人任说一个有理数,请同伴说出它的相反数。

2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。

3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。

4、化简下列各数p124练习,你愿意继续尝试化简下列各式吗?

+(-2/3),-(-2/3),-(+2/3),+(+2/3)。

你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。

5、若a=-5,则-a=;若-x=7,则x=。

七年级上数学的教案篇七

2?培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

重点和难点:正确地求出代数式的值。

一、从学生原有的认识结构提出问题。

1?用代数式表示:(投影)。

(1)a与b的和的平方;(2)a,b两数的平方和;。

(3)a与b的和的50%?

2?用语言叙述代数式2n+10的意义?

3?对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)。

若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

二、师生共同研究代数式的值的意义。

2?结合上述例题,提出如下几个问题:

(1)求代数式2x+10的值,必须给出什么条件?

(2)代数式的值是由什么值的确定而确定的?

(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案?(教师板书例题时,应注意格式规范化)。

例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值?

解:当x=7,y=4,z=0时,

x(2x-y+3z)=7×(2×7-4+3×0)。

=7×(14-4)。

=70?

注意:如果代数式中省略乘号,代入后需添上乘号。

七年级上数学的教案篇八

一、情景引入(复习引入)。

1、求下列和数的算术平方根4、9、100、9/16、0.25。

2、如果一个数的平方等于9,这个数是多少?

讨论:这样的数有两个,它们是3和-3.注意中括号的作用.

又如:,则x等于多少呢?

二、探索新知。

1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.

求一个数的平方根的运算,叫做开平方.

例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.

2、观察:课本p45的图6.1-2.

图6.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.并根据这个关系说出1,4,9的平方根.

例4求下列各数的平方根。

(1)100(2)(3)0.25。

3、按照平方根的概念,请同学们思考并讨论下列问题:

正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?

一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示.

例5说出下列各式的意义,并求出它们的值。

归纳:平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

4、堂上练习:课本p46小练习1、2、3。

三、归纳小结(学生归纳,老师点评)。

1、什么叫做一个数的`平方根?

2、正数、0、负数的平方根有什么规律?

3、怎样求出一个数的平方根?数a的平方怎样表示?

四、布置作业。

五、板书设计:

6.1平方根。

1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.

2、a的平方根记为:

3、平方根的性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

1已知第一个正方形纸盒的棱长是6厘米,第二个正方形纸盒的体积比第一个正方形纸盒的体积大127立方厘米,试求第二个正方形纸盒的棱长.

1.下面说法正确的是()。

a.4是2的平方根。

b.2是4的算术平方根。

c.0的算术平方根不存在。

d.-1的平方的算术平方根是-1。

答案:b。

知识点:平方根;算术平方根。

解析:

解答:a、4不是2的平方根,故本选项错误;。

b、2是4的算术平方根,故本选项正确;。

c、0的算术平方根是0,故本选项错误;。

d、-1的平方为1,1的算术平方根为1,故本选项错误.

故选b.

分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.

七年级上数学的教案篇九

平行公理及推论

(二)难点

平行线概念的理解

(三)解决办法

通过引导学生尝试发现新知、练习巩固的方法来解决

投影仪、三角板、自制胶片

1通过投影片和适当问题创设情境,引入新课

2通过教师引导,学生积极思维,进行反馈练习,完成新授

3学生自己完成本课小结

(-)明确目标

(二)整体感知

(三)教学过程

创设情境,引出课题

学生齐声答:不是

师:因此,平面内的两条直线除了相交以外,还有不相交的情形,这就是我们本节所要研究的内容(板书课题)

[板书]24平行线及平行公理

探究新知,讲授新课

师:在我们生活的周围,平面内不相交的情形还有许多,你能举例说明吗?

学生:窗户相对的棱,桌面的对边,书的对边……

师:我们把它们向两方无限延伸,得到的直线总也不会相交我们把这样的直线叫做平行线

[板书]在同一平面内,不相交的两条直线叫做平行线

教师出示投影片(课本第74页图2?17)

师:请同学们观察,长方体的棱与无论怎样延长,它们会不会相交?

学生:不会相交

师:那么它们是平行线吗?

学生:不是

师:也就是说平行线的定义必须有怎样的'前提条件?

学生:在同一平面内

师:谁能说为什么要有这个前提条件?

