教案的编写能够帮助教师准确掌握教学内容,合理安排教学步骤。教案的编写要注重针对学生的个体差异进行差异化教学。教案的编写过程中,需要多方面的思考和权衡。
六年级数学教案课件例文篇一
教学内容:教材第68页例2,练习十一第2题。
教学目标。
1.综合运用统计知识学会从折线统计图中准确提取统计信息,并作出正确的判断和简单的预测。
3.理解折线统计图中各个数据的具体含义,培养学生仔细观察的习惯。
教学重点、难点:从折线统计图中获信息,并能作出决策。
教学过程。
一、引入:
回忆折线统计图的特点。
二、探究交流、总结规律。
1.小组探讨、交流。
出示教科书第68页两幅折线统计图,
提问:根据这两幅统计图,你们了解到哪些信息?
根据提出的问题,让学生在小组内交流、讨论,谈感受。
学生可能会谈到:
a和b两人绘制的是同一个公司员工的月薪统计图,为什么看起来不一样呢?第一幅图看起来工资增长很快,第二幅图看起来工资增长较慢。
2.引导释疑。
在学生讨论交流的基础上,教师提问:
请大家仔细观察,两幅图看起来虽然不同,但它们所描述的统计数据却是完全一致的,之所以两图不同,原因在于绘图时采用的单位不同:左图1格代表50元,右图2代表100元。
3.小结。
引导学生认识到:
在利用统计图进行比较和判断时,一定要注意统一标准,才不致发生误会。
三、巩固练习。
1.完成教科书第69页练习十一2.
2.补充练习。
四、总结概括。
1.学习了这节课,你知道在利用统计图作分析判断时应注意哪些问题吗?
2.谈你的收获。
(本课注意事项:从折线统计图中准确提取统计信息时,特别要注意标准是否统一,以免影响到正确的判断和预测。)。
六年级数学教案课件例文篇二
1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
2.能正确地计算圆柱的表面积。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
教学重点。
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点。
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程。
一复习旧知。
1计算下面圆柱的侧面积。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
2求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)。
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)。
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)。
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)。
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)。
(2)底面积:3.14×2×2=12.56(平方分米)。
(3)表面积:56.52+12.56=81.64(平方分米)。
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)。
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习。
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)。
2计算下面各圆柱的表面积。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)。
六年级数学教案课件例文篇三
已学了比、求比值、化简比按比例分配等知识。
学习目标。
1、巩固比的意义、求比值与化简比的方法。2、能运用比的意义解决一些实际问题。
导学策略。
练习。
教学准备。
习题。
教师活动。
学生活动。
概念
什么叫做比?
怎样求比值与化简比?
求比值与化简比有什么联系与区别?
第1题练习后说一说自己的方法。
第2题巩固化简比的方法。
第3、4题先弄懂题意,再鼓励学生独立完成,全班交流。
第5、6、7、8、题是运用比的意义解决一实际问题,先鼓励学生独立完成,然后在小组中或全班交流不同的方法。
学生自学,然后教师介绍黄金分割。
口答并结合练习加以说明。
列表分析。
教学反思。
还可以。
六年级数学教案课件例文篇四
教学内容:p47~48,例7、正、反比例的比较。
教学目的:进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。
教学过程:
判断下面两种理成不成比例,成什么比例,为什么?
(1)单价一定,数量和总价。
(2)路程一定,速度和时间。
(3)正方形的边长和它的面积。
(4)工作时间一定,工作效率和工作总量。
1、揭示课题。
2、学习例7。
(1)认识:千米/时的读法意义。
(2)出示书中的问题要求学生逐一回答。
(3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?
(4)填空:用下面的形式分别表示两个表的内容。
当()一定时,()和()成()比例关系。
还有什么样的依存关系?
(5)教师作评讲并小结。
(6)用图表示例7中的两种量的关系。
指导学生描点、连线。
在这条直线上,当时间的值扩大时,路程的对应值是怎样变化的?时间的值缩小呢?
用同样的方法观察右表。
3、总结正、反比例的特点(异同点)。
由学生比、说。
1、练一练第1、2题。
2、p49第1题。
正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?
p49第2题(1)(4)(5)(6)(9)。
1、p49第2题(2)(3)(7)(8)(10)。
2、收集生活中正、反比例关系的量并分析。
六年级数学教案课件例文篇五
一、教学内容:
1、根据方向和距离两个条件确定物体的位置。
2、根据方向和距离,在图上绘出物体的距离。
3、体会位置关系的相对性。
4、描述并绘制简单的路线图。
二、教学目标:
1.通过解决实际问题,使学生体会确定位置在生活中的应用,了解确定位置的方法。
2.使学生能根据方向和距离确定物体的位置,并能描述、绘制简单的路线图。
三、教学重点:
1、体会位置关系的相对性。
2、根据方向和距离确定物体的位置并在图上绘出物体的距离。
四、课时安排:
1、根据方向和距离两个条件确定物体的位置。1课时。
2、根据方向和距离,在图上绘出物体的距离。1课时。
位置与方向(一)。
教学内容:根据任意方向和距离确定物体的位置。
教学目标:
1、通过具体的活动,认识方向与距离对确定位置的作用。
2、能根据任意方向和距离确定物体的位置。
3、发展学生的空间观念。
教学重、难点:
1、能根据任意方向和距离确定物体的位置。
2、对任意角度具体方向的准确描述。
教学过程:
一、设置情景:
如果你是赛手,你将从大本营向什么方向行进?你是怎样确定方向的?
小组讨论:运用以前学过的知识得到大致方向。
1、训练加方向标的意识:加个方向标有什么好处?
2、突出以大本营为观测点:为什么把方向标画在大本营?
探究任意方向和距离确定物体的位置。
质疑:
1、知道吐鲁番在大本营的东北方向就可以出发了吗?
2、如果这时就出发可能会发生什么情况?
小组讨论:
沿什么方向走就能保证赛手更准确、更快的找到目的地。
研究时,可以用上你手头的工具。
吐鲁番在大本营东偏北30度。
练一练:你说我摆,为小动物安家。
(课前剪好小图片,课上动手操作。)。
例:我把熊猫的家安在偏,的方向上。
解决问题,寻找得出距离的方法。
如果你的赛车每小时行进200千米,你要走几小时能到达考察地?
图上没有直接标距离,你有什么办法解决它呢?
仔细观察地图,你发现了什么?小组试一试解决。
二、练习:
1、以雷达站为观测点,填一填。
护卫舰的位置是偏度,距离雷达站千米。巡洋舰的位置是偏度,距离雷达站千米。鱼雷艇的位置是偏度,距离雷达站千米。
2、以电视塔为观测点,按要求填空。
文化广场在电视塔西偏南45度的方向;体育场在电视塔东偏南30度的方向;博物馆在电视塔东偏南60度的方向;动物园在电视塔北偏西40度的方向。
三、课后延伸:
游乐场要新建两个游乐项目:一个在观览车西偏北40o方向。
上,约200米处新添一个“登月舱”,另一个“天外来客”在观览车南偏东20o方向上,约150米处。请你在平面图上标出这个新项目的位置。
位置与方向(二)。
教学内容:根据方向和距离,在图上绘出物体的距离。
教学目标:
1、能绘制平面示意图,通过制作平面图的过程,使学生知道如何根据方向和距离,在图上标出物体的位置。
2、通过绘制平面图,培养学生的动手操作能力。在活动中,培养学生合作探究的意识和能力。
3、通过解决问题,使学生体会所学知识在生活中的应用,增强学生学好数学的兴趣和意识。
教学重、难点:根据方向和距离,绘制平面示意图。
教学过程:
一、复习引入。
合作绘图、练习巩固。
目的是通过看图回答问题,复习、巩固有关图上方向、角度、距离等知识,为下面自己绘制平面图作准备。
(1)停车场在广场的方向,距离大约是米。小红家在广场的偏方向,距离大约是米。
(2)地铁站在广场东偏南45度方向,距离广场100米。你能在图上标出地铁站的位置吗?并说一说是怎么想的。
1、出示学校的录相或图片。
出示数据:教学楼在校门的正北方向150米处。图书馆在校门的北偏东35度方向150米处。体育馆在校门的西偏北40度方向200米处。活动角在校门的东偏北15度方向50米处。
2、小组讨论:你们打算怎么完成任务?有什么问题要解决吗?
