教案的修改和完善是一个不断反思和改进的过程,要不断总结经验和教训。教案的编写需要关注学生的学习兴趣和能力特点。通过学习这些教案范例,能提高我们的教学设计水平。
代数式北师大版数学初一教案篇一
24.某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米1.3元;超过5千米,每千米2.4元。
(1)若某人乘坐了()千米的路程,则他应支付的费用是多少?
(2)若某人乘坐的路程为6千米,那么他应支付的费用是多少?
26.某单位在2013年春节准备组织部分员工到某地旅游,现在联系了甲乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠措施:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队员工的费用,其余员工八折优惠.
(1)若设参加旅游的员工共有m(m10)人,则甲旅行社的费用为元,
乙旅行社的费用为元;(用含m的代数式表示并化简)。
(2)假如这个单位组织包括带队员工在内的共20名员工到某地旅游,该单位选择哪一家旅行社比较优惠?说明理由.
(3)如果这个单位计划在2月份外出旅游七天,设最中间一天的日期为n,则这七天的日期之和为.(用含有n的代数式表示并化简)
假如这七天的日期之和为63的倍数,则他们可能于2月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程)
代数式北师大版数学初一教案篇二
教学目标:
1.经历探索整式除法运算法则的过程,会进行简单的整式除法运算;。
2.理解整式除法运算的算理,发展有条理的思考及表达能力。
教学重点:可以通过单项式与单项式的乘法来理解单项式的除法,要确实弄清单项式除法的含义,会进行单项式除法运算。
教学难点:确实弄清单项式除法的含义,会进行单项式除法运算。
教学方法:探索讨论、归纳总结。
一、复习回顾。
活动内容:复习准备。
1.同底数幂的除法。
同底数幂相除,底数不变,指数相减。
2.单项式乘单项式法则。
单项式与单项式相乘,把它们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
二、情境引入。
活动内容:由生活常识“先见闪电,后闻雷鸣”的例子引出课题。
三、探究新知。
活动内容:
1.直接出示问题,由学生独立探究。
你能计算下列各题吗?如果能,说说你的理由。
一、学习目标:1、熟练地掌握多项式除以单项式的法则,并能准确地进行运算.
2、理解整式除法运算的算理,发展有条理的思考及表达能力.
二、学习重点:多项式除以单项式的法则是本节的重点.
三、学习难点:整式除法运算的算理及综合运用。
代数式北师大版数学初一教案篇三
了解数据收集与整理的基本方法,学习设计调查问卷,体会并掌握数据收集的过程.
过程与方法。
收集数据的过程要有组织性,也要有认真的态度,积极参与,在与他人合作的过程中共同完成.
情感、态度与价值观。
体会数据在解决实际问题中的作用,逐步养成用数据说话的良好习惯.
【教学重难点】。
重点:掌握数据收集的基本方法,设计调查问卷.
难点:掌握数据收集的方法,会设计调查问卷.
【教学过程】。
一、创设情境,引入新课。
享有“杂交水稻之父”美称的袁隆平爷爷,为了寻找理想的水稻育种材料,他北至黑龙江,南到海南,观察了数不清的稻田,他对水稻生长的土壤肥沃情况、植株生长高度、植株的产量等各方面的数据进行了系统的收集,然后进行比较,最后筛选出了满意的材料,培育出了深受农民喜爱的杂交水稻.
要想发现一个事物的规律,就需要我们收集大量的数据,从中发现它们隐含的规律.
在生活中,我们会从报纸、电视或者网络上见到很多的数据,它们是信息的载体,我们的生活离不开数据,我们随时随地都在和数据打交道.本节课我们来学习如何收集数据.
问题展示:班级要举办元旦联欢晚会,如果由你来策划这次活动,你将如何安排节目?
学生合作探究,然后由代表发言.
师:要想解决这个问题,我们需要经历这样的活动过程:。
第一步:明确调查问题——同学们喜欢什么样的文艺节目;。
第二步:明确调查对象——全班每位同学;。
第三步:选择调查方法——采用调查问卷法;。
第四步:展开调查——每位同学填写问卷;。
第五步:记录结果,分析处理;。
第六步:得出结论.
师:此次调查问卷是如何设计的?你知道如何来设计调查问卷吗?
学生看书、交流,并举手回答.
代数式北师大版数学初一教案篇四
学习目标:1.经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展符号感。
2.了解单项式、多项式、整式产生的背景,理解单项式、多项式的相关概念。
4.进一步培养学生认识特殊与一般的辩证关系。
学习重点:单项式、多项式、整式概念的理解。
学习难点:单项式的系数、次数;多项式的项数、次数等概念。
一、自主预习:
预习内容:
预习检测:。
1.如图,一个长方体的箱子紧靠墙角,它的长、宽、高分别是a,b,c。这个箱子露在外面的表面积是;它项式,它的次数是。
2.下面两组式子各有什么特点?