学生:因为空间里,不相交的直线不一定平行

教师在黑板上给出课本第73页图2

学生:两种相交和平行

由此师生共同小结:在同一平面内,两条直线的位置关系只有相交、平行两种

尝试反馈,巩固练习(出示投影)

1判断正误

(1)两条不相交的直线叫做平行线()

(2)有且只有一个公共点的两直线是相交直线()

(3)在同一平面内,不相交的两条直线一定平行()

(4)一个平面内的两条直线,必把这个平面分为四部分()

2下列说法中正确的是()

a在同一平面内,两条直线的位置关系有相交、垂直、平行三种

b在同一平面内,不垂直的两直线必平行

c在同一平面内,不平行的两直线必垂直

d在同一平面内,不相交的两直线一定不垂直

学生活动:学生回答,并简要说明理由

师:我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面清同学在练习本上完成下面题目(投影显示)

已知直线和外一点,过点画直线

师:请根据语句,自己画出已知图形

学生活动:学生在练习本上画出图形

师:下面请你们按要求画出直线

注意:(1)在推动三角尺时,直尺不要动;

(2)画平行线必须用直尺三角板,不能徒手画

尝试反馈,巩固练习(出示投影)

1画线段,画任意射线,在上取、、三点,使,连结,用三角板画,,分别交于、,量出、、的长(精确到)

2读下列语句,并画图形

(1)点是直线外的一点,直线经过点,且与直线平行

(2)直线、是相交直线,点是直线、外的一点,直线经过点与直线平行与直线相交于

(3)过点画,交的延长线于

学生活动:学生思考并回答,能画,而且只能画一条

师:我们把这个结论叫平行公理,教师板书

【板书】平行公理:经过直线外一点,有且只有一条直线与这条直线平行

学生:思考后,立即回答,能画无数条

师:请同学们在练习本上完成

(出示投影)

已知直线,分别画直线、,使,

学生活动:学生在练习本上完成

师:请同学们观察,直线、能不能相交?

学生活动:观察,回答:不相交,也就是说

师:为什么呢?同桌可以讨论

学生活动:学生积极讨论,各抒己见

学生活动:教师让学生积极发表意见,然后给出正确的引导

师:我们观察图形,如果直线与相交,设交点为,那么会产生什么问题呢?请同学们讨论

学生活动:学生在教师的启发引导下思考、讨论,得出结论

[板书]如果两条直线都和第三条直线平行,那么这两条直线也互相平行

学生活动:学生思考,回答:不对,给出反例图形,

例如:如图1所示,射线与就不相交,也不平行

师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?

生:它们所在的直线平行

尝试反馈,巩固练习(投影)

七年级上数学的教案篇十

3, 体验分类是数学上的常用处理问题的方法。

正确理解有理数的概念

探索新知

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

例如,

对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,”。

按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

试一试:

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练

1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号:。

思考:

问题1:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

创新探究

问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等。

小结与作业

到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

七年级上数学的教案篇十一

3.使学生初步理解数形结合的思想方法。

重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数。

难点:正确理解有理数与上点的对应关系。

一、从学生原有认知结构提出问题。

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容——.

二、讲授新课。

让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度。在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。具体方法如下(边说边画):

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)。

在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做。

通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可。

三、运用举例变式练习。

例1画一个,并在上画出表示下列各数的点:

例2指出上a,b,c,d,e各点分别表示什么数。

课堂练习。

示出来。

2.说出下面上a,b,c,d,o,m各点表示什么数?

最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示。

四、小结。

指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法。

本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究。

五、作业。

1.在下面上:

(1)分别指出表示-2,3,-4,0,1各数的点。

(2)a,h,d,e,o各点分别表示什么数?

2.在下面上,a,b,c,d各点分别表示什么数?

3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};。

课堂教学设计说明。

从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念。教学中,的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的例如,向学生提问:在上对应一亿万分之一的点,你能画出来吗?它是不是存在等。

七年级上数学的教案篇十二

课题学习《从数据谈节水》,是人教实验版数学八年级(上)教材第十一章《数据的描述》的第三节。这一节是在学习了用统计图表描述数据以后的一节活动课,它是对七年级第四章《数据的收集与整理》及本章数据的描述等知识的巩固和深化,是对所学的有关数据处理知识的综合运用。在这一活动中让学生感受统计与实际生活的联系以及在解决实际问题中的作用,促使学生掌握基本的统计方法,通过对数据的直观描述尽可能多地获取有用的信息,同时增强学生的节水意识及环保意识。

2、教学目标

根据学生的学习内容、新课程理念和认知水平,特制定如下目标:

