四年级植树问题教学设计(优质21篇)

格式:DOC 上传日期:2023-12-14 04:49:26
四年级植树问题教学设计(优质21篇)
时间:2023-12-14 04:49:26     小编:笔尘

人生是一次次的试错与总结,通过总结我们能够更好地改进自己。写作之前,我们可以做一些新思维的练习,以提高我们的创造力和灵感。以下是一些精彩总结的范例,供您借鉴和参考。

四年级植树问题教学设计篇一

教学目标:

一、知识与技能性:

1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。

2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

3.能够借助图形,利用规律来解决简单植树的问题。

二、过程与方法:

1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

2.渗透数形结合的思想,培养学生借助图形解决问题的意识。

3.培养学生的合作意识,养成良好的交流习惯。

三、情感态度与价值观。

通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

教学重、难点。

引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。

教学准备:

课件。

教学过程:

一、动手种树,初步感知。

1、创设情景。

2、理解题意。

[出示要求]:在操场边上,有一条20米长的小路,学校计划在小路的一边种树,请按照每隔5米种一棵的要求,设计一份植树方案,并说明你的设计理由。

师:从这份要求上,你能获得哪些信息?

(20米长的小路,一边,每隔5米种一棵)。

3、设计方案,动手种树。

师:了解了信息,请同学们设计一份植树方案。你可以用这条线段来代表20米长的小路,其中每一小段的长度是1厘米,我们用它来表示1米长的小路,请你用自己喜欢的图案或图形来表示小树苗,把你设计的方案画一画。比一比,谁画得快种得好,老师就聘请他作学校的环境设计师。

学生活动,教师巡视指导。

4、反馈交流。

师:根据你的方案,需要种几棵树?

师:同学们真会动脑筋,设计出了这么多的方案。那他们的方案分别是怎样的呢?

请设计师们给大家作一下介绍。

师:他的设计符合要求吗?

师:这位同学是按照每隔5米种一棵的要求来设计的,我们把这个距离叫做间隔距离,在这份设计方案中,有几个间隔距离呢?我们一起来数一数。有4个这样的间隔距离。像这样间隔距离的个数我们又把它叫做间隔数。

师:接下来我们来看看种4棵树的设计方案是怎样的?

生答。

师:最后我们来看看种3棵树的设计方案又是怎样的呢?

生答。

师:就一个要求,同学们就设计出了三种不同的植树方案,真是太能干了!

看来你们都有成为环境设计师的资格。李老师会把你们的方案上交到学校的。

师:第一种方案,在路的头尾都种了一棵树,我们就把它叫做是“两端都种”的植树方案,第二种方案,只种头不种尾或者只种尾不种头,我们就把它叫做是“只种一端”的植树方案,第三种植树方案头尾都不种树,我们就把它叫做是“两端不种”的植树方案。(板书:两端都栽只栽一端两端不栽)。

二、合作探究,总结方法。

1、总结规律。

师:现在我们一起来研究一下,在这三种植树方案中,它们的间隔数和树的棵数之间分别有着什么样的关系呢?同桌同学先讨论讨论,然后完成这张表格。

植树方案间隔数(个)棵数(棵)间隔数与棵数的关系。

学生反馈交流,师生共同完成表格。

师小结:刚才我们通过每隔5米种一棵树的要求,发现了植树的三种方案,并知道了每种方案中棵数与间隔数之间的关系,接下来我们重点来研究“两端都种”的植树问题。

(学生活动后反馈交流)。

师小结。

2、运用规律。

三、开放练习,应用方法。

(1)学生独立解答。

(2)全班交流结果。

2、师:如果两侧都要种,一共需要多少棵樟树苗?(把第1题中的“一侧”改为“两侧”?)。

(1)学生独立解答。

(2)集体反馈。

(1)学生独立解答。

(2)集体反馈。

师小结。

(1)学生独立解答。

(2)集体反馈。

师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

6、书本p122练习二十第4题。

四、课堂小结,课外延伸。

师:通过这节课的学习你有什么收获?

(主板书)(副板书)。

间隔距离间隔数棵数。

两端要栽:间隔数+1=棵数1米20个21棵。

只栽一端:间隔数=棵数2米10个11棵。

两端不栽:间隔数-1=棵数4米5个6棵。

10米2个3棵。

四年级植树问题教学设计篇二

解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、广场敲钟等,这些问题情境中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。本节课重点研究在一条线段上植树的问题,会有不同的情形(如两端都栽、只栽一端或是两端不栽)。

小学五年级学生已经有了一定的数学经验和数学学习方法,抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的能力,但思维仍以形象思维为主。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引导,也需要学生的自主探究。因为植树问题与日常生活联系比较紧密,学生应该能在合作探究中发现出棵数与间隔数之间的规律,找到解决问题的方法。在学生经历思考、分析的过程中,使学生掌握植树问题的基本模型,并能够灵活运用、举一反三。此外,教材中的教学内容比较直观,学生通过画线段图或示意图的方法帮助理解,初步渗透一一对应的'思想,并会用数形结合的方法画图解决问题,逐步提高解决问题的能力。

结合新课标的要求,在设计这节课时,“以生为本”一切从学生实际出发。以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程。帮助学生积累数学活动的经验,提高学生解决实际问题的能力。

