初一数学教案文案范文(12篇)

格式:DOC 上传日期:2023-12-13 20:22:11
初一数学教案文案范文(12篇)
时间:2023-12-13 20:22:11     小编:碧墨

教案有助于教师合理分配教学时间,确保教学进度和教学质量。教案要注重情感教育和价值观培养,培养学生正确的学习态度和价值观念。以下是一些教学设计的案例,供您借鉴和参考。

初一数学教案文案篇一

1.重点:

(1)了解多边形及其有关概念,理解正多边形及其有关概念.

(2)区别凸多边形和凹多边形.

2.难点:

多边形定义的准确理解.

一、新课讲授

投影:图形见课本p84图7.3一l.

你能从投影里找出几个由一些线段围成的图形吗?

上面三图中让同学边看、边议.

在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?

(1)它们在同一平面内.

(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.

这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?

提问:三角形的定义.

你能仿照三角形的定义给多边形定义吗?

1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.

如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)

2.多边形的边、顶点、内角和外角.

3.多边形的对角线

连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.

让学生画出五边形的所有对角线.

4.凸多边形与凹多边形

看投影:图形见课本p85.7.3―6.

5.正多边形

由正方形的特征出发,得出正多边形的概念.

各个角都相等,各条边都相等的多边形叫做正多边形.

二、课堂练习

课本p86练习1.2.

三、课堂小结

引导学生总结本节课的相关概念.

四、课后作业

课本p90第1题.

备用题:

一、判断题.

1.由四条线段首尾顺次相接组成的图形叫四边形.()

2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()

3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()

4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()

二、填空题.

1.连接多边形的线段,叫做多边形的对角线.

2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形.

3.各个角,各条边的多边形,叫正多边形.

三、解答题.

1.画出图(1)中的六边形abcdef的所有对角线.

初一数学教案文案篇二

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容――数轴.

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.

通过上述提问,向学生指出:数轴的三要素――原点、正方向和单位长度,缺一不可.

例1画一个数轴,并在数轴上画出表示下列各数的点:

例2指出数轴上a,b,c,d,e各点分别表示什么数.

课堂练习

示出来.

2.说出下面数轴上a,b,c,d,o,m各点表示什么数?

1.在下面数轴上:

(1)分别指出表示-2,3,-4,0,1各数的点.

(2)a,h,d,e,o各点分别表示什么数?

2.在下面数轴上,a,b,c,d各点分别表示什么数?

3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初一数学教案文案篇三

掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯。

重点、难点。

1、重点:掌握去分母解方程的方法。

2、难点:求各分母的最小公倍数,去分母时,有时要添括号。

教学过程。

一、复习提问。

1.去括号和添括号法则。

2.求几个数的最小公倍数的方法。

二、新授。

例1:解方程(见课本)。

解一元一次方程有哪些步骤?

一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。

补充例:解方程(x+15)=-(x-7)。

三、巩固练习。

教科书第10页,练习1、2。

四、小结。

1.解一元一次方程有哪些步骤?

2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。

五、作业。

教科书第13页习题6.2,2第2题。

初一数学教案文案篇四

教学目标:了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析。

教学重点:对概念的理解及对数据收集整理。

教学难点:总体概念的理解和随机抽样的合理性。

教学过程:

一、情景创设,引入新课。

二、新课。

1.抽样调查的意义。

在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查。

抽样调查:抽取一部分对象进行调查的方法,叫抽样调查。

2.总体、个体、样本、样本容量的意义。

总体:所要考察对象的全体。

个体:总体的每一个考察对象叫个体。

样本:抽取的部分个体叫做一个样本。

样本容量:样本中个体的数目。

3.抽样的注意事项。

下面是某同学抽取样本数量为100的调查节目统计表:

表中的数据信息也可以用条形统计图或扇形统计图来描述。

初一数学教案文案篇五

掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的'过程和自觉检验方程的解是否正确的良好习惯。

1、重点:掌握去分母解方程的方法。

2、难点:求各分母的最小公倍数,去分母时,有时要添括号。

一、复习提问。

1.去括号和添括号法则。

2.求几个数的最小公倍数的方法。

二、新授。

例1:解方程(见课本)。

解一元一次方程有哪些步骤?