3、小组汇报完成平面图绘制的计划,教师进行梳理:
(1)绘制平面图的方法:
先确定平面图上的方向,再确定各建筑物的距离。如果学生没有说道,老师可以进行引导:你们打算怎样在图上表示出150米,200米和50米?从而帮助学生确定比例尺,和图上距离。
(2)小组合作完成,可以怎样分工,能在有限的时间内又好又快地完成任务。
4、小组活动,绘制平面图。
5、展示各组绘制的平面图,集体进行评议。
(1)评价绘制的正确性,如果平面图有问题,说一说问题是什么,应该怎样确定位置。
订正后交流:你们组认为在确定这点在图上的位置时,应注意什么?怎样确定?
教师小结:绘制平面图时,一般先确定角度,再确定图上的距离。
(2)比较各个平面图,为什么有的图大,有的图小?
小结:1厘米表示的大小不同,图的大小也不同。
二、练习:
1、完成书上习题21页3、4题并订正。
2、在纸上设计小区,并说明各个建建筑的位置。
老师提供给学生一些建筑物的图片:如医院、学校、商店、银行、邮局、药店等。
教后记:
“位置”的教学内容是第一学段相应教学内容的扩展和提高。学生在低年段已经学习了如何根据行、列确定物体的位置,并通过中年级“位置与方向”的学习,知道了在平面内可以根据两个条件确定物体的位置。本课在此基础上,让学生学习用数对表示具体情境中物体的位置,进一步提升学生的已有经验,培养学生的空间观念。
单元小结。
通过学习,大部分学生基本能够正确判断物体的方向和距离,能够在方位图上按照有关要求正确画出物体的位置并正确绘制方位图,判断比较准确,绘图规范,但是个别学生总是找不准方向,因而不能判断方向,也不能够正确绘制方位图。
六年级数学教案课件例文篇六
本单元教学数与代数领域里的比例的意义、比例的性质、解比例;还教学空间与图形领域里的图形放大与缩小、比例尺的意义、解决与比例尺有关的实际问题。
把两个领域的知识结合起来教学,既能赋予比例丰富的现实意义,又能理解图形放大、缩小的数学含义,还能使解决比例尺的实际问题有更多的思路与方法。
全单元编排7道例题、三个练习,分成四段教学。
例1~例3、练习九,图形的放大与缩小、比例的意义;
例4~例5、练习十,比例的性质、解比例;
例6、例7、练习十一,比例尺的意义和解决实际问题;
实践活动进一步体验图形的放大与缩小。
1.在现实情境和画图活动中,教学图形放大与缩小的含义。
图形放大与缩小是图形的一种变化方式,研究的对象与内容十分具体,教学应在现实的情境中进行。
联系倍和比的知识,揭示图形放大的含义。例1先教学图形的放大,在长方形画放大的情境中,要求学生说说两幅画长的关系、宽的关系。有些学生用倍描述,有些学生用比表示,都利用了已有的知识、经验。这里要注意的是,应该把放大后的画(第二幅画)与放大前的画(第一幅画)比。教材归纳学生的思考,指出长方形的每条边放大到原来的2倍,放大后的长方形与原来长方形对应边长的比是2︰1,就是把原来的图形按2︰1的比放大。在这一段话里,揭示了图形放大的具体含义,示范了图形放大的规范表述。
促进认知迁移,体会图形缩小的含义。在初步理解长方形按2︰1的比放大以后,教材提问:如果把第一幅画按1︰2的比缩小,长和宽应是原来的几分之几?各是多少厘米?引导学生感受图形的缩小,初步形成图形缩小的概念。
教学时,可以把图形按2︰1的比放大与图形按1︰2的比缩小进行比较。突出比的前项指变化后的图形,后项指原来的图形。2︰1的前项大于后项,表示图形放大;1︰2的前项小于后项,表示图形缩小。
在方格纸上画图形,进一步体会图形放大与缩小。例2在方格纸上按照规定的比画出长方形放大后与缩小后的图形,先思考放大或缩小后的长、宽各是几格,进一步理解3︰1与1︰2在图形放大、缩小情境里的含义,加强对图形放大、缩小的体验。
2.以图形放大为素材,教学比例的意义。
在图形放大的情境中能够写出许多组对应边长度的比,这些比的比值是相同的。利用这些比教学比例,一方面使组成的比例有具体的含义,有利于理解比例的意义。另方面通过对应边长度的比组成比例,能进一步理解图形的放大。
分别写出各张照片长和宽的比,分析两个比的关系。例3要求分别写出放大前照片的长与宽的比,放大后照片的长与宽的比。这两个比也是相对应的,都是同一图形里两条边的长度比,而且都把长作前项,宽作后项。学生思考两个比有什么关系,有人从比值的角度发现它们的比值都是1.6,有人从化简比的角度发现它们化简后都是8︰5。上面的活动有两个作用,一是为教学比例积累素材。二是发展对图形放大的体会:长方形放大,不仅放大后与放大前长的比与宽的比相同,而且放大前长与宽的比和放大后长与宽的比也相同。
根据比值相等写出等式,揭示比例的意义。两个比的比值都是1.6,两个比都能化简成8︰5,这些都表明两个比相等,因此可以写成等式。等式的左、右各是一个比,表示两个比相等,教材指出表示两个比相等的式子叫做比例,让学生在现实的情境里首次感知比例的意义。
写出照片放大后与放大前对应边的长度比,判断能不能组成比例。根据图形放大,学生还能写出放大后与放大前两个图形的长的比和宽的比,判断这两个比能否组成比例,只要看它们的比值是否相等。经过写出比、求比值,比较比值的大小、写成比例等一系列活动,能进一步体会比例的意义,学会判断两个比能不能组成比例的方法。
在常见数量关系中体验比例的意义。图形放大与缩小为教学比例提供了生动的素材,认识比例不能局限于图形的变化。因此,练习九第3题、第7题扩展素材的范围,在常见数量关系里写比、求比值、组成比例,进一步加强概念,也为教学正比例作些铺垫。
3.在图形缩小的情境中教学比例的性质。
比例的性质可用来解比例,也是解决实际问题需要的知识。
利用三角形缩小的数据写比例,认识比例的内项与外项。例4呈现三角形缩小的情境,缩小前、后的图形里标有底、高的数据。学生根据图形缩小的含义,利用图中的数据,能够写出许多比例。每个比例都由6、4、3、2四个数组成,四个数在比例中的位置有规律,这些都为教学比例的性质创造有利条件。
教材举一反三,先在6︰3=4︰2里讲述比例的内项与外顶,再让学生指出其他比例的内项、外项,及时巩固知识。
在写出的比例中发现基本性质。比例的性质希望学生主动发现,因为性质比较明显。自己发现性质,认识深刻、记忆牢固、便于应用。发现性质是由表及里、由具体到抽象、由个案到全体的过程。兔看到了6、4、3、2四个数在比例中的位置规律,猴发现了性质的具体表现。教材要求再写出一些比例,体会规律存在于每个比例中。在此基础上,用字母表示、用语言讲述,理解比例的基本性质。
4.结合解决实际问题教学解比例。
例5用比例知识解决实际问题,包括三点内容:根据图形放大的意义写出比例,应用比例性质求未知项,指出什么是解比例。
根据图形放大,写出比例。例题要求写两张照片长的比与宽的比组成的比例,在这个比例里有三项是已知的,一项是未知的。因此,像列方程解决问题那样,设放大后照片的宽是x厘米,列出的比例是含有未知数的等式。