我的疑惑:
二、合作探究:
代数式北师大版数学初一教案篇五
1.经历探索规律并用代数式表示规律的过程,能用代数式表示以前学过的运算律和计算公式.
2.体会字母表示数的意义,形成初步的符号感,提高应用数学的意识,体会数形结合的思想方法.
【学习重点】。
能用代数式表示以前学过的运算律和计算公式,会用字母表示数.
【学习难点】。
体会字母表示数的意义,形成初步的符号感,提高应用数学的意识.
行为提示:点燃激情,引发学生思考本节课学什么.
行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.
情景导入生成问题。
【说明】以学生喜欢的游戏的方式引入,让学生感受数学的奥妙,激发学生的求知欲.
自学互研生成能力。
先认真阅读教材第78页最上方的图3-1及与图相关的内容,然后与同伴进行交流讨论.
【说明】学生通过观察、分析,与同伴进行交流,找出变化的规律.
【归纳结论】许多图形的变化都具有规律性,用字母表示其变化规律更简单明了.在探究图形的变化规律时,往往要找出哪些量发生变化,哪些量不发生变化.
先独立完成下面的问题,然后再与同伴交流.
问题1(1)搭200个这样的正方形需要多少根火柴棒?
【说明】学生通过计算,初步体会用数值代替式子中的字母进行计算,就可以得到对应的式子的值.进一步感受从特殊到一般,从一般到特殊的数学思想方法.
代数式北师大版数学初一教案篇六
1.(知识点1)为了测量调查对象每分钟的心跳次数,甲同学建议测量2分钟的心跳次数再除以2,乙同学建议测量10秒钟的心跳次数再乘6,你认为哪位同学的建议更具有代表性()。
a.甲同学b.乙同学c.两种建议都具有代表性d.两种建议都不合理。
2.(题型一)某市期末考试,甲校满分人数占本校总人数的4%,乙校满分人数占本校总人数的5%,则两校满分人数相比()。
a.甲校多于乙校b.甲校与乙校一样多c.甲校少于乙校d.不能确定。
代数式北师大版数学初一教案篇七
4.最小的正整数为______,最大的负整数为________,最小的自然数为________,最小的非负数为______,最大的非正数为________,最大的负数为________.
5.小于6的所有正整数的和是________.
6.点a在数轴上表示的数是+1,从点a出发,沿数轴向左平移3个单位长度到达点b,则点b所表示的数是________.
7.在数轴上,与表示-1的点距离为2的点所表示的数为________.
8.小明在写作业时不慎将两滴墨水滴在数轴上,根据图中数值,判定墨迹遮盖的整数共有________个.
12.一辆货车从百货大楼出发负责送货,向东走4千米到达小明家,继续向东走1千米到达小红家,然后向西走10千米到达小刚家,最后回到百货大楼.以百货大楼为原点,向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置。
代数式北师大版数学初一教案篇八
1.某市期末考试中,甲校满分人数占4%,乙校满分人数占5%,比较两校满分人数()。
a.甲校多于乙校。
b.甲校与乙校一样多。
c.甲校少于乙校。
d.不能确定。
答案:d。
解析:解答:因为没有给出两校的总数,所以两校的满分人数也无法比较.
故选:d.
分析:由于缺少两校的总人数,因此无法判断.已知百分比比较多少时,要有总数,当总数不确定时无法比较大小.
2.班长对全班同学说:“请同学们投票,选举一位同学”,你认为班长在收集数据过程中的失误是()。
a.没有明确调查问题。
b.没有规定调查方法。
c.没有确定对象。
d.没有展开调查。
答案:a。
解析:解答:根据班长对全班同学说:“请同学们投票,选举一位同学”,而没有明确选举一位学习优秀,还是品质优秀,调查的问题不够明确。
故选:a.
代数式北师大版数学初一教案篇九
1.理解同底数幂的乘法法则.
2.运用同底数幂的乘法法则解决一些实际问题.
3.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.
【学习方法】自主探究与合作交流。
【学习重点】正确理解同底数幂的乘法法则.
【学习难点】正确理解和应用同底数幂的乘法法则.
代数式北师大版数学初一教案篇十
8.根据要求写出相应的式子:
(1)用字母表示加法结合律:__________;(2)用字母表示乘法对加法的分配律:__________.