在本节课我主要采用“在动手操作中找方法——在方法中找规律——在规律中学应用”的教学过程,注重引导学生进行观察、猜测、验证、推理等数学活动,逐步发现隐含的规律,经历建立植树问题的思想方法(模型思想)的过程,从而培养学生从实际问题中探索解决问题的有效方法的能力。使学生的学习不是被动接受的过程,而是主动建构的过程。课堂中通过媒体的辅助教学引导学生,意趣激思,以思促学,在创设的生活情境中尝试探索,积极参与,促进学生全面发展。

了解间隔数的含义,建立解答植树问题的一般方法模型,尝试应用植树问题的模型解决简单的实际问题。

经历探索植树问题的思想方法(模型思想)的过程,感受化繁为简、一一对应的数学思想。

通过观察、猜测、验证、推理,建立起解答植树问题的思想方法模型。提高学生分析、发现、解决问题的能力,帮助学生积累数学活动经验。

感受数学与生活的密切联系,体验数学思想方法在解决问题的应用,在学习过程中获得成功的体验。

理解间隔数的含义、发现间隔数与植树棵数之间的关系,渗透化繁为简、一一对应等数学思想,运用植树问题的模型思想方法解决简单实际问题。

经历将实际问题抽象出植树问题模型的过程,在探究的过程中培养学生的应用意识和解决实际问题的能力。

1、教师出示图片,学生欣赏。

接着出示一张,看到这张图片,你能提出一个数学问题吗?

2、引出问题。

“小路的一侧栽有多少棵树呢?”要解决这个问题,需要知道哪些数学信息呢?

预设:(学生收集所需要的数学信息:小路全长多少米?两棵树之间的距离。)。

【同学们真会思考,解决问题就要找出相关的数学信息。】。

3、认识间隔、理解间隔数。

(学生举例说说身边的间隔、间隔数)。

【教师板书学生猜测的数据,同学们有了不同的意见,我们该怎么办呢?】。

2、自主尝试:请你自己想办法尝试解决(学生操作)。

3、感受方法:在操作的过程中,大家有什么感受?(感受模拟植树很麻烦,浪费时间)。

有更好、更方便的方法吗?(可以缩短路的总长进行试验)。

【遇到复杂的问题,我们可以把它转化成简单的问题来试一试。】。

4、你们想选择多长来尝试一下?50米、30米、20米……。

1、自主探究。

(假如小路全长20米,每隔5米栽一棵。小路一侧会有多少棵树?)。

下面请同学们独立思考,用你自己喜欢的方式去探究。

(教师搜集学生不同的研究结果)。

2、汇报交流。

下面谁想为同学们展示一下你是怎么探究的?

你能给你研究的这种植树方案起一个名字吗?

3、发现规律。

教师播放课件:

【渗透一一对应思想,引发现间棵数与间隔数的关系】。

(2)指导学生列出算式,说明算式的含义。

(3)如果这条路长30米,每隔5米栽一棵,小路一侧会有多少多少棵树?(学生独立解题,说明算式的含义。)。

如果全长100米呢?利用这一发现验证课前的猜想。

(学生运用规律,验证课前的猜想。)。

4、建立模型。

如果全长1000米,每隔5米栽一棵,小路一侧会有多少多少棵树?

5、内化方法。

(1)如果有12个间隔,应该栽()棵树。

(2)如果栽18棵树,应该是()个间隔。

(3)两端都栽,如果栽了8棵树,间隔是10米,全长是()米?

找找生活中还有哪些类似的问题……。

学生举例,教师根据学生举例随机出示练习。

1、排队。

2、安路灯。

3、摆花。

……。

师:学到这里,说说这节课你有什么收获?

学生自由谈谈自己的体验和收获。

四年级植树问题教学设计篇三

教学内容:

教学目标:

知识技能目标:

1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系。

2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

过程目标:

1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力。

2、渗透数形结合的思想,培养学生借助图形解决问题的意识。

3、培养学生的合作意识,养成良好的交流习惯。

情感目标:

1、通过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

教学重点:

理解“植树问题(两端要种)”的特征,应用规律解决问题。

教学难点:

理解“间距数+1=棵数,棵数-1=间距数。

教学过程:

一、设计情景、引入课题。

1、教学“间隔”的含义。

师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)。

2、举例生活中的“间隔”

师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)。

3、理解间隔数,引入课题。

在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)。

二、探索新知,探究规律。

1、出示招聘启事。

在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。

2、出示例题,理解题意:

师:(课件出示例题。)。

(课件解释关键词语,加深学生理解)。

师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

3、出示合作要求。

(1)教师讲解小组合作要求。

(2)学生4人小组开始合作学习,利用学具设计出植树方案。(可。

以用不同的形式表达)。

(3)教师巡视,指导学生小组合作。

(4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。

(5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。

4、以小组为单位探究棵数与间隔数间的关系:

(1)数一数:数出棵数和间隔数。

(2)比一比:比较出棵数和间隔数之间的规律。

两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。

只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。

两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。

三、课堂小结、反馈练习。

1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间敲完?