解比例是例题的主要教学内容。教材里写出了两个内项的积等于两个外项的积这一步,让学生思考根据是什么,体会应用比例的性质能够求出比例中的未知项,并通过试一试练一练学会解比例。
5.写图上距离和实际距离的比,理解比例尺的含义。
例6教学比例尺的意义,计算平面图的比例尺。
认识图上距离和实际距离。例题给出了草坪长50米、宽30米,草坪平面图长5厘米、宽3厘米。要求学生分别写出长、宽的图上距离和实际距离的比。教材没有对图上距离、实际距离作解释,让学生在问题情境中体会、识别。
指导统一单位。教材指出:图上距离和实际距离的单位不同,先要统一成相同单位,写出比后再化简。统一单位,可以把高级单位化成低级单位,也可以把低级单位聚成高级单位,由学生自主选择。在交流中体会,实际距离改写成厘米为单位较方便些。如果把图上距离改写成米为单位,在化简比的时候较麻烦。猴写了长的图上距离与实际距离的比,鸟写了宽的图上距离和实际距离的比,两个比化简成相同的比。因此,求平面图的比例尺,只要利用一组对应的图上距离和实际距离就够了。
揭示比例尺的意义。通过写图上距离与实际距离的比,学生初步感受了比例尺的内涵。在此基础上,教材指出图上距离和实际距离的比,叫做比例尺。两个数学式子,既精炼地表示了比例尺的意义,又表达了求比例尺的方法。
认识线段比例尺。线段比例尺是比例尺的另一种表示形式。教学线段比例尺有两点作用,一是进一步体会比例尺的意义,二是能方便地解决求图上距离或实际距离的问题。教材通过解释比例尺1︰1000的具体含义引出线段比例尺,突出线段比例尺的特点,能直观地表示图上1厘米相当于实际若干米(千米)。线段比例尺与数字比例尺的意义是一致的,可以互相转化。如p49练一练第1题,左图的比例尺是1︰2200000表示图上1厘米相当于实际距离2200000厘米(即22千米),相应的线段比例尺也是图上1厘米表示实际22千米。右图的线段比例尺是图上1厘米相当于实际22米(即2200厘米),相应的数字比例尺就是1︰2200。
6.利用比例尺,求实际距离或图上距离。
利用已知的比例尺,可以求实际距离或者求图上距离。例7是求实际距离的问题,求图上距离的问题安排在练习里。例7鼓励解决问题的方法多样化,猴联系数字比例尺的意义解题,兔利用线段比例尺解题。另外,还教学列比例解决问题。
7.安排实践活动,进一步理解图形放大、缩小的概念。
实践活动《面积的变化》探索图形放大,面积变化与边长变化的联系。第一项活动是测量长方形放大后与放大前的长、宽,按图形放大的概念分别写出长的比和宽的比,估计放大后长方形面积与放大前的比是几比几,通过计算检验估计,初步体验图形放大时边长变化的比与面积变化的比是不同的。第二项活动测量正方形、三角形、圆的有关长度并计算面积,把数据填入表格,发现面积变化与长度变化的关系。第三项活动应用发现的变化关系在校园平面图里提出问题、解决问题。
各项活动的内容多、容量大,要仔细看书,明白每项活动的任务与要求。发现规律需要过程,三项活动体现出初步感知研究发现理解应用的过程,学生不仅获得知识,也发展了数学思维。
通过实践活动,对图形按一定的比放大或缩小能有更清楚的认识,进一步明白这里的比是相应边的长度比,不是图形的面积比。
六年级数学教案课件例文篇七
教学目标:
1.使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确进行计算,主动体会整数运算律在分数运算中同样适用,并能根据运算律和运算性质进行一些分数的简便计算。
2.使学生在理解分数四则混合运算的运算顺序以及应用运算律进行分数简便计算的过程中,进一步培养观察、比较、分析和抽象概括的能力。
3.使学生在学习分数四则混合运算的过程中,进一步积累数学学习的经验,体会数学学习的严谨性和数学结论的确定性。
教学重点:
分数四则混合运算的运算顺序。
教学难点:
运用运算律和运算性质进行简便计算。
教学准备:
多媒体课件。
教学过程:
一、复习引入。
做练习十二第1题,直接写出得数。
集体交流,选择几题让学生说说算法。
二、创设情境,探究新知。
要求学生自主列出综合算式,并尽可能列出不同的综合算式。
2.集体交流。教师根据学生的回答板书算式。
2/5×18+3/5×18(2/5+3/5)×18。
追问:列式时你是怎么想的?
3.指出:在一道有关分数的算式中,含有两种或两种以上是运算,统称为分数四则混合运算。这两道算式都属于分数四则混合运算。(板书课题)。
三、教学分数四则混合运算的运算顺序。
你会计算上面这两道式题吗?
4.做“练一练”第1题。
提问:这两题的运算顺序是怎样的?同桌相互说一说。
学生独立计算,指名板演。
集体校对,共同评议。
提问:在进行分数四则混合运算时,你认为要注决些什么?
指出:计算分数四则混合运算,要先弄清楚先算什么,再算什么;例如第一小题,分数乘除法连在一起,可以把除法转化为乘法,一次约分,同时计算;再如第二小题,分数连加时可以同时通分。
四、教学把整数的运算律推广到分数。
通过交流明确:整数的运算律在分数运算中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。
2.做“练一练”第2题。
先让学生独立计算,指名板演。
集体交流,说说哪里用了简便算法,分别是怎样想的。
小结:简便运算主要应观察算式的特点,看能不能运用运算律运算性质使计算简便,有些题目不能直接进行简便计算,要先算一步或几步才能应用运算律或运算性质简便计算,因此在计算过程中要随时注意观察算式的特点,思考能不能用简便计算。
五、巩固练习。
做练习十二第3题。
让学生独立练习,指名四人板演。
交流:每道题是哪里用了简便计算,依据是什么?
六、全课小结。
这节课你学会了什么?你有什么收获和体会?进行分数四则混合运算时应该注意什么?
七、作业布置。
补充习题相对应页。
学生分别计算,并指名板演。
3.小结:分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同,也是先算乘除,后算加减,有括号的要先算括号里面的。
六年级数学教案课件例文篇八
从知识角度分析为什么难。
打折销售与学生的日常生活息息相关,学生并不感到陌生,但在促销活动中选择最佳消费方式,要运用所学的百分数知识解决问题有一定的难度。
从学生角度分析为什么难。
学生在解题的过程中,要懂得“满100元减50元”的促销方式,对于消费者来说不如打五折实惠;如果总价是整百元的,那两种促销的方式优惠的结果是一样的,但要得出这种结论,对于学生来说有一定难度,需要运用所学的百分数知识去分析、交流、比较才能解决。
在教学时,先让学生结合自己的生活经历去理解“满100元减50元”的含义,然后根据实际情况进行表述,再引导学生体会这种促销方式的计算方法,接下来要由学生独立完成两种购买方式所要支付的钱,并通过比较来解决题目中的问题。
一、复习旧知,引入新课。
1、提问“一件物品打九折出售”表示什么意思?
