深入研究教材,制定教案是教师提高教学水平的重要途径之一。教案的内容要与教材紧密结合,注意培养学生的综合能力和实际运用能力。下面是一些经验丰富的老师分享的优秀教案,希望对大家有所帮助。
实数北师大版数学初二教案篇一
1、平行线的性质定理的证明.
2、证明的一般步骤.
过程与方法。
1、经历探索平行线的性质定理的证明.培养学生的观察、分析和进行简单的逻辑推理能力.
2、结合图形用符号语言来表示平行线的三条性质的条件和结论.并能总结归纳出证明的一般步骤.
情感与价值观。
通过师生的共同活动,培养学生的逻辑思维能力,熟悉综合法证明的格式.进而激发学生学习的积极主动性.
教学重点。
证明的步骤和格式.
教学难点。
理解命题、分清其条件和结论.正确对照命题画出图形.写出已知、求证.
教学过程:
一、创设现实情境,引入新课。
节课我们就来研究“如果两条直线平行”.
二、讲授新课。
在前一节课中,我们知道:“两条平行线被第三条直线所截,同位角相等”这个真命题是公理,这一公理可以简单说成:
同位角相等两直线平行,.
议一议。
利用这个公理,你能证明哪些熟悉的结论?
想一想。
(2)你能根据所作的图形写出已知、求证吗?
(3)你能说说证明的思路吗?
实数北师大版数学初二教案篇二
七年级上学期已学习了有理数的加、减、乘、除、乘方运算,本学期又学习了有理数的平方根、立方根,认识了实数.这些都为本课时学习二次根式的运算公式提供了知识基础.当然,毕竟是一个新的运算,学生有一个熟悉的过程,运算的熟练程度尚有一定的差距,在本节课及后两节课的学习中,应针对学生的基础情况,控制上课速度和题目的难度.
二、教材任务分析。
本节分为三个课时。第一课时,认识二次根式和最简二次根式的概念,探索二次根式的性质,并能利用二次根式的性质将二次根式化为最简二次根式的形式;第二课时,基于二次根式的性质得到二次根式乘除的法则以及加减运算的法则,进而利用它们进行二次根式的运算;第三课时,进一步进行二次根式的运算,发展学生的运算技能,并关注解决问题方式的多样化,提高学生运用法则的灵活性和解决问题的能力.
为此,确定本节课教学目标是:
1.认识二次根式和最简二次根式的概念.
2.探索二次根式的性质.
3.利用二次根式的性质将二次根式化为最简二次根式.
三、教学过程设计。
本节课设计了六个教学环节:第一环节:明晰概念;第二环节:探究性质;。
第三环节:知识巩固;第四环节:知识拓展;第五环节:课时小结;。
实数北师大版数学初二教案篇三
课件出示教材第75页图4-1及相关问题,并由学生讨论完成题目.
师:在现实生活中一个量随另一个量的变化而变化的现象大量存在.函数就是研究一些量之间确定性依赖关系的数学模型.(板书课题)。
二、探究新知。
函数的相关概念.
(1)课件出示教材第76页“做一做”第1题.
师:层数n和物体总数y之间是什么关系?
引导学生得出:只要给定层数,就能求出物体总数.
(2)课件出示教材第76页“做一做”第2题.
师:在关系式t=t+273中,两个变量中若知道其中一个,是否可以确定另外一个?
一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.
表示函数的方法一般有:列表法、关系式法和图象法.
对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a时的函数值.
理解函数概念时应注意:
(1)在某一变化过程中有两个变量x与y.
(2)这两个变量互相联系,当变量x取一个确定的值时,变量y的值就随之确定.
(3)对于变量x的每一个值,变量y都有唯一的一个值与它对应,如在关系式y2=x(x0)中,当x=9时,y对应的值为3或-3,不唯一,则y不是x的函数.
师:上述问题中,自变量能取哪些值?
指出要根据实际问题确定自变量的取值范围.
实数北师大版数学初二教案篇四
4.如果一个实数的平方根与它的立方根相等,则这个数是()。
a.0b.正整数c.0和1d.1。
答案:a。
解析:解答:0的平方根是0,0的立方根还是0,故只有0的平方根和它的立方根相等。
分析:考察特殊数的平方根和立方根,注意0的平方根和立方根.