四年级植树问题教学设计篇四

教学目标分析(结合课程标准说明本节课学习完成后所要达到的具体目标):

知识技能目标:

2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

过程目标:

2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

3、培养学生的合作意识,养成良好的交流习惯。

情感目标:

1、通过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):

通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。

教学过程(按照教学步骤和相应的活动序列进行描述,要注意说明各教学活动中所需的具体资源及环境):

一、创设情景,激发兴趣。

1、猜谜导入揭题。

师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)。

师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)。

【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。

二、经历探究,发现规律。

1、激趣引入,启发探究积极性。

(课件出示)出示江口小学为绿化环境的招聘启事及设计要求。

招聘启示。

学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。

江口小学。

20xx.6。

设计要求:

在一条长20米的小路一边等距离植树,两端要栽。

【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。

四年级植树问题教学设计篇五

让学生自己动手,自己实验,得出规律,解决生活中的实际问题。

通过小组合作、交流,培养学生的协作精神。

长方形泡沫塑料板(每小组一块,正面画圆,背面画其他的封闭图形),牙签,画有长方形的练习纸。

一、复习铺垫。

指名回答,引导学生说出棵数与段数的.关系:

两端都种只种一端两端都不种。

棵数=段数+1棵数=段数棵数=段数-1。

请你把这个规律跟同桌说一遍;教师在黑板上贴示。

二、引入新课:

这些你能找到它的端点来吗?这就是我们今天要重点来讨论的内容封闭路线上的植树的规律。

1、湖、花坛等等,它们的外围线路都是封闭的。它和不封闭路线上的植树规律是否相同呢?我们自己动手种一下就知道了。

2)、学生以小组为单位操作;

3)、交流:你们小组种了几棵,把圆分成了几段?

4)、初步概括:你们发现了什么规律?(在圆形路线上植树,棵数=段数)。

2、是不是每种封闭路线上的植树规律都是这样的呢?我们还要进一步研究。

1)、出示长方形空地题目。

教师巡视指导;

3)、学生交流:说说你们小组是怎么种的?种了几棵?把长方形分成了几段?

得出:种植路线是长方形的,种植棵数与种植段数是相等的。

4)、出示教科书第120页的例3,让学生先独立思考,再讨论解决。

5)、展示不同的解决问题的方法,集体讨论判断正误。

3、研究在其他封闭图形上种树:

a、你还想在什么封闭路线上种树?(指名回答)。

b、学生在泡沫塑料板的各种封闭图形上种树,边种边数:种了几棵?分成了几段?

c、小组交流。

4、得出规律:在封闭路线上植树:棵数=段数(板书)。

5、联系:它和非封闭路线上的哪种情况相同?

(告诉学生事物就是这样相互联系的!

6、质疑问难:大家还有什么疑问吗?

如果在不规则的封闭路线上植树,棵数和段数是否相同?

三、尝试练习:

练习第121页的做一做上的习题。

学生尝试练习,交流,指名板书解题方法。

四、课堂小结。

这节课你最大的收获是什么?

四年级植树问题教学设计篇六

1、经历将实际问题抽象成植树问题模型的过程,运用“一一对应思想”掌握种树棵数和间隔数之间的关系。

2、通过观察、比较、概括等数学活动,理解植树问题、排队问题等实际问题都有着相同的数学结构,渗透“化归思想”,能够运用总结出的思想、方法灵活地解决简单的实际问题,发展思维能力。

3、感悟建构数学模型是解决实际问题的重要方法之一。

:理解植树问题、排队问题等实际问题都有着相同的数学结构,能够应用总结出的思想、方法解决一些简单的实际问题。

1、猜。

s:每棵树之间的距离是几米?是不是两端都种?(随即揭示植树三种情况)。

s:可以种5棵,4棵,3棵。

2、画。

t:能不能把你的想法用简单的示意图画一画呢?请同学们拿出老师课前发的练习纸,把你的想法画在练习纸上。开始吧!

s独立画图,教师巡视指导。

t:画好了的请举手。我们找同学说说你是怎样画的。

顺学而导,学生交流时教师只需提醒学生检验是不是每隔5米种一棵?总长是不是20米?当学生交流种4棵的想法时,教师可让学生说说有不同的种法吗?交流这两种种法的不同。(同样种4棵树,想法一样吗?)。

3、找规律。

s:他们都是把20米的路平均分成了4段。(4段也可以说是4个间隔)。

t:你的这个发现特别有价值,谁再对照图说怎么都分成4段了呢?

t:怎么求这个段数,能用式子表示一下吗?

s:20÷5=4(个)(能解释一下吗?每隔5米种一棵,20米里面有几个5米就可以分成几段)。

t:我们解答这样的问题,首先要知道这条路被分成几段,我们来观察一下,这三种情况棵数和间隔数之间有什么关系?同桌之间先交流一下。

s:汇报t强调在哪种情况下······(课件演示,结合学生回答随机演示多1和少1的原因)。

4、列算式。

t:能不能根据我们刚才发现的规律把植树的棵数用算式表示出来呢?

s:独立列算式汇报说理由。

t:每间隔5米种一棵,刚才这三种情况都出来了。如果是每隔2米种一棵,能种几棵?有几种种法呢?列出算式。

5、解决问题。

t:老师这里有几个生活中的问题,看你们能不能运用这些知识来解决这些问题呢?

3、5路公共汽车站行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?)。

s列式解答全班交流。

6、拓展延伸。

t:生活当中有没有类似植树问题的现象?或者是用植树问题这样思考方式思考的?

s:剪绳子,锯木头,摆花。

t:老师这里就有这样一个问题,请看——一根木头长10米,要把它平均分成5段。每锯下一端需要8分钟,锯完一共要花多少分钟?(有时间就解答,时间到就留作作业。)。

7、总结。

t:这节课学得怎么样?