2、生活中,是不是所有的优惠都是以“几折”来表示的呢?
3、购物中优惠的形式有很多种,我们要做一个精明的小买家。今天,我们就来研究购物中的折扣问题。(板书:购物中的折扣问题)。
二、教学新知。
(一)出示例5:某品牌的裙子搞促销活动,在a商场打五折销售,在b商场按“满100元减50元”的方式销售。妈妈要买一条标价230元的这种品牌的裙子。
1、根据这些信息,学生提问题。
教师板书:
(1)在a、b两个商场买,各应付多少钱?
(2)哪个商场省钱?
2、分析问题,理解题意。
(1)结合题目给出的数学信息,哪些是关键的?
(2)怎样理解“满100元减50元”?
(3)不足100元的部分呢?怎么办?
3、独立思考,尝试解决。
师:请同学们独立思考,看能否解决黑板上的这两个问题?
4、交流并汇报方法。
师:谁来说说自己的解决方法?
学生展示自己的算式,并解释。
5、启发思考,辨析原因。
(1)满100元减50元,少了50元,也是打五折啊,怎么优惠的结果却不一样呢?
(2)什么情況下两种优惠是一样的呢?
6、小结:在今天的折扣问题中,我们知道了优惠的形式有很多种,解决这些问题时要注意的是“满100元减50元”和打五折的区别:
(1)“满100减50”,就是够100才能减50,不够则不减。
(2)打五折实际售价都是原价的50%,不满100元的也能按50%计算。
(3)售价刚好是整百元的时候,两种优惠结果才是一样的。
三、练习巩固,提高能力。
1、做一做。
某品牌的旅游鞋搞促销活动,在a商场“每满100元减40元”的方式销售,在b商场打六折销售,妈妈准备给小丽买一双标价120元的这种品牌的旅游鞋。
(1)在a、b两个商场买,各应付多少钱?
(2)选择哪个商场更省钱?
同学们,在今天学习的折扣问题中,我们知道了不同形式的优惠有很多种,在解决这些问题时要注意的是“满100元减50元”和打五折的区别。
六年级数学教案课件例文篇九
教学内容:
人教版小学数学教材六年级下册第98~99页例2及相关练习。
教学目标:
1.了解三种统计图的不同特点,使学生知道对于同样的数据可以有多种分析方法,能根据需要选择合适的统计图,直观、有效地描述数据,培养进一步发展数据分析观念。
2.通过对三种统计图的认识、制作和选择,进一步培养学生对数据处理的能力及统计观念,使学生深刻体会到数学和我们的社会、生活密切联系。
教学重点:
了解不同统计图的特点;能根据实际问题选择合适的统计图,培养统计观念。
教学难点:
根据实际问题选择合适的统计图。
教学准备:
课件。
教学过程:
一、复习引入。
1.复习扇形统计图。
上节课我们学习了扇形统计图,你对它了解了多少?
课件出示扇形统计图:我国居民平均月膳食各类食物的摄入量占总摄入量的百分比就可以用扇形统计图来表示。它能清楚地反映出各部分与总数之间的关系。
2.你还学过了哪些统计图?它们各有什么特点?
根据学生回答,课件随机点击出现相关内容。
(1)条形统计图,能清楚地看出各个数量的多少。
(2)折线统计图,不仅可以反映数量的多少,还能反映出数量增减变化趋势。
通过刚才的复习,我们发现,生活中有时用扇形统计图,有时用条形统计图,还有用到折线统计图的情况。那么人们在选择统计图时,是以什么为依据的呢?这三种统计图各有什么特点和用途呢?这就是我们本节课要研究的问题。
3.揭题:选择合适的统计图。(板书)。
【设计意图】通过对三类统计图特点的复习,唤醒学生对已有知识基础的回忆,为接下来统计图的选择做好准备。
二、探究新知。
1.学习教材第98页例2第(1)组数据。
课件出示。
学生:可以用折线统计图。
教师引导学生观察:统计图的横轴表示什么?竖轴表示什么?怎样确定竖轴上的数据每一格表示多少?(课件演示绘制过程)。
教师:还可以用其他统计图吗?
学生:还可以用条形统计图来表示。(如果学生没有说到条形统计图,教师课件展示。)。
教师:我们来看一看,条形统计图能不能把统计表中的信息完整地表示出来呢?
学生:可以把每年的树木总量表示出来;还可以通过条形的起伏看出大致的变化趋势。
引导比较:这张统计表中的信息可以用条形统计图来表示,也可以用折线统计图来表示,你觉得用哪一种更合适,为什么?可以同桌讨论。
小结:折线统计图能更加直观地表示出数量随着时间的变化趋势。相对来说,这里用折线统计图更合适一些。
【设计意图】通过对第(1)组数据的分析,让学生明确如何根据统计表所提供的数据特点来制作统计图,不局限于选择某一种统计图,以拓宽学生的思路,最后通过观察比较,选择更为合适的统计图种类。
2.学习教材第98页例2第(2)(3)组数据。
我们还对绿荫小学的树木进行了其他方面的统计,请看下方表格(课件出示统计表)。
请仔细阅读统计表信息,它们可以用什么统计图来表示?试着在练习纸上画一画。
比一比:你认为哪种统计图能更加直观地表达统计表中的信息?
交流反馈。
第(2)张表格:可以用条形统计图来表示,也可以用扇形统计图来表示(课件演示)。
比较:都能表示出各种树木占树木总量的百分比,但扇形统计图能更加直观地反映出各种树木的数量和树木总量之间的关系。是的,当需要了解部分与整体之间的关系时,选择扇形统计图更合适。
第(3)张表格:给出了各种树木的数量,只能用条形统计图来表示。
为什么不用其他的统计图?
各种树种处于平等、独立的地位,用折线统计图表示是不合适的。
因为缺乏相应的百分比数据,所以也无法用扇形统计图表示。
3.课堂小结:通过刚才的学习,你知道了什么?
【设计意图】例题反映了根据不同的情况选择不同的统计图。第(2)张表格可以用不同的统计图,第(3)表格只能用一种统计图,选择什么样的统计图能更适当、清晰反映数据,通过让学生在自主分析数据以及制作、选择、比较统计图的过程中,进一步加深对三种统计图的特点的理解。
三、巩固练习。
1.教材第99页“做一做”。
课件出示题目:在林业科学里,通常根据乔木生长期的长短将乔木分成不同的类型。下面是我国乔木林各龄组的面积构成情况。
以上信息可以用什么统计图描述?哪种更直观?
(1)学生独立思考完成。
(2)交流反馈,根据学生回答出示统计图(可以用条形统计图完成,也可以用扇形统计图来完成)。
引导比较:用扇形统计图能更加直观地反映出它们之间的关系。
2.考考你:选择最合适的统计图。
3.教材第103页第7题。
(1)学生独立完成。
(2)集体交流订正。
【设计意图】利用练习让学生在选择统计图的多样化选取和优化选择的过程中,进一步理解每种统计图的特点,对三种统计图产生整体的认识。
四、回顾总结,布置作业。
1.这节课我们学习了什么?现在你知道如何正确选择统计图了吗?
