数学教案四年级(优质16篇)

格式:DOC 上传日期:2023-12-13 20:05:19
数学教案四年级(优质16篇)
时间:2023-12-13 20:05:19     小编:QJ墨客

教案要注重教学目标的达成,能够有效提升学生的学习效果。教案的编写需要注意语言的简明扼要,避免使用过于复杂的词语和句式。以下是小编为大家收集的精选教案范例,仅供参考,希望能给您带来启示。

数学教案四年级篇一

2、结合小数乘法的意义,能计算出简单的小数与整数相乘的得数。

3、通过探究小数乘整数的计算方法一系列活动,培养学生的类推迁移、转化方法的数学思维。

课件

格子图、色彩笔

一、激活旧知,引入新课。

(一)复习小数的意义

同学们,前些日子,我们已经学习了小数的有关知识。你们还记得吗?(记得)。好,老师就考考你们。有信心接受挑战吗?(有)

0、3它表示什么?

生:0、3表示十分之三,即把一个整体平均分成十份,其中的3份就是0、3。

那0、25它表示什么呢?你会用你手中的百格图表示出来吗?请同学们动手试一试。

生:表示把一个整体平均分成100份,其中的25份,就是0、25。

(二)复习整数乘法的意义,引出小数乘法的问题。

(课件出示情境:文具店,单价是整元的文具)。

板书:文具店

结合文具店柜台上各种文具的单价,提出数学问题。

1、提问题与列式。

师:熊妈妈是个热心助学人士,她说你们是第一次到她的文具店,决定给你们的优惠,你们发现文具的单价有了什么变化?(生:以前的价钱都是整数,现在的价钱都是小数。)

师:现在买3块橡皮又需要多少钱呢?怎么列式解答呀?

二、探究算法

师:请同学们思考一下,与前面的乘法算式对比,它们有什么不同?

生:以前是整数乘整数,现在是小数乘整数。

师:对,现在是小数乘整数。那么,怎样求出小数乘整数的结果呢?这节课我们就一起来探究小数乘整数,也就是小数乘法(一)。(板书课题)

(一)意义

下面提出以0、3×3这个算式为例来进行研究。

0、3×3它表示的什么意义?

(二)交流算法。

1、引导探究

学生用自己的办法算出0、3×3是多少元?要求每个同学先独立思考,自己算,然后进行小组讨论,交流算法。

2、全班交流、

如:

(1)连加。你是怎么加的?为什么可以这样算?

(2)转化。0、3元看做3角,然后3角×3等于9角,9角等于0、9元。

(3)画格子图。学生先画,然后投影学生作品,让学生说一说是怎么画。

用一个正方形表示1元。把它平均分成10份,3份就是0、3元,也就是一块橡皮的价钱,买3个就是3个0、3元,从图中可知,合起来就是0、9元。

(三)小结。

师:刚才通过学习交流,同学们找到了连加的、换算单位转化成整数来计算的、借助方格图来进行计算的等方法。不管用什么方法,都算出结果是:买3块橡皮需要0、9元,也就是3个0、3等于0、9。(师板书完整,补“0、9元”并写答语)

师:下面我们来对上面各种方法作一个分析和比较,它们各有什么特点?(生说想法)

1、利用整数乘法意义(连加)

2、化为整数乘法(转化)

3、画图(数形结合)

三、解决实际问题。

(一)做一做。课本p42“试一试”1、2题。

师:用你喜欢的方法来完成课本p42“试一试”1、2题。独立完成汇报结果,交流算法)

(二)计算4×0、3。小组活动,交流算法。

(三)补充练习。

1、寻找小数是两位数的计算方法。

一棵竹子一时约生长0、03米,三时约长了多少米?

师:你能用涂色的方法表示出来吗?(生动手涂色)投影学生作品并点评。

(四)深化性练习(每个学生独立完成)

2、(课本42页的涂一涂、填一填)

3、“知识拓展”(机动性练习)

小新爸爸去菜市场买菜,他买了三条鱼,每条鱼是3、5元,那么他花了多少钱?

四、总结反思,畅谈全课收获。

师:通过这节课的学习交流,你有什么收获?