5.有下列说法正确的是:()。
a无理数就是开方开不尽的数;b无理数是无限不循环小数;。
c带根号的数都是无理数d无限小数都是无理数。
答案:b。
分析:考察算术平方根的计算.
实数北师大版数学初二教案篇五
教学目标:
知识与技能:
1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.
2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
过程与方法。
1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。
情感现价值观。
1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。
2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。
3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造。
教学重点:
经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。
教学难点:
由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。
一创设问题情境,引入新课。
『师』:在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标。
我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。
探索两个关于坐标轴对称的图形的坐标关系。
1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗。
2.在右边的坐标系内,任取一点,做出这个点关于y轴对称的点,看看两个点的坐标有什么样的位置关系,说说其中的道理。
实数北师大版数学初二教案篇六
课件出示:师:2002年世界数学家大会在我国北京召开,课件显示的是本届世界数学家大会的会标.会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图案来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)。
二、探究新知。
1.探究直角三角形三边长度的平方的关系.
课件出示如下地板砖示意图,引导学生从面积角度观察图形.
师:你能发现各图中三个正方形的面积之间有何关系吗?
学生通过观察,归纳发现:
以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
2.探索勾股定理.
师:由刚才归纳发现的结论,我们自然产生联想:一般的直角三角形是否也具有该性质呢?
实数北师大版数学初二教案篇七
1.认识二次根式和最简二次根式的概念.
2.探索二次根式的性质.
3.利用二次根式的性质将二次根式化为最简二次根式.
过程与方法。
1、经历二次根式的基本性质,运算法则的探究过程,培养学生从具体到抽象,从特殊到一般的抽象概括能力。
2、体验归纳、猜想的思想方法。
情感态度与价值观。
通过多种方法化简二次根式,渗透事物间相互联系的辩证观点。
教学重难点。
教学重点。
探索二次根式的性质。
教学难点。
利用二次根式的性质将二次根式化为最简二次根式.
实数北师大版数学初二教案篇八
1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.
2.能判断给出的数是否为有理数;并能说出现由.
过程与方法。
1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.
2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.
情感与价值观。
1.激励学生积极参与教学活动,提高大家学习数学的热情.
2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.
3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.
教学重点。
1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.
2.会判断一个数是否为有理数.
教学难点。
1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.
2.判断一个数是否为有理数.
教学方法。
教师引导,主要由学生分组讨论得出结果.
教学过程。
一、创设问题情境,引入新课。
[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?
[生]在小学我们学过自然数、小数、分数.
[生]在初一我们还学过负数.
[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.
二、讲授新课。
1.问题的提出。
[生]好.(学生非常高兴地投入活动中).
[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.
同学们非常踊跃地呈现自己的作品给老师.
[师]现在我们一齐把大家的做法总结一下。
实数北师大版数学初二教案篇九
一、你怎样理解这四首诗所表达的感情?各用一句话概括。
二、“孤城”、“羌笛”、“杨柳”、“落日”是古诗中常见的意象,请你找出一些带有上述意象的诗句加以吟诵,说说这些意象在古诗中一般有什么意味。
_三、探究活动:你赞同以下说法吗?请你查找有关资料或网站,与同学展开辩论。
1、王之涣的《凉州词》首句有些版本作“黄沙直上白云间”。有人认为后人广为流传的“黄河远上白云间”是错误的,因为在凉州根本见不到黄河,只能见到黄沙。
2、有人说河西走廊距青海千里之遥,那里根本无法看到青海的云,王昌龄《从军行》把“青海长云”与“孤城”、“玉门关”放在一起是不合适的。
3、对于“属国过居延”,课文注解“属国”是官名,指使臣。另一种说法认为“属国”指的是附属国,这句诗是“过属国居延”的倒装。
四、读了楚楚的《草原散章》,请说说你的总体感受。
答:
实数北师大版数学初二教案篇十
学生的技能基础:在七年级和八年级上学生学习了很多与几何相关的知识,为今天的进一步的学习作好了知识储备,同时,学生也经历了很多验证结论合理性的过程,有了初步的逻辑推理思维,合情推理能力得到了很大的提高,为今天系统的培养学生严谨的逻辑推理能力打下了良好的基础.
学生活动经验基础:在以往的几何学习中,学生已经参与了对几何图形的观察、比较、动手操作、猜测、归纳等活动,对今天本节课的分组讨论、自主探究等活动有很大的帮助.