2.课外作业:教材第104页第8题。
课后反思:
在这节课里我给予学生自主学习的时间与空间,让学生在认识扇形统计图后,自己去解决问题,领悟知识的内涵,放飞自己的思想,通过学生的自主学习体现其主体地位;而我只是学生的组织者、引导者、合作者、倾听者,通过参与学生活动中以启发、调整、激励体现主导地位。数学源于生活,又服务于生活。本课从课前准备、引例到生活拓展,注重选取与学生生活息息相关的事件进行分析研究,真正做到人人学有价值的数学,发展学生的数学应用意识,使学生进一步感受数学与生活的密切联系,享受用数学解决实际问题带来的乐趣,学生的学习效果较好,只是在语言逻辑叙述上个别同学较欠缺,有待于进一步有意识训练。
六年级数学教案课件例文篇十
单元目标:
1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。
2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。
3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。
4、使学生理解倒数的意义,掌握求倒数的方法。
单元重点:
分数乘法的意义和计算法则。
单元难点:
1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。
2、分数乘法计算法则的推导。
第一课时:分数乘整数。
教学目标:
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则。
教具准备:多媒体课件、
教学过程:
一、复习引入。
1.课件出示复习题。
(1)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少?9个11是多少?8个6是多少?
(2)计算:
++=++=。
2.引出课题。
++这题我们还可以怎么计算?今天我们就来学习分数乘法。
二:新知探究。
1.出示课题明确学习目标。
2.课件出示自学题纲,让学生自学课本。
(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?
(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?
(3)分数乘以整数的意义。
3、课件出示例1。
教师引导学生画出线段图。
学生根据线段图列出不同的算式,并解答。
(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的。
”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
2/11+2/11+2/11=。
2/11×3=。
(3).分数乘以整数的法则。
a.导出计算方法。
你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)。
b.归纳法则。
通过以上计算,想一想分数乘以整数怎样计算呢?
师:比一比,看哪个组的同学总结的语言准确又简练。
小组讨论,总结出法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)。
c.应用法则计算。
讨论,这两种方法哪种简单?为什么?
强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。
4、教学例2。
(1)出示×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:a、先约分再计算;b、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。
三、当堂测评(课件出示)。
1.看图写算式。
2.先说算式意义,再填空。
3.看算式,约分计算。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)。
四、学生课堂自评。
1、这节课你有什么收获?
2、每个学生给自己在课堂上的表现进行评价。
板书设计。
分数乘以整数。
意义:求几个相同加数和的简便运算。
法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
2/11×3。
=2×3/11。
=6/11。
教学后记。
六年级数学教案课件例文篇十一
课件简单是或就是辅助教师顺利完成教学工作的工具,那么,下面是小编给大家整理收集的六年级数学数轴课件,内容仅供参考。
1教学内容:
六年级下册第5~7例。
3、例。
4教学目的:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:负数与负数的大小比较。
教学过程:
一、复习导入,提出目标。
1、读数,指出哪些是正数,哪些是负数?
-128。
25.06。
+0.019。
-2/。
3+16/57。
22、如果+10%表示增加10%,那么-26%表示()。
3、某日傍晚,九仙山的气温由上午的零上2摄氏度下降了5摄氏度,这天傍晚九仙山的气温是()摄氏度。
4、提出学习目标。
二、交流探索,学生展示。
(一)教学例。
31、怎样在数轴上表示数?(。
1、2、3、4、5、6、7)。
2、出示例3:
(1)问:你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上画好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来)。
(4)学生展示,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)。
总结。
:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
a、从0起往右依次是?从0起往左依次是?你发现什么规律?
(7)练习:p7做一做。
第1、2题。
(二)教学例。
41、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、小结:负数比0小,正数比0大,负数比正数小。
7、练习:p7做一做。
第3题。
三、应用练习,拓展延伸。
1、练习一。
第4、5、6题。
2、按顺序排列。
-232。
20-3.6。
3、-6和0相差多少?-6和+6相差多少?
四、归纳总结。
学生交流学习心得。
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
2教学目标。
1、使学生正确理解数轴的意义,掌握数轴的三要素;
2、使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;
3、使学生初步理解数形结合的思想方法、教学重点和难点。
一、从学生原有认知结构提出问题。
1、小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2、用“射线”能不能表示有理数?为什么?
3、你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴。
二、讲授新课。
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度、在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃、与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零、具体方法如下(边说边画):
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)。
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴。
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可。
三、小结。
指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法、本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。
五、作业。
1、在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点。
(2)a,h,d,e,o各点分别表示什么数?
2、在下面数轴上,a,b,c,d各点分别表示什么数?
3、下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};
六年级数学教案课件例文篇十二
教学内容:
人教版小学数学教材六年级下册第107~108页例2及相关练习。
教学目标:
1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。
2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。
重点难点:
探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。
教学准备:
教学课件。
教学过程:
一、直接导入,揭示课题。
同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)。
【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。
二、探索发现,学习新知。
(一)教师与学生比赛算题。
1.教师:你知道等于多少吗?(学生:)。
教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。
在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。
3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?
【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。
(二)借助正方形探究计算方法。
1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。
2.进行演示讲解。
(1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。
想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?()那么涂色部分还可以怎么算呢?(),也就是说。
(2)继续演示,谁知道除了通分,还可以怎么算?
根据学生回答,板书。
(3)演示:那么计算就可以得到?()。
3.看到这儿,你发现什么规律了吗?
4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。
5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?
6.尝试练习。
【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。
(三)知识提升,探索发现。
1.感受极限。
(2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)。
(学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)。
2.利用线段图直观感受相加之和等于“1”。
(1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。
(2)学生看书思考。
(3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。
【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。
3.课堂小结。
对于这种借用图形来帮助我们解决问题的方法,你有什么感受?
教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。
4.举一反三。
其实在以前的学习中,我们也常用到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)。
【设计意图】让学生体会“数形结合”是数学学习中常用的方法。
三、练习巩固。
1.基础练习。
(1)学生独立计算。
(2)全班交流反馈。
【设计意图】通过练习,回顾新知,巩固新知,使学生对新知识掌握得更扎实。
解决问题。
(1)全班读题,学生独立思考。
(2)指名回答。
(3)根据学生回答情况,连线(课件演示)。
(4)结合连线图得出:小刚一共下了2盘,分别和小林、小强下的。
【设计意图】让学生进一步体会数形结合的直观性和变难为易的特点。
四、课堂总结。
快下课了,请你来说说这节课有什么收获?
课后反思:
图形的直观形象的特点,决定了化数为形往往能达到以简驭繁的目的,例2中,用举例的方法求出等比数列的有限和,都不能证明无限多项相加结果为1,但是接近1,但这个无限接近于1的数是多少呢?电子白板呈现出圆形模型和线段模型来表示“1”,使学生结合分数意义,在圆上和线段上分别有规律地表示这些加数,当这个过程无止境地持续下去时,所有的扇形和线段就会把整个圆和整条线段占满,即和为“1”,用画图的方法来表示计算过程和结果,让学生感受到什么叫无限接近,什么叫直观形象,同时,一个极其抽象的极限问题,变得十分直观和便捷。
六年级数学教案课件例文篇十三
1.使学生能有效地使用自己的眼、耳、鼻、舌、身,获得准确的感性材料。
2.培养学生对看到的、听到的事物进行了深入理解和准确把握。
3.观察力的训练是伴随着理解思维而进行的,同时也检查你的记忆力。
培养学生的对看到的、听到的事物进行了深入理解和准确把握。
开拓学生是思维能力。
要使自己更聪明,就要经常训练自己的头脑,在多观察、多思考问题中使思路灵活,就能找到解决问题的方法。所以观察力的训练是伴随着理解思维而进行的,同时也检查你的记忆力,即你是否见多识广,你是否一看就清楚,或者一听就明白。愿这一节课能使你的头脑更灵活。
1.课件出示:一组有趣的图片。
图1:柱子是圆的还是方的?仔细看一看。
让学生先同桌互相说一说,看到了什么?