四年级植树问题教学设计篇七

1.利用学生熟悉的生活素材、通过画线段图、填表格、讨论交流等活动,能化繁为简并说出两端都栽的情况下间隔数与棵数之间的关系。

2.能发现并理解植树问题(两端要栽)的一般解题规律,并能利用规律解决相关的实际问题。

任务一:通过猜谜活动,以及画线段图、做表格等活动,完成目标一。

任务二:通过课堂例题的理解分析,找到两端都栽的植树问题的一般解题规律,达成目标二前半部分。另外利用习题的解决,达成目标二的后半部分。

【学习重点】:发现棵数与间隔数的关系。

【学习难点】:理解两端都栽的植树问题的一般解题规律并能运用规律解决问题。

【教学准备】:课件、小组学习单。

【教学过程】:

一、导入新课。

1、猜谜语,直观认识间隔。

新课前老师给大家带来一个谜语,请看,“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。”它是什么呢?谁知道?(手)。

哦,怎么看出5了?(表示手指的个数)谁还看到了数字5?真不错,除了用数字可以表示手指的个数,咱们的手上还有没有数字?(还能看到手指之间的间隔,两个手指之间的缝隙,教师说明,缝隙就称为间隔。)。

手指之间还有一个个的间隔。同学们,咱们手上五个手指之间到底有几个间隔呢?(4个)。

我们一起来数一数。还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?(生依次回答。)。

你发现什么了吗?(生说)。

的确,手指数和间隔数之间是有着一定的规律的,它们之间的这种规律最适合解决今天我们要研究的这类问题,这类问题的名字叫做植树问题。板书:植树问题。

二、探究规律实现目标。

1、例题探究。

说起植树问题我们就先从植树谈起吧。请看例题。

a、从题中你能知道哪些信息?谁来说一说?生说,师画。

师小结:

一边是小路的一侧,指左边或者右边,全长1000米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。

b、算一算,一共要栽多少棵树?反馈答案:

方法1:1000÷5=200(棵)。

方法2:1000÷5=200200+2=22(棵)。

方法3:1000÷5=200200+1=21(棵)。

疑问:现在出现了三种答案,到底哪种答案是正确的呢?下面我们一起来验证一下,你想用什么方法验证?(生说:画线段图的方法)。

三、自主探究,发现规律。

1、化繁为简探规律。

是个好办法!我们可以选择画线段图来验证。每隔5米栽一棵就画一段,再过5米再画一段,这样我们需要画多少段呢?好画吗?为什么呀?(数据太大了)。那怎么办呢?(选择简单的数据进行研究,得出规律再解决这道题)。

是呀,在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究。你准备选用哪个数来研究?(生说)下面请大家自己选择简单的数据在练习本上试着进行验证,并把你试的结果汇报给组长填在表格中,之后观察表格中的数据,你发现了什么?把你的发现在小组内说一说。

四年级植树问题教学设计篇八

教学。

设计由本站会员“夜色恋人”投稿精心推荐,小编希望对你的学习工作能带来参考借鉴作用。

作为一位无私奉献的人民教师,可能需要进行教学设计编写工作,借助教学设计可以提高教学效率和教学质量。如何把教学设计做到重点突出呢?以下是小编精心整理的小学人教版四年级数学植树问题教学设计,仅供参考,欢迎大家阅读。

教学目标分析(结合课程标准说明本节课学习完成后所要达到的具体目标):

知识技能目标:

2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

过程目标:

2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

3、培养学生的合作意识,养成良好的.交流习惯。

情感目标:

1、通过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):

通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。

教学过程(按照教学步骤和相应的活动序列进行描述,要注意说明各教学活动中所需的具体资源及环境):

一、创设情景,激发兴趣。

1、猜谜导入揭题。

师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)。

师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)。

【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。

二、经历探究,发现规律。

1、激趣引入,启发探究积极性。

(课件出示)出示江口小学为绿化环境的招聘启事及设计要求。

招聘启示。

学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。

设计要求:

在一条长20米的小路一边等距离植树,两端要栽。

【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。

小学四年级数学植树问题教学设计如果还不能满足你的要求,请在本站搜索更多其他小学四年级数学植树问题教学设计范文。

四年级植树问题教学设计篇九

教学内容:

人教版五年级上册数学第七单元数学广角植树问题

教学目标:

知识技能目标:

1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系。

2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

过程目标:

1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力。

2、渗透数形结合的思想,培养学生借助图形解决问题的意识。

3、培养学生的合作意识,养成良好的交流习惯。

情感目标:

1、通过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

教学重点:

理解“植树问题(两端要种)”的特征,应用规律解决问题

教学难点:

理解“间距数+1=棵数,棵数-1=间距数

教学过程:

1、教学“间隔”的含义

师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

2、举例生活中的“间隔”

师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

3、理解间隔数,引入课题。

在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)

1、出示招聘启事

在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。

2、出示例题,理解题意:

师:(课件出示例题。)

(课件解释关键词语,加深学生理解)

师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

3、出示合作要求。

(1)教师讲解小组合作要求。

(2)学生4人小组开始合作学习,利用学具设计出植树方案。(可

以用不同的形式表达)

(3)教师巡视,指导学生小组合作。

(4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。

(5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。

4、以小组为单位探究棵数与间隔数间的关系:

(1)数一数:数出棵数和间隔数。

(2)比一比:比较出棵数和间隔数之间的规律。

两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。

只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。

两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。

1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间敲完?

四年级植树问题教学设计篇十

本册教材的数学广角主要是渗透有关植树问题的思想方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第2课时,是探讨关于一条线段并且两端都不栽的情况。

“两端都不栽”与“两端都栽”的区别是比较明显的,可以借助线段图帮助学生建立两者的表象,再正确建立数学模型。

教学目标。

1、建立“树的棵数=间隔数-1”的数学模型;能利用数学模型解决简单的实际问题。

2、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的思想方法。

3、体会数学模型的生活意义与作用,体验到学习的`喜悦。

学习重点:建立“树的棵数=间隔数-1”的数学模型。

学习难点:“两端都不栽”与“两端都栽”有什么联系与区别。

预设过程。

一、复习两端都栽。

在一条12路的一侧种树(两端都种),每2米种一棵,共需种几棵?