二、教学任务分析。
学生的直观能力是数学教学中要培养的一个方面,但如果学生仅有对图形的直观感受而不能进行推理、论证,有时是会产生错误的结论,本课时安排《你能肯定吗》的教学是让学生的直观感受与实际结果之间产生思维上的碰撞,从而使学生对原有的直观感觉产生怀疑,从而确立对某一事物进行合理论证的必要性。因此,本课时的教学目标是:
1.运用实验验证、举反例验证、推理论证等方法来验证某些问题的结论正确与否.
2.经历观察、验证、归纳等过程,使学生对由这些方法所得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识.
3.了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.
实数北师大版数学初二教案篇十一
一、学生起点分析:
学生已了解方程的基本概念和性质,并能熟练解二元一次方程,也能整体系统地审清题意,能从具体问题的数量关系中找出等量关系并列出二元一次方程组;学生也基本能够运用方程的思想解决实际问题。初中二年级的学生,正处于少年期,已具备了初步的抽象、概括和分析问题解决问题能力,要培养他们敢于面对挑战和勇于克服困难的意志.鼓励他们大胆尝试,敢于发表自己的看法,以从中获得成功的体验,激发学习激情.
二、教学任务分析:
基于以上对学生情况的分析,特制定以下教学任务:
1、在具体问题的解决过程中提高学生的解二元一次方程组的技能;。
3、进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.
4、通过\'鸡兔同笼\',把同学们带入古代的数学问题情景,学生体会到数学中的\'趣\';进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神;通过对祖国文明史的了解,培养学生爱国主义精神,树立为中华崛起而学习的信心.
教学重点。
教学难点。
1、读懂古算题;。
2、根据题意找出等量关系,列出方程.
三、教学过程设计。
本节课设计了五个教学环节:第一环节:引入课题;第二环节:典型例题;第三环节:闯关练习;第四环节:反馈练习;第五环节:感悟和收获;第六环节:作业布置.
第一环节:引入课题。
活动内容1:例1今有雉(兔)同笼,上有三十五头,下有九十四足,问雉兔各几何?
提问:
(1)\'上有三十五头\'的意思是什么?\'下有九十四足\'呢?
(2)你能解决这个有趣的问题吗?
写出解题过程,让学生讨论对不对,有没有不同的思路和观点;最后在学生充分讨论的基础上,老师用多媒体课件,给出正确的答案.)。
实数北师大版数学初二教案篇十二
《平面直角坐标系》是八年级上册第五章《位置与坐标》第二节内容。本章是“图形与坐标”的主体内容,不仅呈现了“确定位置的多种方法、平面直角坐标系”等内容,而且也从坐标的角度使学生进一步体会图形平移、轴对称的数学内涵,同时又是一次函数的重要基础。《平面直角坐标系》反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。因此,教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境,会引起学生的极大关注,会有利于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,可多为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究。
二、教学任务分析。
教学目标设计:
知识目标:
1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;。
3.能在给定的直角坐标系中,由点的位置写出它的坐标。
能力目标:
1.通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识;。
2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。
情感目标:
由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。
教学重点:
2.在给定的平面直角坐标系中,会根据点的位置写出它的坐标;。
3.由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。
教学难点:
1.横(或纵)坐标相同的点的连线与坐标轴的关系的探究;。
2.坐标轴上点的坐标有什么特点的总结。
三、教学过程设计。
第一环节感受生活中的情境,导入新课。
同学们,你们喜欢旅游吗?假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(图5-6),回答以下问题:
(1)你是怎样确定各个景点位置的?
第二环节分类讨论,探索新知。
1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分。
学生自学课本,理解上述概念。
2.例题讲解。
(出示投影)例1。
例1写出图中的多边形abcdef各顶点的坐标。
实数北师大版数学初二教案篇十三
知识与技能:
进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;。
过程与方法。
在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.
情感态度与价值观:
在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.
教学重点。
教学难点。
从函数图象中正确读取信息。
教学过程:
一、情境引入。
一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.
(1)农民自带的零钱是多少?
(2)试求降价前y与x之间的关系。
(3)由表达式你能求出降价前每千克的土豆价格是多少?