图2:看着黑点身体前后移动。
让学生跟着要求做,然后说一说看到的。
图3:有多少个黑点?
图4:是静的还是动的?
图5:“弗雷泽螺旋”是最有影响的幻觉图形。
教师介绍学生认识。
2、练习。
学生谈收获。
六年级数学教案课件例文篇十四
教学内容:
教学目标:
1.知识与技能:使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2.过程与方法:使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3.情感、态度与价值观:使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
使学生掌握用“替换”的策略解决一些简单问题的方法。
教学难点:
使学生能感受到“替换”策略对于解决特定问题的价值。
教学过程:
一、复习导入。
1.说说图中两个量的关系可以怎样表示?
追问:还可以怎么说?
指出:两个量的关系,换一个角度,还可以有另外一种表示方法。
2.从图中你可以知道些什么?
(多媒体出示:天平的左边放上一个菠萝,右边放上四个香蕉,天平平衡。)
指出:从这题中,我们可以看出,能把一个物体换成与之相等的另外一个物体。
3.口答准备题:
(2)小明把720毫升果汁倒入3个相同的大杯,正好都倒满,每个大杯的容量是多少毫升?指出:这两题我们都是用果汁总量去除以杯子总数,就能得出所要求的问题。
二、新授
(一)教学例1
1.读题
2.分析探索
提问:也同样是720毫升的果汁要倒入到杯子里,这题与刚才的两题相比较,有何不同之处?小结:刚才两题是把果汁倒入到一种杯子里,而这题是把果汁倒入到两种不同的杯子里。提问:那么还能像刚才一样用果汁总量去除以杯子总数,用720÷(6+1),可以这样计算吗?追问:那该怎么办?同桌先相互说说自己的想法。
3.交流
谈话:我们一起来交流一下,该怎么办?
追问:还可以怎么办?
小结:两位同学都是把两种不同的杯子换成相同的一种杯子,这样就可以解决问题啦!同学们可真了不起啊,刚才大家的做法中已经蕴涵了一种新的数学思想方法――替换。(板书:替换)
4.列式计算
a:把大杯换成小杯
提问:把一个大杯换成三个小杯(板书),这样做的依据是什么?
追问:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?(板书)能求出每个小杯的容量吗?每个大杯呢?(板书)
小结:在用这种方法解的时候,我们是把它们都看成了小杯,所以先求出来的也是每个小杯的容量,然后求出每个大杯的容量。
b:把小杯换成大杯
谈话:那反过来,把小杯换成大杯呢?(板书)
提问:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢?你又是怎么知道的?
指出:把三个小杯换成一个大杯,再把三个小杯换成一个大杯。
提问:这样做的依据又是什么?
指出:如果把720毫升果汁全部倒入大杯,就需要3个大杯。(板书)
提问:能求出每个大杯的容量吗?每个小杯呢?(板书)
5.检验
谈话:求出的结果是否正确,我们还要对它进行检验。想一想可以怎么检验?
指出:哦!把6个小杯的容量和1个大杯的容量加起来,看它等不等于720毫升。(板书)除此之外,我们还要检验大杯的容量是不是小杯容量的3倍。(板书)总之,检验时要看求出来的结果是否符合题目中的两个已知条件。
6.小结
指出:解这题的关键就是把两种杯子看成一种杯子。
(二)练习十七第1题
谈话:把这道题目,做在自己的草稿本上。(指名板演)
提问:把你的做法讲给同学们听。
追问:计算的结果是否正确,还要对它进行检验。就请你口答一下检验的过程吧!
(三)教学“练一练”
1.出示题目
谈话:自己先在下面读一遍题目。
2.分析比较
提问:这题与刚才的例1相比较有何不同之处?
指出:哦!例1中小杯和大杯的关系是用分数来表示的,而这题已知的是一个量比另一个量多多少的差数关系。
提问:那么这题中的大盒还能把它换成若干个小盒吗?那该怎么换?谈话:现在你能做了吗?把它做在草稿本上。
3.学生试做
4.评讲
谈话:说说你是怎么做的?
指出:在大盒中取出8个球,就可以换成小盒;另外一个大盒也是这样。
提问:现在这7个小盒中,一共装了多少个球?还是100个吗?几个?指出:算式是100-8×2,所以84÷7算出来的是每个小盒装球的个数。
指出:算式是100+8×5,所以140÷7算出来的是每个大盒装球的个数。
谈话:把大盒换成小盒算出结果的请举手!把小盒换成大盒算出结果的也请举手!看来同学们还是喜欢把大盒换成小盒来计算。
5.检验
谈话:同桌相互检验一下刚才计算的结果是否正确。
6.小结
提问:解这题时你觉得哪一步是关键?
指出:哦!还是把两种不同的盒子换成一种相同的盒子,然后再解题。
三、全课总结
谈话:今天这节课老师和同学们一起学习了解决问题的策略中用替换的方法解决问题。(板书完整课题)
提问:那你觉得在什么情况下我们可以用替换的方法来解题,能给大家来举一个例子说说吗?指出:哦!当把一个量同时分配给了两种物体时,而且这两种物体是有一定关系的时候,我们就能用替换的方法来解题。
追问:那解题时该怎么替换呢?(那在用替换的方法来解题时,关键是什么?怎么来替换?)指出:把两种物体看成同一种物体,(板书)求出一种物体的数量后,也就能求出另一种物体的.数量。
四、巩固练习
3.练习十七2(机动)
――替换
把两种物体看成同一种物体
1.把大杯替换成小杯共需要9个小杯
720÷(6+3)=80(毫升)验算:240+6×80=720(毫升)
80×3=240(毫升)240÷80=3(倍)
2.把小杯替换成大杯共需要3个大杯
720÷(1+2)=240(毫升)
240÷3=80(毫升)
课后反思:
由于课前对教材进行了深入的研究和学习,所以教学时做到了心中有数,因而今天这节数学课的教学效果是不错的,超出了我的预期目标。学生们对于用替换这种策略来解决生活中一些常见的实际问题都很感兴趣,课堂上学生们思维活跃,发言积极,包括很多平时学习数学困难较大的学生也掌握了这一策略。
一、培养学生运用所学知识解决实际问题的能力。首先,解决实际问题的教学能培养学生根据需要探索和提取有用信息的能力。其次,它促使学生将过去已掌握的静态的知识和方法转化成可操作的动态程序。这个过程本身就是一个将知识转化成能力的过程。再次,它能使学生将已有的数学知识迁移到他们不熟悉的情景中去,这既是一种迁移能力的培养,同时又是一种主动运用原有的知识解决问题能力的培养。
二、培养学生的数学意识。首先,它能使学生认识到所学数学知识的重要作用。其次,它能培养学生用数学的眼光去观察身边的事物,用数学的思维方法去分析日常生活中的现象。再次,它能使学生感受到用数学知识解决问题后的成功体验,增强学好数学的自信心。
不仅使学生获得初步的创新能力,同时还可以让学生从小养成创新的意识和创新的思维习惯,为今后实现更高层次的创新奠定良好的基础。
六年级数学教案课件例文篇十五