数学教案四年级篇二

本节内容是在三年级观察由3个、4个同样大小的正方体拼成的物体,分别从正面、上面、侧面三个不同的角度去观察的基础上,添加一个同样大小的正方体所摆成的物体,从正面、上面、侧面所看到的形状不变。

在学习新知识的开始,我引导学生仔细观察所摆物体的正面的形状,抛出这样一个问题:“添加一个同样大小的正方体,从正面看形状不变,想一想,该怎样摆?这当中强调要有各自独立思考,在独立思考的基础上,再在小组里讨论,待有结果以后,再尝试拼摆,通过自己亲身实践,验证自己的设想,这样设计一是充分体现学生的自主性,发挥学生的主体地位,主动权交给学生,让学生大胆猜想,富于实践。二是亲身经历数学学习历程,体验知识的形成过程,由猜想、假设到操作验证,既掌握了知识,又形成了能力。

得出各种不同摆法以后,再让学生通过观察比较,不难发现摆在原物体某一个正方体的前面或后面,对齐着摆就行了。摆在后面,如果允许不对齐,就会出现更多不同的摆法。

此刻,我又作了拓展;可以再添加相同的小正方体了吗?学生回答:可以。可以添加多少个?1个、2个、3个……一直到无数个。学生的思维很发散,很有创意,真了不起,他们已经发现拼摆中的规律:只要在原某一个小正方体的前面或后面即可。

从上面、侧面看形状不变,改变了教学的策略,先研究侧面,后研究上面。因为侧面的摆法和正面摆法有相似之处,仍然有无数种不同的摆法,在教学中直接让学生拼摆,再借助多媒体演示多种不同的摆法。当研究从上面看时,要求学生直接通过展开丰富想象无需拼摆,直接借助电脑上拖动小正方体展示不同的摆法,同时还提问:有不同的摆法吗?学生举出了多种不同的摆法。

整个探究过程,大胆放手、扎实有效,取得了较好的教学效果。

数学教案四年级篇三

这节课是在学生已经学习了万以内的数的读写,并掌握了万以内数的读写方法的基础上学习的。为以后学生在学习中接触大数,并计算大数奠定了知识基础。

学生在三年级时已经会读写万以内的数,他们已经有了一定的自主探究、合作交流、总结概括的能力,喜欢在自主探究、合作交流的过程中学习新知识,渴望获得成功的体验。

根据教材对教材的理解和学生的实际情况,我将本节课的教学目标确定为:

1. 结合具体事例,经历认识数位表以及读、写亿以内数的过程。

2、认识亿以内的数为顺序,知道各个数位上的数字所表示的意义,能读、写亿以内的数。

3.对现实生活中与大数有关的事物感兴趣,体会大数在表达和交流信息中的作用,培养学生的合作交流能力以及总结概括的能力,树立学习数学的自信心。

本节课教学重点:亿以内数的读写法。

难点:亿以内数读写的方法。

在教学中我准备了如下的教具:多媒体课件(ppt)

这节课我运用的教法有:情境导入法、操作发现法、归纳总结法、

学法有:自主探究法、观察比较法、合作交流法

? 教学中借助电子白板展示例题、练习,大大提高了课堂效率,体现数学与信息技术的有效整合。

(一)创设情景,导入新课

首先从趣味读数导入,借助学生会读的典型数据,复习万以内数的读法。再联系生活,引入生活中的亿以内的.数,让学生选择喜欢的信息读给大家听。 目的是让学生深切地感知数学来源于生活,激发学生的学习兴趣。

(二)自主探究、合作交流

在自主探索、合作交流,我安排了两个活动:

活动一:探究亿以内数的读法

我首先出示数位表,引导学生观察并交流数位表的分级特点以及个级和万级数位排列的特点。这一环节我的设计意图是:通过观察交流数位表,为读写亿以内的数做好准备。

课堂上先引导学生利用数位表读数,初步体会亿以内数的读法;再让学生在没有数位表的情况下读数,使学生感受到分级的必要性;最后师生共同总结出亿以内数的读法。这样设计使每一位学生既深刻体会到了亿以内数的读法,同时又培养了学生的知识迁移能力和归纳总结的能力。为了巩固亿以内的读法,我又设计了读数大比拼的游戏。这个环节的设计意图是:继续巩固亿以内数的读法,并体会到数学学习的乐趣。

此时,孩子们正处在成功的喜悦中,我继续激发学生的学习兴趣,进一步提出:这样的数怎样写呢?激起学生想继续探究的兴致,这样就自然的进入活动二的教学环节。

活动二:探究亿以内数的写法

首先提出活动要求:你能试着写出这些数吗?