1、揭题:植树问题。

2、呈现问题,请学生解决。新课标第一网。

3、反馈解法,强调“两端都种”与“间隔数+1”。

二、研究两端都不栽。

在一条12路的一侧种树(两端都不种),每2米种一棵,共需种几棵?

1、提出研究课题:要是两端都不种呢?

2、呈现问题,请学生思考后试解。

3、反馈解法,强调“两端都不种”与“间隔数-1”。

4、比较:“两端都种”与“两端都不种”有什么不同?

三、练习。

1、画示意图,完成p118例2,注意“两端都不种”与“两旁都种”。

2、画示意图,完成做一做1,注意“两端都种”与“两旁都种”。

3、画示意图,完成做一做2,发现“锯的次数=段数-1”。

4、完成补充题,知道“四层楼三个间隔”。

四、总结。

四年级植树问题教学设计篇十一

“植树问题”在实际生活中应用比较广泛,它通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,通过学生的动手操作、自主探究来发现现实生活中它们的规律,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:

1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

2.掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

绳子、挂图、泡沫、小树、题卡。

一.创设情境,导入新课。

1.小游戏:

点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种情况:4个、3个、2个)(解释“间隔”的意思)。

通过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)。

2.导入新课:今天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)。

二.新课探究:

2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,

要求:

(1)计算一共需要准备多少棵树苗。

(2)思考棵数与间隔数的关系。

3.汇报结果:

(1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1。

(2)只种一端:50÷5=10(棵)结论:棵数=间隔数。

(3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1。

4、总结(学生汇报教师书写):

(1)两端都种:棵数=间隔数+1。

(2)只种一端:棵数=间隔数。

(3)两端都不种:棵数=间隔数-1。

三、课堂练习。

1、做一做:

2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。

(1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)。

(2)插彩旗(20分):学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)。

(6)街道上(50分):在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)。

四、全课小结:这节课我们学习了什么内容?你还有什么疑问?(植树问题的三种情况)。

两端都种:棵数=间隔数+1。

只种一端:棵数=间隔数。

两端都不种:棵数=间隔数-1。

例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的。

一侧每隔5米植一棵树,一共需要准备多少棵树苗?

两端都种:50÷5+1=11(棵)。

只种一端:50÷5=10(棵)。

两端都不种:50÷5-1=9(棵)。

(1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)。

(2)插彩旗:学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)。

(6)街道上:在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)。

本节课旨在通过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,积极性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

一、动手操作、合作交流、探究规律:

本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的形成,提高了学生的思维水平,完善了学生的认知结构。

二、练习的设计独特、新颖、有梯度:

本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的积极性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)。

三、充分体现学生的主体作用及教师的主导作用:

本节课,我通过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。

四年级植树问题教学设计篇十二

上午我上了四年级数学《植树问题》结合自己上课情况和市三小教研员,橡胶所教研员,和本学期邢教研员的评价,做课后反思如下,我认为这节课有以下几点做得比较好:

一、创设情境,让数学走近生活。

创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前导入我用学生了解的主席、国家总理植树活动,让学生知道植树的重要性,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。利用线段来分析给学生以清楚表示,找出规律。

在处理教材时我把例题改为条件开放的植树问题,例题的数学有点大,先找出小数据,将路的长度变成20米。如此修改的意图是,让学生在开放的情境中,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度。

二、注重学生的自主探索,体验探究乐趣。

体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己动手拭操作,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。

三、关注植树问题爱护环境。

植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:

(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。给学出示建公车站,和生活中钟表问题。

(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。

四、改正措施。

这节课充分利用了多媒体设备,所以课堂容量较大,时间的点紧张,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。谢谢老师们指导。

四年级植树问题教学设计篇十三

教学目标:

1、知识与技能:通过合作探究,动手实践,让学生在做数学的过程中经历由现实问题到数学建模,理解并掌握植树棵数与间隔数之间的关系。

2、过程与方法:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、初步探究、合作交流的能力,并培养学生针对不同问题的特点灵活解决问题的能力。

3、情感态度价值观:让学生在探索、建模、用模的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。

教学重点:引导学生从实际问题中探索并总结出棵树和间隔数的关系。

教学难点:把现实生活中类似的问题同化为“植树问题”,并运用植树问题的思想方法解决这些实际问题。

教学准备:课件。

教学过程:

一、谜语导入。

1、猜谜语。两棵小树十个杈,不开花来不结果,能写会算还能画,天天干活不说话。

2、我们这双小手不仅能写会算,它里面还藏着有趣的数学问题呢,想了解吗?现在就请同学们伸出你的右手,五指张开,看看你能发现什么数学信息?(5个手指,4个空)。

师:在数学里面我们把空叫做“间隔”,那么我们张开的5根手指,有几个间隔呢?(4个间隔)。

这节课我们就来研究有趣的植树问题(板书)。

二、研究新知。

1、课件出示方案:学校将对校园进一步绿化,想在12米的小路一侧每隔4米栽种一棵小树。请四年一班同学设计一份植树方案,并说明设计理由。

**一校。

20**年**月**日。

学生设计植树方案,独立思考,小组交流。

汇报:三种情况。

两端都栽:4棵树苗棵树=间隔数+1。

一端栽:3棵树苗棵树=间隔数。

两端都不栽:2棵树苗棵树=间隔数-1。

课件出示三种情况。

你能用一个式子表示棵树与间隔数的关系吗?