小学数学是研究空间形式和数量关系的的一门科学,它的特点是高度的抽象性、严密的逻辑性、广泛的应用性。每个教师都有自己的教学习惯、教学特点,虽然教无定法,但教有定规,这个“规”,既要符合学生的认识规律又要符合数学自身的发展规律,在激发学生的学习兴趣的同时,让学生能够自主学习,主动去研究、探索、猜想、操作、发现和证明的过程。ppt课件作为一种辅助教学手段,是新的教学模式下提高教学质量的重要手段,是发展的必然趋势。ppt课件是通过图片、文字交流、声音和图像来辅助课堂教学的,可以将比较抽象的教学知识直观地表现出来,做到辅助教学的作用。这种教学与传统的教学不同,传统教学是在教学中,教师口头语言的基础上,为更丰富的传递信息而采用的一些简单的教具。诸如:书本、图片、画册、黑板、模型、实物、小型展览等。而这种有ppt课件参与教学可以准备更多的图片,解决教材内容的局限性,也不必要在上课时带太多的教具,既能丰富教学内容,也能完成教学目标。
一、ppt课件在小学数学课堂教学中应用的优点。
趣,提高课堂教学效率,让学生主动参与,提高学习效率。课堂教学中用ppt课件演示具体的情境,学生积极参与数学活动,对数学有好奇心和求知欲,能让学生迅速进入课堂学习中来,教师掌握课堂的导向。例如:在准备教授苏教版五年级下册第四单元《分数的性质和意义》中的《真分数和假分数》时,可以从学生已经掌握的分数的意义和分数单位的基础上进行练习入手为教学情境情境,如图1:
利用自定义动画中的添加效果让字母和表示的内容依次出现在ppt课件上,既能引起学生的学习兴趣又能让学生不知不觉初步了解本节课的知识。学习要从兴趣开始,兴趣是最好的教师。例如教师在上人教版三年级上册《有余数的除法》时。教师可根据教材中所列举的公式,设计同学们拼凑花瓣的游戏情景来让同学们慢慢的进入教学。首先出示的是引入部分第一张灯片的设计,首先找出同学们日常生活中常见的图片,利用自定义动画给每张图加上动作效果如图2:设计学生熟悉的教学情景,让学生有利于激发学生主动去观察、去思考的学习兴趣,培养学生独立思考和解决问题的能力。引导学生参与课堂解决生活中的问题,提高教学效率。
2、应用ppt课件突破课堂教学的重点和难点,动手、动脑相结合。
传统课堂教学中,教师受教学资源的限制,教案设计的难点往往是教师在课堂中无法更好演示出有关教学的一些事物和现象,学生无法弄懂。而教师如果应用ppt课件进行教学,并设计一定生动有趣的教学画面,可以激发学生积极主动的参与问题解决中,让学生初步学会从数学的角度发现问题和提出问题[4],突破课堂教学所设计的教学难点,实现教学目标,完成学习重点。例如教师在教授人教版三年级上册《有余数的除法》时,可以设计一步一步加花瓣的方式询问同学们能不能拼成一朵花的引导性问题让学生在边拼边玩中逐渐了解余数要比除数小的教学难点,如图6:
其次利用自定义动画先设计十二片花瓣退出随机效果,然后设置事先做好的两朵花和剩下的两瓣花瓣的进入效果为随机效果,设计列出的公式单击出现,设计后面每出现一片花瓣就出现相应的公式,一直到出现十五片花瓣刚好能拼三朵花,如图7、图8:
游戏是小学生最为喜爱的学习娱乐形式之一,游戏场景的设置也因此更容易走进他们的思维[7]。教师这样设计的ppt课件教学,学生不仅在活动动手操作,也出动脑筋解决问题,不知不觉中掌握了本章节的重点和难点,有效提高学习效率,激发学生的探知兴趣,培养学生自我动手积极思考问题解决问题的能力。
3、应用ppt课件教学中插入音频和视频让数学课堂。
“活”起来。
ppt课件在教学活动不只应用于展示文本文字和课堂必要的教学图片,还能根据课堂的教学内容插入有利于实现教学目标的音乐和视频,例如教师在教授新课前可在ppt课件第一页利用插入中的影片和声音里面的文件中的文件中的声音选择能活跃课堂的音乐。如图9:
ppt课件插入令人听起来心情的愉快音乐有利于学生对所教授的内容有期待兴,音乐是人与人之间交流的第二种语言,教师课前和同学们利用音乐做一些互动,特别是刚来到陌生的班级授课的时,音乐可以一下子拉近教师与学生之间的关系,有利于课堂教学组织,更好完成授课内容。教师利用ppt课件进行教学时,可利用插入中的图片里面的自选图片选择按钮,设计超链接到准备好的视频,如图10:
4、ppt课件在教学中的应用,带来的便利。
学过程中对于使用ppt课件的一些错误的认识,ppt课件在教学中应用的位置陷入尴尬的境地。
1、ppt课件使用黑板化。
传统教学主要是教师应用黑板、粉笔和教材进行教学,教师讲授的例题和重点知识都需要使用粉笔在黑板上板书出来,利用ppt课件呈现要教授的内容,虽说能节省教师板书的时间更好提高教学效率,但是ppt课件此时作用像一个小黑板只是把要板书的内容事先准备好,等到用得时候在演示出来,而不是作为教学辅助突破教学重难点,或者创设必要的教学情境。
2、ppt课件制作单一化。
教师在设计ppt课件是往往只注重演示教学内容文字化,有意识完成课堂教学内容和自己设计的教学目标去备教法,备教材。而忽视备学生的重要性,ppt课件很少注重图片和文字的相结合,缺少能活跃课堂气氛,激发学生学习兴趣的教学活动设计。
3、ppt课件虚而不实化。
六年级数学教案课件例文篇十六
教学内容:
比较正数和负数的大小。
教学目的:
1、知识与技能:借助数轴初步学会比较正数、0和负数之间的大小。
2、过程与方法:初步体会数轴上数的顺序,完成对数的结构的初步构建。
3、情感态度与价值观:培养学生应用数学的能力,使学生体验数学和生活的密切联系,激发学生学习数学的兴趣。
重点难点:
负数与负数的比较。
教学过程:
一、复习。
1、读数,指出哪些是正数,哪些是负数?
2、如果+20%表示增加20%,那么-6%表示。
二、新授。
(一)教学例3。
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)。
2、出示例3。
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察。
a、从0起往右依次是?从0起往左依次是?你发现什么规律?
(7)练习:做一做的第1、2题。
(二)教学例4。
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习。
1、练习一第4、5题。
2、练习一第6题。
四、全课总结。
1、在数轴上,从左到右的顺序就是数从小到大的顺序。
2、负数比0小,正数比0大,负数比正数小。
五、布置作业。
《家庭作业》第2页的练习。
六年级数学教案课件例文篇十七
化简比。(教材第50~51页例1)。
二、教学目标。
1、能运用比的基本性质化简比。
2、理解求比值和化简比的区别。
3、理解知识间的内在联系,渗透类比思想。
三、重点难点。
重点:掌握化简比的方法。
难点:理解化简比与求比值的区别。
教学过程。
一、复习引入。
1、把下面的分数化为最简分数。(课件出示题目)。
4/86/3012/1814/56。
点名学生回答,并说一说什么是最简分数。
2、六二班共有学生50人,今天出勤人数为46,总人数与出勤人数的比是多少?(课件出示题目,点名学生回答)。
3、师:比的基本性质是什么?