二、问题解决。
l1反映了某公司产品的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,根据图意填空:
实数北师大版数学初二教案篇十四
课前预习:
熟读诗歌,了解作者以及诗歌的写作背景,体会诗歌中的作者表达的情感。
相关课程标准:
诵读诗词,注重积累、感悟和运用,提高自己的欣赏品位。在通读诗歌的基础上,理清思路,理解、分析主要内容,体味和推敲重要词句在语言环境中的意义和作用。
评价任务:
1、进行朗读,注意体会诗歌的语言,
2、再次朗读诗歌,引导学生理解诗歌内容,体会作者的思想情感。
教学目标:
1、了解边塞诗歌的特点。
2、整体感知诗歌,了解诗歌的写作背景,作者生平、思想,律诗的一些常识;。
3、通过反复读诗,让学生在吟咏之中加深理解,熟读成诵,品味诗歌语言;。
4、体会诗的意境,领会诗所表达的深刻思想情感。
教学重点:熟读成诵,理解作者所表达的思想感情。
教学难点:理解诗句所蕴涵的内涵,体会诗歌意境。
教学时间:2课时。
教学过程:
一、导入新课:
开元年间,诗人王之涣与王昌龄、高适齐名。一天,他们三人到酒店喝酒,遇到梨园伶人唱曲宴乐,三人便私下约定伶人演唱各人所作诗篇的情形定诗名高下。结果三人的诗都被唱到了,而诸伶人中最美德女子所唱的则为“黄河远上白云间”。王之涣甚为得意,这就是著名的“旗亭画壁”的故事。这个故事未必真有,但王之涣的诗歌确实是当时广为传唱的。今天我们就来学习他和其他三位有名的边塞诗人的作品。
二、简介作者:
实数北师大版数学初二教案篇十五
教学目标:
知识与技能目标:
1.探索并掌握平行线的性质;。
2.能用平行线的性质定理进行简单的计算、证明.
过程与方法目标:
2.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.
情感态度与价值观目标:
1.通过对平行线性质的探究,使学生初步认识数学与现实生活的密切联系,体会科学的思想方法,激发学生探索创新精神.
l重点:
1.平行线性质的研究和发现过程;。
难点:
l教学流程:
一、情境引入。
1、同位角相等,两直线平行.
2、内错角相等,两直线平行.
3、同旁内角互补,两直线平行.
反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?
如图,直线a与直线b平行.
如图,直线a与直线b平行,被直线c所截.测量这些角的度数,把结果填入下表内.
实数北师大版数学初二教案篇十六
(本课适合有条件使用计算器的学校)。
学生知识技能基础:学生在七年级上学期已经学习了《计算器的使用》,学会了使用计算器进行有理数的加、减、乘、除、乘方运算,掌握了计算器的基本使用方法.
学生活动经验基础:学生在七年级上学期已经学过了使用计算器进行简单的有理数的计算并利用计算器进行了一定的探索活动,积累了一些活动经验.
二、教学任务分析。
本节是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》第5节,具体内容为:用计算器求平方根和立方根以及有关混合运算.经历运用计算器探求数学规律的活动,发展合情推理的能力.
为此,本课的教学目标是:
2.鼓励学生自己探索计算器的用法,经历运用计算器探求数学规律的活动,发展学生的探究能力和合情推理的能力.
3.在用计算器探索有关规律的过程中,体验数学的规律性,体验数学活动的创造性和趣味性,激发学习兴趣.
三、教学过程设计。
教学准备:每位学生一个计算器,并按计算器的类型分小组。
目的:便于使用相同计算器的学生进行讨论,共同学习。
实数北师大版数学初二教案篇十七
本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动.学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础.
二、教学任务分析。
本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节.具体内容是运用勾股定理及其逆定理解决简单的实际问题.当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力.
本节课的教学目标是:
1.通过观察图形,探索图形间的关系,发展学生的空间观念.
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点.
四、教法学法。
1.教学方法。
引导—探究—归纳。
本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:
(1)从创设问题情景入手,通过知识再现,孕育教学过程;。
(2)从学生活动出发,顺势教学过程;。
(3)利用探索研究手段,通过思维深入,领悟教学过程.
2.课前准备。
教具:教材、电脑、多媒体课件.
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具.
五、教学过程分析。
本节课设计了七个环节.第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业.
【本文地址:http://www.xuefen.com.cn/zuowen/19346350.html】