一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。

补充例:解方程(x+15)=-(x-7)。

三、巩固练习。

教科书第10页,练习1、2。

四、小结。

1.解一元一次方程有哪些步骤?

2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。

五、作业。

教科书第13页习题6.2,2第2题。

初一数学教案文案篇六

【教学目标】。

1、会判断一个数是正数还是负数,理解负数的意义。

2、会把已知数在数轴上表示,能说出已知点所表示的数。

3、了解数轴的原点、正方向、单位长度,能画出数轴。

4、会比较数轴上数的大小。

【知识讲解】。

一、本讲主要学习内容。

1、负数的意义及表示2、零的位置和地位。

3、有理数的分类4、数轴概念及三要素。

5、数轴上数与点的对应关系6、数轴上数的比较大小。

其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。负数的意义是难点。

下面概述一下这六点的主要内容。

1、负数的意义及表示。

把大于0的数叫正数如5,3,+3等。在正数前加上“-”号的数叫做负数如-5,-3,-等。负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。

2、零的位置和地位。

零既不是正数,也不是负数,但它是自然数。它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。

3、有理数的分类。

正整数、零、负整数统称为整数,正分数、负分数统称为分数,整数和分数统称为有理数。

正整数。

整数零正有理数。

有理数负整数或有理数零。

分数正分数负有理数。

负分数。

初一数学教案文案篇七

立足教材,注重基础。

近年来中考数学有许多新题型,但所占分值比例较大的仍然是传统的基本问题,多数试题源于教材。试题的构成是在教材中的例题、习题的基础上通过类比,加工改造,加强条件或减弱条件,延伸或扩展而成的。因此,复习要立足于教材,在备战中考的过程中,首先应以教材为蓝本,重视“双基”训练,要让学生掌握典型例题、习题的解决套路,能够做到举一反三,触类旁通。注意知识体系构建,让各种概念、公理、定理、公式、常用结论及解题方法和技巧等,都能在学生的头脑中清晰地再现,扎扎实实地从教材做起,夯实基础,充分认识基础知识在解题中的指导作用。

创设情境,提升能力。

几年来,全国不少地方的试题都不再局限于对知识本身的考查,而是重在创设一个新颖的情境,考查学生在具体情境中灵活应用知识去解决问题的'能力。这就要求教师在课堂上,要善于创设问题情境,要注意引导学生深层次地参与学习过程,重视培养学生运用所学的知识和技能分析问题和解决问题的能力,使他们在观察、实验的活动中,通过比较、分析、归纳、类比、抽象等思维过程,完成知识的猜想和证明,加深对知识的理解,并学到创新解决问题的策略和方法。

贴近生活,学会运用。

数学知识来源于实际生活,继而为生产、生活服务。在教学中,要注意发掘学生身边与数学相关的事情,如银行商标图案、骑自行车反映出来的函数图象、测量电视塔的高度、投寄平信应付的邮费、购买商品如何省钱等,以增强学生用数学的意识。同时还要注意它们与教材中有关内容的类比。要培养学生运用所学数学知识解决实际生活中遇到的数学问题的意识和能力,引导学生做生活的有心人,做到学以致用,学用相长。

传授方法,加强理解。

考查数学思想方法是考查学生能力的必由之路。在中考复习中,应有意识有目的地适时渗透数学思想和方法,培养学生有效地利用数学思想方法解决相关问题的能力。要注意让学生针对具体题目作总结,以体会其中的数学思想和数学方法。近年中考数学试题,很多试题都是以图象、图表为背景呈现在学生面前的,这方面的试题有利于培养学生的自学能力、创新思维和实践能力。这类题目一般是通过阅读材料,观察图象,整理信息,抽象出数学问题,并用数学语言抽象成数学模型,进而得到解决的。正确解决这类题目的前提是正确理解题意。因此,在中考复习中,我们还要重视学生阅读理解能力的培养。

初一数学教案文案篇八

【教学目标】。

1、能运用公式解决比较简单的实际问题,并对简单公式的导出方法有一个初步的认识;