在学生试写、小组讨论、全班交流的过程中,使学生掌握亿以内数的写法。这一环节的设计意图是:使学生亲身经历知识的产生、形成的过程,突出了学生的主体地位。

为了让学生更好的掌握亿以内数的写法,我又设计了写数比赛。

这个活动的设计意图是:既能让好学生吃得饱,又能让差学生够得着。给了学生发挥自己潜能的机会,又在快乐中加强了对知识的理解,使学生轻松愉快的学习本节课的新知。

(三)发散思维,拓展延伸

以上教学环节使学生掌握了亿以内数的读写法,但学生仅仅会直接的读数和写数。为了让学生在掌握亿以内数读写法的基础上,又有所提高,我进一步设计了写数的游戏。

这一环节的设计,既让学生充分感受到数学学习的趣味性,又达到了培养学生逆向思维能力的目的。

(四)课堂小结,反思提升

这一环节让学生谈谈自己的收获和体会,引导学生从知识、过程、情感三方面进行总结。

整节课的教学设计充分发挥多媒体教学手段的优势,在直观教学中,有效地激发学生的学习兴趣,培养了学生观察、推理、总结的能力,发散了学生的思维。

数学教案四年级篇四

1、在解决实际问题中感受运算顺序规定的必要性,进一步掌握加减混合或乘除混合运算的运算顺序并能正确计算。

2、经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。

3、在解决实际问题的过程中,发展提出问题解决问题的能力。

1、教学重点:感受运算顺序的必要性,准确提出问题解决问题。

2、教学难点:掌握解决问题的策略和方法。

集智式备课。

(一)基础训练。

【口算】24×5=32÷4=8+27=900÷3=。

【解答题】用小棒摆8个六边形,共需要多少根小棒?

(二)新知学习。

【典型例题】。

例2“冰雪天地”3天接待987人。照这样计算,6天预计接待多少人?

1、观察主题图,根据条件提出问题。

2、小组交流。根据图中提出的信息,你能提出哪些问题,怎样解决?(引导学生理解“照这样计算”的'意思)。

3、抓住新旧知识的联系,运用知识迁移类推,学会知识。

4、学生汇报。引导学生列综合算式并说一说每一步表示的意义。

5、教师用线段图引导学生用两种方法解决问题。

6、教给方法:我们可以用画线段图、简图等方法来帮助我们理清解题思路,保证准确的解决问题。

(三)巩固练习。

【基础练习】1、直接写出计算结果。

2、划出下面题目的计算顺序并计算任意两题。

3、啄木鸟医生(判断并改正)。

=19=145。

【提高练习】1、先计算,再列出综合算式。

240÷12=236+70=237+263=。

125×14=1750÷25=25×36=。

2、列综合式计算。

(1)4除900的商减224,差是多少?

(2)504加140除以28的商,和是多少?

(3)比一个数的3倍少12是60,这个数是多少?

3、课本p8练习一。

4、你能提出什么数学问题?并列式计算。

小张有8张10元的。小王有18张2元的。

【拓展练习】1、用两种方法解决下面的问题:(只要求列式不计算)。

数学教案四年级篇五

1.通过计算两种动物爬行的速度,发现余数和商的特点,知道什么是循环小数。

2.在认识循环小数的过程中培养学生科学地思考问题的方法。

在这一单元里,前面4节课里学生系统学习了除数是整数的除法、除数是小数的除法以及用小数除法解决实际问题。在这基础上,教材创设了两种爬虫谁爬得快的有趣情境,让学生在解决问题中发现某些除法中余数和商的特点,从而进一步去探索、发现它们有什么规律?在这过程中认识什么是循环小数。这部分内容比过去降低了要求,有关循环节。循环小数的简便写法,是在"数学万花筒"中呈现的。

这节课都是利用除数是整数的小数除法来引入循环小数的除法,相对来说,学生比较容易理解。对于"循环"这一特征,原先孩子在找规律中也多次接触,因此,可以放手让学生先算,在算的过程中可能发现余数和商的特点,再引导学生来研究循环小数的特点就不会很困难。

活动一:比一比,谁爬得快?发现并认识循环小数。

出示课件:雨后的一天,树叶上还闪烁着水珠。一棵大树上一只蜘蛛在慢慢地往下爬行;地面上,有只蜗牛也在缓慢地爬行。

师:你们从图中还获得了什么信息?

(点击课件:蜘蛛旁边出现"3分钟爬行73米";蜗牛旁边出现"11分钟爬行9.4米")

师:你们能提一个数学问题吗?

生:它们俩谁爬得快?

师:如何知道谁爬得快?你怎样解决?怎样列算式?