2、应用知识,解决问题。

课件出示:

要在通往小屋子的一条长80米小路一边种树,间隔4米种一棵,一共要种多少棵?

读题,思考:每道题分别属于什么类型的植树问题?怎么求间隔数?理解“间距”学生试做,全班订正。汇报(说明每个量都表示的是什么?)。

3、拓展植树问题:刚才我们解决了植树的问题,其实在日常生活中还有很多地方也有这样类似的情况,比如我们同学坐的座位,谁知道还哪里有这样的情况?学生举例(课件展示)。

4、巩固应用。

5、练习。

三、总结:这节课我们学习的内容统称为植树问题,说说你有什么收获?

四年级植树问题教学设计篇十四

1、通过操作学具模拟烙饼过程,让学生感悟统筹思想,初步了解统筹的含义,掌握烙饼问题的统筹方法,并能实际应用。

2、在问题探究中,动手模拟、交流争辩等学习活动中,提高学生探究能力和解决问题的能力。在规律探寻中,培养学生的观察能力与独立思考能力,发展学生的思维。

3、使学生理解优化的思想,形成从多种方案中寻找最优化方案的意识,提高学生解决问题的能力。

重点:能够用优化思想解决生活中的问题。

难点:在烙饼优化的过程中三张饼的烙法。

多媒体课件、圆形纸片若干。

同学们,今天我们一起来研究一个有趣的数学问题。

1、出示情境图(条件中只出示:每次最多只能烙2张饼,两面都要烙,每面3分钟)。师问:“从中你获取了什么信息?”学生口答。

2、研究烙一张饼需要的时间。

师问“烙一张饼需要多长时间?”学生口答说想法。

3、研究烙两张饼需要的时间。

师问:“烙两张饼需要多长时间?”学生口答说想法。

4、对比烙一张饼和烙两张饼需要的时间。

师问:“为什么烙两张饼和烙一张饼所需要的时间相同呢?”

生口答可能有:烙1张饼时,锅里空出1个位置,烙两张饼时,锅里没有空位置。

5、研究烙三张饼所需要的时间。

师问:“烙三张饼需要多长时间呢?请同学们用手中的三个圆片代替三张饼来烙一烙,想一想。”

学生借助手中的圆片摆、思考、小组交流、汇报,可能有:先同时烙两张需6分钟,再烙1张需6分,6+6=12分。师对此启发引导:“第二次烙1张饼时锅里有空位置,这样会浪费时间,怎样才能做到每次都烙两个面,不让锅闲着?”学生再次摆、思考、交流,得到最节省时间的烙法。

学生先演示,师再示范摆。

小结并强调:每次总烙两张饼,别让锅闲着,这样最节省时间。

6、研究烙四——七张饼所需要的时间。

教师依次提出问题,生或口算或演示。

7、寻找规律。

师:认真观察上面的表格,你能发现什么?

学生可能有:除了一张饼,无论饼的个数是双数还是单数,所需的'时间都等于烙饼的张数*烙一面饼所需的时间。

8、点明课题。

师:这就是我们这节课要研究的烙饼问题(板书课题)。

1、求烙40张饼和41张饼所需的时间。

2、把上面烙一面饼的时间“3分钟”,改为“4分钟”、“5分钟”,学生解答。

[设计意图:变式练习更有利学生思维的深入理解。]。

3、课本105页做一做第2题。

[设计意图:同种类型的习题有助于培养学生举一反三的能力。]。

师:通过这节课的学习,你有什么收获?

小结:我们做任何事情的时候都要开动脑筋,寻找最佳方案,合理安排时间,这样就能取到事半功倍的效果。我希望同学们都能做一个勤于思考、珍惜时间的好孩子。

四年级植树问题教学设计篇十五

教学目标:1、通过动手操作、小组合作,使学生能理解间隔数与植树棵数之间的规律,并将这种规律应用到解决类似的实际问题之中。

2、培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力。渗透数形结合的思想,培养学生借助图形等方式解决问题的意识。

3、培养学生的合作意识,养成良好的交流习惯。通过实践活动激发热爱数学的情感,感受数学与现实生活的密切联系,体验学习成功的喜悦。

学情分析:

从学生的思维特点看,五年。

级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

教学重点。

引导学生发现不封闭线路上,两端都栽时间隔现象的简单规律。

教学难点。

运用规律解决类似的实际问题的方法。

教学准备。

一、课前活动。

师:在上新课之前,我们先猜个谜语,放松一下,好吗?(课件显示)两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。(手)。

看着老师的手,你从中得到了什么数字?(55个手指)老师也从中得到了一个数字“4”,你们知道它指的是什么吗?(空格)。

对了,手指间的空格,在数学上我们叫做间隔。我们手上每两个手指之间有一个间隔,大家仔细看老师的手,5个手指,有几个间隔,4个手指有几个间隔,3个手指呢?2、举例说出生活中的“间隔”到处可见。

师:生活中的“间隔”到处可见,你能举几个例子吗?(课件出示)“。

手指数与间隔数其中的关系你发现了吗?(手指数比间隔多1)。

大家观察的非常仔细。同学们连手上都有数学奥秘,看来数。

4、引入课题。

师:同学们刚才我们了解的5棵小树、6棵小树间、7棵小树间分别有几个间隔等;数学中统称为植树问题。(板书)。

二、教学新课。

1、出示问题。

现在,学校为了改变校园环境,要在校园内种上一些树,校委会决定诚聘环境设计师。请看学校的招聘启示。(课件显示)招聘启示:

学校为进一步进行校园环境美化,特诚聘环境设计师数名,要求设计植树方案一份,择优录取。

师:你们想不想成为我们校园的设计师?我们一起来看看设计的具体要求吧!(课件显示)。

在操场的边上,有一条20米长的小路,学校计划在小路的一边种树,请按照每隔5米种一棵,两端都要栽,设计一份植树方案,并说明需要几棵树苗。

师:从这份要求上,你获得哪些信息?(20米长的小路,一。

2、猜测?4棵?到底是不是这样呢?让我们一起用事实来检验一下。

3、小组探究,发现规律(1)画一画,填一填。请同学们独立在练习本上用线段图画一画。(课件演示)。

(2)议一议,说一说。

(3)小组汇报,引导发现规律。

(板书:棵数=间隔数+1)。

(4)小结:

1。“间隔数+1”等=棵数。

4、应用规律,解决问题。

师:现在我们用研究出的这个规律来解决生活中的一些实际问题。

生:100÷5+1=21(棵)。

师:同学们,你们通过简单的例子,发现了规律,应用这个规律解决了这个复杂的植树问题,大家表现得真棒!

5、拓展延伸。

思考:在植树问题中一定是“树”吗?这里的树还能换成其他食物吗?

明确:只要关于间隔问题的,都可以利用植树问题的规律来解决。例如:摆花篮、装路灯、挂灯笼、电线杆、公交站点等。

6、巩固练习。

三、课堂小结。

师:今天,我们一起探讨学习了植树问题中两端都要栽的情况,谈谈你有哪些收获?

四、布置作业。

四年级植树问题教学设计篇十六

1、了解相遇问题的特点,并学会解答求路程的相遇问题。

2、通过操作、观察、比较、分析,提高学生灵活解答的能力。

3、培养学生学习数学的兴及趣创新意识。

掌握求路程的相遇问题的解题方法。

理解相遇时,两人所走路程的和正好是两地的距离,相遇时间为两人共同所走的同一时间。

一课时    。

1、列式计算   。

(1)李诚从家到学校,每分钟走70米,4分钟到达,他家离学校有多远? 。

(2)张华从家到学校,每分钟走60米,4分钟到达,他家离学校有多远?

2、板出关系式:速度×时间=路程。

1、教学准备题。

(1)点击课件中准备题出示题目。

(2)学生理解题意。

(3)找出出发时间、地点、运动方向。

相向而行。

时 间间 。

(5)用课件演示两人同时从两地向对方走去,引导学生思考会出什。

么情况。利用课件继续演示会出现的三种情况(相距、相遇、交叉而过)。

(6)利用课件出示准备题的表格,指导学生填表格的一、二行并课。

件演示填空内容。

(7)请一学生上来利用交换性课间完成表格第三行的填写。

(9)小结:出发一段时间后两人之间的距离变成了零,这时两人就相遇了,这就是我们这节课要研究的——相遇问题。(板书课题:相遇问题)。

2、教学例5。

(1)点击新课出示例5。

(2)理解题意。

(3)四人小组讨论:

a、        两人是怎样走向学校的?

b、        4分钟后两人怎样? 。

c、        两人所行的路程与全路程有什么关系?

(4)学生试做。

(5)用电脑课件演示解题思路并讲评。

(6)学生看书、质疑。

(7)小结:我们解例5时用了哪两种方法?

1、学生做课本第59页的第1题和第2题。

2、利用课件出示选择题:

(1)2000米 (2)1000米  (3)无法确定。

1、今天学了什么内容?

2、解决这样的问题,我们用了哪几种方法?

3、质疑。

四年级植树问题教学设计篇十七

1、让学生初步学会用“替换”的策略分析数量关系,并能根据问题的特点确合理的解题步骤,学会正确解答这类问题。

2、让学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、让学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学信心。

教学重、难点:

用“替换”的策略解决问题。

教学过程:

课前欣赏:播放《曹冲称象》录像,感受策略。

一、引入。

1、刚才课前我们一起看了《曹冲称象》的故事。最后是谁帮曹操解决了问题。

(曹冲)曹冲真了不起啊!曹冲是用什么方法解决了这个问题的?(生答)。

2、师:石块的重量等于大象的重量,把大象替换了石块,这样就可以很容易地称出来了。

3、这节课我们就一起来用“替换”的方法解决一些实际问题。(板书:替换)。

二、展开。

1、出示例1。

2、那老师把刚才题目中的条件换一下:大杯的容量是小杯的4倍。

(1)师:又如何解决这个问题呢?每个同学有作业纸,请同学们自己先画一画,画出替换过程,并计算出来。

(2)指名上台展示并讲述。

过渡:同学们都很棒!老师再把题目换一下,好吗?

3、出示“小杯的容量比大杯少160毫升”。

(1)师:现在我们可不可以用替换的方法了?(上课时有的说可以,也有人说不可以)。

(2)请小组讨论一下怎样替换?小组讨论时注意这几个问题(手指屏幕)生读。

(3)小组汇报。(生答时演示过程)。

三、课堂练习。

1、过渡:我们班的洪老师遇到了一个问题,请同学们用刚才学过的知识来帮忙解决。

(1)出示题目。

(2)师:同学们先再作业纸上自己做做看。

(3)指名汇报。(找不同做法的学生汇报)。

(1)出示题目。

他们进了公园,来到水上乐园,其中有40人去划船。

每只大船比每只小船多坐2人,每只大船和每只小船各坐几人?