2、会解简单的方程及会利用简易方程解实际问题;

3、初步了解抽象概括的思维方法及特殊与一般的辩证关系。

【知识讲解】。

下面讲述这几点的主要内容:

1、公式。

用字母表示数的一类重要应用就是公式,在小学,我们已经学过许多公式。

如:(1)s=vt(路程公式),(速度公式),(时间公式)。

(2)梯形面积公式:

(3)圆的面积公式:

(4)s圆环=。

2、方程中的.有关概念。

(1)含有未知数的等式叫方程。

(2)使方程左右两边相等的未知数的值,叫方程的解。

(3)求方程的解的过程叫解方程。

3、解方程的依据。

(1)方程两边都加上(或减去)同一个适当的数。

(2)方程两边都乘以(或除以)同一个适当的数。

例1、图示是一个扇环,外圆半径是r,内圆半径是r,扇环的圆心角为n,写出扇环的面积公式,并计算当r=8cm,r=4cm,n=60°时的扇环面积(取3.14,结果取一位小数)。

分析:扇环面积可以看作是环形面积的一部分,因为环形的圆心角是360°,所以圆心角是n的扇环面积是环形面积的。

解:当r=8cmr=4cmn=60°时,

答:扇环的面积约是25.1cm2。

说明:(1)公式计算时单位要一致,计算过程中一般不写单位,最后结果才写出单位,并用括号将单位括起来。

(2)上面所用的求扇环面积的方法体现了数学上的转化思想。一般在计算比较复杂的图形的面积时,都有采用此法,即将复杂的图形转化为几个简单图形的面积的和或差。

例2、一根钢管它的截面是一个圆环,圆环的外圆半径是r=10cm,内圆半径r=8cm,钢管长l=100cm。

初一数学教案文案篇九

1、通过对生活中各种事件的概率的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断;(重点)。

2、知道事件发生的可能性是有大小的(难点)。

一、情境导入。

二、合作探究。

探究点一:必然事件、不可能事件和随机事件。

【类型一】必然事件。

一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()。

a、摸出的4个球中至少有一个是白球。

b、摸出的4个球中至少有一个是黑球。

c、摸出的4个球中至少有两个是黑球。

d、摸出的4个球中至少有两个是白球。

变式训练:见《学练优》本课时练习“课堂达标训练”第1题。

【类型二】不可能事件。

下列事件中不可能发生的是()。

a、打开电视机,中央一台正在播放新闻。

b、我们班的同学将来会有人当选为劳动模范。

c、在空气中,光的传播速度比声音的传播速度快。

d、太阳从西边升起。

解析:“太阳从西边升起”这个事件一定不会发生,所以它是一个不可能事件、故选d、

变式训练:见《学练优》本课时练习“课堂达标训练”第2题。

【类型三】随机事件。

变式训练:见《学练优》本课时练习“课堂达标训练”第6题。

探究点二:随机事件发生的可能性。

掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数()。

a、一定是6。

b、是6的可能性大于是1~5中的任意一个数的可能性。

c、一定不是6。

d、是6的可能性等于是1~5中的任意一个数的可能性。

变式训练:见《学练优》本课时练习“课堂达标训练”第11题。

三、板书设计。

1、必然事件、不可能事件和随机事件。

必然事件:一定会发生的事件;

不可能事件:一定不会发生的'事件;

必然事件和不可能事件统称为确定事件;