(1)知识与技能:进一步巩固处理数据的基本步骤和方法,能灵活选用统计图对具体问题的数据进行清晰、有效地描述,并获取有用信息并作出合理决策。

(2)过程与方法:让学生亲身经历独立思考、动手操作、团结合作、互相交流的学习过程,积累数学活动的经验,学会合理处理信息,发展数学应用意识。

(3)情感与态度:使学生感受统计在生产生活中的作用;培养学生的数感;使学生乐于接触社会环境中的数学信息,激发学生的节水及环保意识。

3、重点和难点

(1)重点:培养学生的数感和统计观念。

(2)难点:能根据具体问题选择适当的统计图描述数据并获取有用的信息,并作出合理的判断和预测。

我今天所授课的班级,应该说学生的数学素质参差不齐,有部分学生在课堂上乐于参与数学活动,而另一部分学生则学习基础较差,会被动参与,因此应激发学生参与活动学习的兴趣,使之获得成就感。

枯燥的数据是令人乏味的,首先可采用激趣法:恰当收集选取图片和视频资料,为课题学习营造学生熟悉的生活情境,吸引学生,巧妙设疑,激发学生的活动兴趣。分层安排活动,能力强的学生自主思考,独立完成,能力差的学生分组分工合作完成,然后全班交流。例外,提供更多的学习扩展资料供学生浏览。这样可让所有学生有信心、能积极主动地参与活动,尽可能为每个学生提供获取知识的空间,让他们在活动中获得的成功,让每个学生的能力都能得到提高,让他们体验学习的快乐、获得成就感。

本课题在多媒体教室进行学习。学生在课前也收集了一些有关水资源的资料,准备直尺、铅笔、圆规、量角器等作图工具。

教学过程设计意图说明

新课引入

(2)你了解世界及我国有关水资源的现状吗?借助图片展示,是学生对我国国有资源现状有直观感受,触发他们的节水意识!

探究新知活动一:

阅读课本80页的“背景资料”,从中收集数据,画出统计图,并回答下列问题:

(1)地球上的水资源和淡水资源分布情况怎么样?

(2)我国农业和工业耗水量情况怎么样?

(3)我国不同年份城市生活用水的变化趋势怎么样?

学生阅读资料,通过小组合作、讨论的形式完成活动一。

活动二:收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:

(1)家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?

(2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?

(5)你还可以得到哪些信息?

(教师巡视,指导各小组开展调查实验活动)

活动三:资料展示:(投影)我国水资源利用情况的有关资料,讨论工农业生产及生活节约用水的好办法。

课堂小结:

1.当前水资源状况,

2.节约水资源带来的价值,

3.节约水资源的办法

整理本节课内容,统计相关数据;查找有关“节约水资源”的课题报告;并分析课题报告的写法。

通过具体数据使学生了解水资源现状,更深刻体会节水的重要性!

来源于同学们身边的数据更有说服力,同时让同学感受到节水应从我做起。

自由发言,各抒己见;把数学和生活联系起来,是学生体会到学有所用,体会到数学的应用价值。

引导学生思考、交流、梳理所学知识,培养理性思维能力,加深对资源现状的理解。

学会整理、归纳所学知识;分析课题报告。

这个课题学习,应该用比较长的时间,运用所学知识对生活问题进行学习、探究。这需要学生的充分准备,然后可安排学生一起进行探讨、交流。在多媒体教室进行这个课题学习,可以充分调动学生的学习兴趣,发挥学生的各方面才能,培养学生合作学习的能力。

七年级上数学的教案篇十三

《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。

(1)、知道乘方、底数、指数和幂的概念,会进行有理数的乘方运算;

(3)学生尝试利用知识的迁移获得新知,通过发现问题、研究问题,探索规律,增强数学应用意识。

1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的平方和立方的知识水平,且刚学完有理数的乘法,能帮助学生很好的理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。

2、教学重、难点

教学重点:理解乘方定义,会进行有理数的乘方运算;

教学难点:有理数乘方运算的符号法则的形成与运用

教法:启发式教学,多媒体辅助教学;

学法:观察、比较、归纳,合作探究。

1、创设情境提出问题

(1)、边长为3的正方形的面积是x 3×3可以记作x,读作xxx.

(2)、棱长为3的正方体的体积是x 3×3×3可以记作x,读作xxx.

通过创设问题情境,唤起旧知,为学习新知做好铺垫

2、自主探索形成新知

观察下列各式有何特征?

(1)2×2×2×2=?

(2)(-3)×(-3)×(-3)=?

引导学生通过类比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。

3、应用新知巩固概念

4、探索研究发现规律

通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。

5、应用新知巩固训练

进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力

6、拓展思维知识延伸

利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。

7、课堂小结归纳反思

锻炼学生及时总结的良好习惯和归纳能力

教学评价分析:

对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;

(1)关注学生的智力参与度

(2)学生的课堂参与度

2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的学生知识技能的发展。

七年级上数学的教案篇十四

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)。

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有-的新数。

【本文地址:http://www.xuefen.com.cn/zuowen/19391148.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档