命题点3用字母表示规律[热度:95%]。
9.④用棋子摆出如图3-1-1所示的一组“口”字,按照这种方法摆下去,则摆第n个“口”字需用棋子()。
代数式北师大版数学初一教案篇十一
3.了解直棱柱的侧面展开图,能由侧面展开图想象出棱柱。
〖过程与方法:〗。
通过数学活动经历和体验图形的变化过程,培养学生动手实践和解决问题能力及语言归纳能力,发展空间观念。
〖情感态度与价值观:〗。
让学生主动探索,勇于发现,敢于表达,合作交流感受数学活动的生动魅力,激发学生学习数学的兴趣。
〖教学重点、难点:〗。
重点:通过数学活动认识棱柱的特征,能感受到研究空间问题的思维方法。
难点:正确判断哪些图形可以折叠成棱柱。
〖教学方法:〗。
引导发现法。
【基础知识精讲】。
1.棱柱的分类。
我们已经了解了棱柱,那么棱柱之间是否还有区别呢?
通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱……长方体和正方体都是四棱柱.
2.棱柱的特点。
若有若干几何体,你能立刻找到棱柱吗?棱柱有什么与众不同的特征呢?
(1)棱柱的上、下底面是完全相同且互相平行的多边形.
(2)棱柱的侧面都是矩形.
(3)棱柱的侧棱长都相等。
代数式北师大版数学初一教案篇十二
1.三口之家,冬天饮用桶装矿泉水的情况如下表:
日期星期一星期二星期三星期四星期五星期六星期日
桶中剩水4.5加仑3.9加仑3.5加仑3.1加仑2.5加仑2加仑1.5加仑。
(1)根据表中的数据,说一说哪些量是在发生变化?自变量和因变量各是什么?
(2)能说出下周一桶中还有多少水吗?
(3)根据表格中的数据,说一说星期一到星期日,桶中的水是如何变化的.
代数式北师大版数学初一教案篇十三
教学要点:
1能用尺规作一个角等于已知角。
2.能利用尺规作角的和、差、倍。
教学环节:
第一环节作一个角等于已知角的作法示范。
第二环节能利用尺规作角的和、差、倍。
第三环节巩固,练习与延伸。
第四环节布置作业。
教学设计。
教学目的:
1、经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识。
2、能按作图语言来完成作图动作,能用尺规作一个角等于已知角。
教学重点:能按作图语言来完成作图动作,能用尺规作一个角等于已知角。
教学难点:作图步骤和作图语言的叙述,及作角的综合应用。
教学方法:猜想、实践法。
教学过程:
一问题的提出:
如图,要在长方形木板上截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为ab。
(1)请过点c画出与ab平行的另一条边。
(2)如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?
二.新课:。
内容一:(请按作图步骤和要求操作,别忘了留下作图痕迹)。
(一)用尺规作一个角等于已知角.
代数式北师大版数学初一教案篇十四
1.理解两点确定一条直线的事实。
2.掌握直线、射线、线段的表示方法。
3.理解直线、射线、线段的联系与区别。
【学习重难点】。
重点:理解并掌握直线的性质,会用字母表示图形和根据语言描述画出图形。
难点:根据语言描述画出图形,建立图形和语言之间的联系。
【自主学习】。
1.直线的基本性质是。
2.点一般用表示。
3.直线的表示方法有两种:(1)用表示;(2)用表示。
4.射线的表示方法有两种:(1)用表示;(2)用表示。
5.线段的表示方法有两种:(1)用表示;(2)用表示。
6.点与直线的位置关系有两种情况:分别是和。
7.叫做两条直线相交。
探究一直线的基本性质。
1.操作:如果你想将一根木条固定在墙上,至少需要几个钉子?动手试试看。
(1)请你先用一个钉子,是否可以转动木条?这说明了什么?
(2)请你再用两个钉子,是否可以转动木条?这又说明了什么?
(3)猜想:如果将木条抽象成直线,将钉子抽象成点,你可以得出什么结论?
2.直线的基本性质有两层含义:(1)(2)。
3.思考:你还能从生活中举出应用直线基本性质的例子吗?试试看。
探究二直线、射线、线段的区别与联系。
请同学们先自己画出一条直线,一条射线,一条线段,然后小组合作讨论它们的区别与联系,并将讨论的结果填入下表。
代数式北师大版数学初一教案篇十五
学习目标:
进一步理解角的有关概念。认识角的表示及度、分、秒,并会进行简单的换算。
重点:通过操作活动,学会角的表示.