4、引出新课。
师:为了使数量间的关系更明确,我们经常要应用比的基本性质,把比化成最简单的整数比。这就是这节课我们要一起学习的内容。
二、学习新课。
1、认识最简单的整数比。
师:谁知道什么样的比可以称作最简单的整数比?
引导学生联系最简分数的概念,讨论什么叫做最简单的整数比。
教师根据学生的回答进行归纳:最简单的整数比要满足两个条件,一是比的前项和后项都是整数,二是比的前项和后项的公因数只有1。
指名学生举出几个最简单的整数比。
六年级数学教案课件例文篇十八
【教学内容】。
人教版《义务教育课程标准实验教科书&数学》三年级上册第七单元第92页。
【教学目标】。
1、认知目标:在看一看、想一想、折一折、说一说、估一估一系列活动中,理解分数的意义,初步认识几分之一,会读写分数。
2、能力目标:通过小组的合作学习培养学生的观察能力,动手操作能力和语言表达能力。
3、情感目标:在动手操作,观察比较中,培养学生勇于探索和自主学习的精神,使之获得成功的体验。
【教学重点】理解分数的意义,初步认识几分之一,会读写分数。
【教学难点】理解分数的实际意义。
【教学准备】多媒体课件和学生用具。
【教学过程】。
(一)情境谈话,导入新课。
小朋友们,你们知道农历八月十五是什么节日吗?(中秋节)中秋节有什么习俗呢?(赏月、吃月饼)(课件)同学们爱吃月饼吗?(爱)。
师:这里有4块月饼,怎样分给两个小朋友才公平呢?(课件)。
生:一人分2块,这样才公平。
师:数学上把“公平、一样多”叫做“平均分”(板书:平均分)。
师:如果有两块月饼,又该怎么分呢?(课件)。
生:每人分一块。
师:现在月饼只有一块(课件),还能平均分给两个小朋友吗?
生:能。(师板书:把一块月饼平均分成两份,)(课件演示分的过程)。
生:分数。
师:对!今天我们就来初步认识这个新朋友——分数。(板书:分数的初步认识)。
(二)动手操作,探索交流。
1、认识1/2:
师:谁能结合刚才分月饼的过程说一说1/2表示什么意思?
(引导学生说出:表示把一个月饼平均分成两份,每份是它的二分之一。)(板书:每份是它的二分之一)。
师:指名学生再次说说1/2的意思。
师:(师指另一份月饼)那这一份呢?(让学生明白另一份也是这个月饼的1/2)。
师:现在同桌相互说说1/2的意思。
师:1/2怎么写呢?(伸出手指和老师一起写:先写一短横—,表示平均分;再写下面的2,表示平均分成了两份;最后写上面的1,表示其中的一份)。
师:1/2怎么读呢?(生读一遍,再书空写一遍。)。
2、理解1/2:
(1)体会分数的实际意义。
师:大家想想,半块月饼可以是1/2,生活中还有哪些东西可以是这样分的?
生:一个苹果、一个蛋糕……(用生活实例完整地说一说1/2所表示的具体含义)。
【设计意图:使学生进一步感受到数学与生活的紧密联系】。
(2)、动手折一折。
师:其实,我们的长方形、正方形、圆形纸片上也都藏着1/2,想不想把它找出来?
请看要求(课件出示:先折一折,再把它的1/2涂上颜色)。
生:动手操作,动口说含义。
师:(巡视指导),做完的同学同桌互相小声说说,你是怎样得到这张纸的1/2的?(学生把自己的作品贴在黑板上)。
生1:我把这张正方形纸片平均分成两份,每份是它的1/2。
生2:我把这张长方形纸片平均分成两份,每份是它的1/2。
生3:我把这张圆形纸片平均分成两份,每份是它的1/2。
师:追问,这些图形各不相同,为什么都可以表示出1/2?
生:都是把这些图形平均分成两份,所以每份都是它的1/2。
师:对!只要把一个图形平均分成两份,每份就是它的1/2。
3、判断1/2,引出1/4。
师:老师也折了几种图形,涂色部分是不是它们的1/2呢?请大家用手势判断“对”或“错”,看谁反应快!(课件出示:)。
生1:第一个对,因为它是把一个正方形平均分成两份,每份就是它的1/2。
生2:第二个错,因为它不是平均分。
生3:第三个不是1/2,应该是1/4。
【设计意图:通过判断练习,进一步明白1/2的含义,同时巧妙的引出了】。
4、探索1/4。
(1)、认识1/4。
师:谁来说说1/4表示什么意思?
生:表示把一个三角形平均分成了四份,每份是它的1/4。
师:谁会写1/4?
生:一生上台板演,全班书空。
(2)、探索1/4。
小组活动:折出一张正方形纸的1/4并涂一涂。
师:小组先讨论一下不同的折法,然后再动手,比一比哪一组的方法又多又好。
小组合作,小组交流,小组自愿将作品展示在黑板上和全班交流。
同桌互相说说1/4表示什么意思?
师:追问:这些图形都相同,折法不同,为什么每份都能用1/4来表示?
生:都是把正方形平均分成了四份,每份都是它的1/4。
师:很正确!只要把一个图形平均分成四份,每份都是它的1/4。
(三)、巩固练习、拓展应用。
来!睁大双眼到生活中看一看。
1、看:下面的画面让你联想到几分之一?(课件)。
2、播放:多美滋1+1奶粉广告。
东东把一块蛋糕平均分成四份,一看来了八人,刚解决这个问题,又来了第九个人。
看广告让你能联想到几分之一?
生:能想到1/4。
从哪个画面中联想到1/8?
生:第一幅画面,蛋糕平均分成四份,每人吃到一份。
生:能想到1/8。
从哪个面画中联想到的1/8?
生:第三、四画面把一个蛋糕平均分成8份,每人吃到一份。
生:能想到1/2。
这里的1/2是整个蛋糕的1/2吗?
生:不是,是小男孩手上蛋糕的1/2。
生:1/9。
如果开始就有9个人,平均分成9份,每人就得到这块蛋糕的?
(四)回归生活、全课总结。
其实,生活中还有许许多多的分数,只要同学们善于观察就能发现它们。下面就让我们在歌声中结束今天的内容吧!(播放《幸福拍手歌》)。
【板书设计】。
分数的初步认识。
把一块月饼平均分成两份,每份是这块月饼的二分之一。
1/2 1/4。
(学生作品展示)(学生作品展示)。
六年级数学教案课件例文篇十九
教学目的:
使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用“先约分再相乘”的方法进行计算。
教学过程:
一、复习。
1、5个12是多少?
用加法算:12+12+12+12+12。
用乘法算:12×5。
问:12×5算式的意义是什么?被乘数和乘数各表示什么?
2、计算:
问:有什么特点?应该怎样计算?
3、小结:
(1)整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。
(2)同分母分数加法计算法则是分子相加作分子,分母不变。
二、新授。
教学例1。
出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:(块)。
用乘法算:(块)。
问:这里为什么用乘法?乘数表示什么意思?
得出:分数乘以整数的意义与整数乘法的意义相同,
都是求几个相同的和的简便运算。学生齐读一遍。
练习:说一说下面式子各表示什么意思?(做一做第3题。)。
问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)。
三、巩固练习。
1.第2页做一做。
2.练习一。
【本文地址:http://www.xuefen.com.cn/zuowen/19283433.html】