随机事件:无法事先确定一次试验中会不会发生的事件、

2、随机事件发生的可能性。

教学过程中,结合生活实际,对身边事件发生的情况作出判断,通过实测理解掌握定义,鼓励学生展开想象,积极参与到课堂学习中去。

一、选择题(共15个小题)。

1、下列说法正确的是()。

a、随机事件发生的可能性是50%。

b、确定事件发生的可能性是1。

c、为了了解岳阳5万名学生中考数学成绩,可以从中抽取10名学生作为样本。

d、确定事件发生的可能性是0或1。

答案:d。

分析:本题考察对多个知识点的理解,关键是认真对照各知识点内容、

一、选择——基础知识运用。

1、不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()。

a、摸出的是3个白球。

b、摸出的是3个黑球。

c、摸出的是2个白球、1个黑球。

d、摸出的是2个黑球、1个白球。

2、在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,这一事件是()。

a、不确定事件b、不可能事件。

c、可能性大的事件d、必然事件。

3、下列事件是必然事件的是()。

a、打开电视机正在播放广告。

b、投掷一枚质地均匀的硬币100次,正面向上的次数为50次。

c、任意一个一元二次方程都有实数根。

d、在平面上任意画一个三角形,其内角和是180°。

初一数学教案文案篇十

用因式分解法解一元二次方程.

难点。

让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.

一、复习引入。

(学生活动)解下列方程:

(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)。

老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.

二、探索新知。

(学生活动)请同学们口答下面各题.

(老师提问)(1)上面两个方程中有没有常数项?

(2)等式左边的各项有没有共同因式?

(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.

因此,上面两个方程都可以写成:

(1)x(2x+1)=0(2)3x(x+2)=0。

因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)。

因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.

例1解方程:

思考:使用因式分解法解一元二次方程的条件是什么?

解:略(方程一边为0,另一边可分解为两个一次因式乘积.)。

练习:下面一元二次方程解法中,正确的是()。

c.(x+2)2+4x=0,∴x1=2,x2=-2。

d.x2=x,两边同除以x,得x=1。

三、巩固练习。

教材第14页练习1,2.

四、课堂小结。

本节课要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.

(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.

五、作业布置。

教材第17页习题6,8,10,11。

初一数学教案文案篇十一

2.掌握列方程解决实际问题的一般步骤;。

3.通过列方程解决实际问题的过程,体会建模思想.

教学重点建立模型解决实际问题的一般方法.

教学难点建立模型解决实际问题的一般方法.

学情分析1、在前面已学过一元一次方程的解法,能够简单的运用一元一次方程解决实际问题。

2、培养学生分析、解决问题的能力及逻辑思维能力。

学法指导自学互帮导学法。

教学过程。

教学内容教师活动学生活动效果预测(可能出现的问题)补救措施修改意见。

问题1:之前我们通过列方程解应用问题的过程中,大致包含哪些步骤?

1.审:审题,分析题目中的数量关系;。

2.设:设适当的未知数,并表示未知量;。

3.列:根据题目中的数量关系列方程;。

4.解:解这个方程;。

5.答:检验并答话.

二、应用与探究。

问题2:应用回顾的步骤解决以下问题.

三、课堂练习。

四、小结与归纳。

问题4:用一元一次方程解决实际问题的基本过程有几个步骤?分别是什么?

五、课后作业。

教科书第106页习题3.4第2、3、7题;1、教师利用复习提问的方式导入,帮助学生掌握列方程解应用题的步骤。

2、教师展示例题,并巡视学生独立完成情况,引导学生分析问题并解决问题。

3、教师展示练习题,引导学生分析问题并解决问题,并巡视。

4、教师通过提问,让学生进行归纳小结。1、学生回忆并独立回答。

2、学生先观看课件,先独立思考,再合作交流解决问题。

3、学生先观看课件并解决问题。

4、学生自主归纳本节课所学内容。

不能解决问题。

教师展示解答过程。

初一数学教案文案篇十二

课件简介:。

新课导入。

这两把折扇中,哪一把形成的角度大?与折扇的大小有关系吗?

教学目标。

知识与能力。

1.理解两个角的和、差、倍、分的`意义;。

2.掌握角平分线的概念;。

3.会比较角的大小,会用量角器画一个角等于已知角.

过程与方法。

1.通过让亲自动手演示比较角的大小,画一个角等于已知角等,培养训练动手操作能力.

2.通过角的和、差、倍、分的意义,角平分线的意义,进一步训练几何语言的表达能力及几何识图能力,培养其空间观念.

情感态度与价值观。

通过具体实物演示对角的大小进行比较这一由感性认识上升到理性认识的过程,培养严谨的科学态度,进行辩证唯物主义思想教育.

【本文地址:http://www.xuefen.com.cn/zuowen/19276307.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档