难点:在度、分、秒之间进行简单的换算。
学习过程:
课前热身:
说一说生活的角。
自主学习:
阅读课本143页内容,完成下列问题,
1.想一想:角的定义:_____________________________。
3.想一想:p144。
4.做一做:p144从角的运动定义出发,得到平角、周角的定义。
平角的定义:__________________________。
周角的定义:_______________________________。
1分钟记忆:角的定义和角的表示方法是什么?
反馈检测:
1.如图,可以表示成或可以表示成______,可以表示成______.
2.两个角的和是()。
a.一定是锐角b.一定是钝角c.一定是直角d.可能是直角、锐角、钝角。
代数式北师大版数学初一教案篇十六
1.理解三种统计图各自的特点.
2.根据不同的问题选择适当的统计图.
过程与方法。
1.训练学生作图的技能.通过数据处理体会统计对决策的作用.
2.能够根据实际问题,选择适当的统计图清晰、有效地展示数据.
3.能从条形统计图、折线统计图、扇形统计图中获取信息.
情感、态度与价值观。
统计图是展示数据的重要方法,它也经常出现在媒体上.通过对三种统计图的认识、制作和选择进一步培养学生对数据处理的能力及统计观念,使学生深刻体会到数学和我们的社会、生活密切相关.
【教学重难点】。
重点:。
1.了解不同统计图的特点.
2.根据实际问题选择合适的统计图,培养统计观念.
难点:。
1.根据实际问题选择合适的统计图.
2.制作三种统计图并会从中获取有用的信息.
【教学过程】。
一、创设情境,引入新课。
师:在我们日常所接触的报刊、杂志及电视中,我们会经常见到一些统计图.最近,我在一本百科全书上就遇到了这样的情况:。
我们知道地球上有人类生存至少已有200万年的历史.在相当长的一段时间内,地球上的人口数量并不是很多,因为出生的人口和死亡的人口大致持平.然而随着农业耕作水平的不断提高和医疗条件的不断改善,世界人口开始急剧增加.目前,世界人口已超过70亿,平均每4天要出生100万以上的婴儿.在世界上的许多地方,人口的过快增长已造成了一系列严重的问题,例如食品短缺和城市过分拥挤等.
下面我们来看两幅统计图,了解一下世界人口在各大洲的百分比分布及世界人口增长的状况,也许能让我们很好地了解世界人口的状况.
课件出示相关图示.
生:从世界人口增长图中,我们可以看到公元1500年,人口达4.25亿;在公元1800年以前世界人口增长率的情况变化不大;但从公元1800年起,世界人口就开始迅速增长.当时医疗条件得到了改善,粮食产量增加以及工业革命的影响,世界人口才开始迅速增长.
师:这位同学回答得很好!从世界人口增长的情况还能联系到当时的历史背景,看来我们的统计图不仅是数据的展现,而且还是历史背景的再现.
生:从统计图中,我们还看到1950年~1990年这段时间人口翻了一番,而且从图上还可以预测出2020年世界人口将达到85亿.
师:我们再接着分析“世界人口的百分比分布图”.这是一个什么形式的统计图?
生:扇形统计图,条形统计图.
师:这个统计图是在扇形统计图的基础上综合改造得到的.根据这个统计图你又能得到何种信息呢?扇形统计图反映的是世界人口在七大洲的分布吗?联系我们前两节课学的内容,同学们可针对这个统计图讨论交流.
(教师此时可参与到学生的讨论中,看同学们如何认识这个统计图、从统计图中得到的信息是否准确.根据学生讨论交流的情况进行讲评.)。
生:扇形统计图是地球陆地面积分布统计图,条形统计图才是相应各大洲人口占世界人口的百分比.由此我们可以看出人口在地球上的分布是不均匀的,像亚洲陆地面积占地球陆地总面积的29.3%,可人口却占世界人口的63%;而北美洲陆地面积占地球陆地总面积的16.1%,人口只占世界人口的6.9%;南极洲陆地面积占地球陆地总面积的9.3%,那个地方却由于气候、地理位置等不同成为无人区.所以有些地区自然条件很差,人口很少,而有些地区土地肥沃,交通方便,人口相对集中.
师:很好!同学们已经能用数学中统计的眼光去观察、分析我们生存的这个世界.现在我们再来看某家报刊公布的反映世界人口情况的数据.
二、讲授新课。
师:请同学们观察下面的统计图,你能尽可能的获取信息吗?
生1:从统计图中,我们可知50年后,世界人口将达到90亿.
生2:我们还可以看到从1957年到2050年世界人口的变化情况.
【本文地址:http://www.xuefen.com.cn/zuowen/19349652.html】