(2)左边三组完成第一个问,右边三组完成第二个问。

(3)指名汇报。

3、过渡:其实在我们的生活中还有很多这种替换的现象。

(1)播放视频。(生活的替换现象)。

(2)老师真心希望同学们能用智慧的眼睛去发现,并能灵活运用替换的策略解决问题。

[在最后我播放了一段视频,是让学生了解在我们生活中到处都有替换现象。]。

四、全课总结师:那么通过这节课的学习你有什么收获?

五、综合实践。

过渡:最后老师留给同学们一个综合实践题,课后想一想。

苏果超市用3个空啤酒瓶可以换一瓶啤酒。

王叔叔买了12瓶啤酒,他最多能喝到多少瓶啤酒?

四年级植树问题教学设计篇十八

2、136×27+63×27+27=。

3、99×99+199=。

4、如果一个三角形的三条边都是整厘米数,且其中的两条边分别长5厘米和8厘米,问第三条边的长可能是多少厘米?(请把所有情况都写出来)。

5、等腰三角形一条边长10厘米,另一条边长5厘米,问这个三角形的周长是多少厘米?

6、小明计算(28+25128,这题正确的结果应该是多少?

7、一列火车在上海、南京之间往返行驶,中间停靠苏州、无锡、常州、镇江,每两地之间路程都不相同,铁路局应准备多少种不同的火车票?(注意:在相同的两站往返的票是不同的)。

10、等腰三角形中有一个角是80°,问其它两个角的度数是多少?

14、鸡、兔共100只,鸡脚比兔脚多20只,问鸡、兔各多少只?

16、两个素数的和是50,这两个素数的乘积最大是多少?

20、两数相除,被除数扩大8倍,要使商缩小4倍,问除数应该怎样变化?

22、1月1日是星期天,问月1日是星期几?

四年级植树问题教学设计篇十九

1.三个数的和是555,这三个数分别能被3,5,7整除,而且商都相同,求这三个数。

3.把自然数依次排成以下数阵:

1,2,4,7,…。

3,5,8,…。

6,9,…。

10,…。

现规定横为行,纵为列。求。

(1)第10行第5列排的是哪一个数?

(2)第5行第10列排的是哪一个数?

(3)排在第几行第几列?

4.三个质数的乘积恰好等于它们的.和的11倍,求这三个质数。

5.有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。求这两个整数。

8.求1到200的自然数中不能被2、3、5中任何一个数整除的数有多少个?

四年级植树问题教学设计篇二十

上午我上了四年级数学《植树问题》结合自己上课情况和市三小教研员,橡胶所教研员,和本学期邢教研员的评价,做课后反思如下,我认为这节课有以下几点做得比较好:

创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前导入我用学生了解的主席、国家总理植树活动,让学生知道植树的重要性,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。利用线段来分析给学生以清楚表示,找出规律。

在处理教材时我把例题改为条件开放的植树问题,例题的数学有点大,先找出小数据,将路的长度变成20米。如此修改的意图是,让学生在开放的情境中,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度。

体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己动手拭操作,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。

植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:

(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。给学出示建公车站,和生活中钟表问题。

(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。

这节课充分利用了多媒体设备,所以课堂容量较大,时间的点紧张,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。谢谢老师们指导。

四年级植树问题教学设计篇二十一

1、了解相遇问题的特点,并学会解答求路程的相遇问题。

2、通过操作、观察、比较、分析,提高学生灵活解答的能力。

3、培养学生学习数学的兴及趣创新意识。

掌握求路程的相遇问题的解题方法。

理解相遇时,两人所走路程的和正好是两地的距离,相遇时间为两人共同所走的同一时间。

一课时    。

1、列式计算   。

(1)李诚从家到学校,每分钟走70米,4分钟抵达,他家离学校有多远? 。

(2)张华从家到学校,每分钟走60米,4分钟抵达,他家离学校有多远?

2、板出联系式:速度×时间=路程。

1、教学准备题。

(1)点击课件中准备题出示题目。

(2)学生理解题意。

(3)找出出发时间、地点、运动方向。

相向而行。

时 间间 。

(5)用课件演示两人同时从两地向对方走去,引导学生思考会出什。

么情况。利用课件继续演示会出现的三种情况(相距、相遇、交叉而过)。

(6)利用课件出示准备题的表格,指导学生填表格的一、二行并课。

件演示填空内容。

(7)请一学生上来利用交流性课间完成表格第三行的填写。

(9)小结:出发一段时间后两人之间的距离变成了零,这时两人就相遇了,这就是我们这节课要研究的——相遇问题。(板书课题:相遇问题)。

2、教学例5。

(1)点击新课出示例5。

(2)理解题意。

(3)四人小组讨论:

a、        两人是怎样走向学校的?

b、        4分钟后两人怎样? 。

c、        两人所行的路程与全路程有什么联系?

(4)学生试做。

(5)用电脑课件演示解题思路并讲评。

(6)学生看书、质疑。

(7)小结:我们解例5时用了哪两种方法?

1、学生做课本第59页的第1题和第2题。

2、利用课件出示选择题:

(1)xx米 (2)1000米  (3)无法确定。

1、今天学了什么内容?

2、解决这样的问题,我们用了哪几种方法?

3、质疑。

【本文地址:http://www.xuefen.com.cn/zuowen/19340594.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档