生:可以比较它们俩的速度。

生:蜘蛛的速度可以用73÷3来计算蜗牛的速度可以用9.4÷11来计算(老师板书出学生说出的算式)

师:先请大家动手算一算蜘蛛的速度。

学生动手算。

……

生:老师:73÷3=24.3333……除不尽怎么办?

师:什么意思?你还没有除完,怎么知道除不尽呢?

生1:永远都除不完!

师:为什么?

生1:因为每一次余数都是1。

生2:商从小数点后面开始每次除得到的商都是3,然后余数又是1,商3,余数是1,不断反复出现。

师:是呀!73÷3的余数不断重复,商也不断重复,永远都除不完,它的商可以这样写:24.3333……后面加省略号,表示还有无数个3,这样的数叫做循环小数。

师:下面请同学们再求出蜗牛的速度。然后再比一比蜘蛛和蜗牛谁的.速度快?

学生动笔算…

生:它也是一个循环小数。0.85454…

师:为什么说它也是一个循环小数?

生1:因为余数"5"重复出现。

生2:商也不断重复出现:5454……

师:那么现在你们能得出蜘蛛和蜗牛谁爬得快吗?

生:蜗牛快。

活动二:认一认。进一步认识循环小数。

师:请同学们阅读课本第70页"数学万花筒"。他告诉了我们什么?你能试一试说说刚才这几个循环小数的循环节吗?怎样用简便写法写出来。

练习:

计算下面各题,哪些商是循环小数?

3÷84÷310÷92÷4

14.2÷110.4÷91÷75÷6

师:通过这节课的学习,你对循环小数有了哪些认识?

……

这一节课,我准确把握了学生的认知起点,在具体的情境中,通过计算发现除不尽的现象,引发学生想了解怎样去表示商;这类商都有哪些特点等。帮助学生认识循环小数,因此,学生学得比较主动,通过让学生阅读"数学万花筒",帮助学生知道循环节和循环小数的简便写法,我觉得这样处理比较恰当。

这节课体现了以学生为本的理念。从发现问题到问题的解决,注重培养学生的观察、归纳、语言的表达等能力。对于学生提出的问题,老师不是直接解答,而是引导学生梳理自己的发现,通过对这些现象的描述,认识循环小数,真正做到了"不愤不启,不悱不发"。

其次,注重了活动性教学。通过"谁爬得快"认识循环小数,"认一认"运用概念去判断,进一步认识了循环小数。最后通过"练一练",深化了循环小数的认识,层次非常清晰,使得学生的思维不断地得到发展。

数学教案四年级篇六

1、认识容量单位毫升,知道毫升是一个比较小的容量单位。

2、掌握升和毫升之间的进率,知道1升=1000毫升

学生预习、准备量杯、滴管、量桶、水等。

一、了解预习情况:

通过预习,你知道我们这节课要学习什么?你知道了相关的哪些知识?

随学生回答板书:毫升

学生可能会知道:毫升可以用字母ml表示;1升=1000毫升;……

二、认识1毫升

2、用滴管向量筒里滴水,大家数一数,几滴大约是1毫升。

3、通过这个实验,你对毫升有了什么认识?

取生活中最常见的勺子,舀满1勺水,倒入量筒,测得大约是10毫升

指出:这勺子是我们每天都要用的东西,现在你会利用它找适量的药水了么?

三、完成想想做做1、2:

1、下面的容器里各有多少毫升药水?

四、升和毫升的进率

1.出示500毫升的量杯,请同学们观察量杯上的刻度,指一指,100毫升,150毫升,250毫升,400毫升和500毫升各在什么地方。

2.把1升水倒入量杯中,看看可以倒几杯。(两杯)

3.问:1升等于多少毫升。

4.指名学生回答,板书(1升=1000毫升)说明升与毫升的进率是1000。

5.练习:20xx毫升=( )升4000毫升=( )升

9升=()毫升10升=()毫升

五、完成想想做做3、4、5:

1、说说下面每种饮料分别需要多少瓶才正好是1升:

请学生完整的列出解答算式。在交流第一个的时候指名说说列式理由。

先交流:做这个实验应该怎么喝?然后多请几个学生自然地喝这100ml水。算一算。

3.完成想想做做4

(1)学生独立完成

(2)交流

六.你知道吗?

学生自由阅读后交流感想。

课后小记:“1毫升概念的确立”,让学生观察1毫升在量器、瓶盖中的情况、用滴管装,使每个学生都清楚地看到了1毫升的多少,学生感兴趣。认识一把普通勺子容量约10毫升,可以帮助学生更容易地在生活中寻找、认识毫升,是一个非常好的学具。

授后小记:

前两课时给我的最大感受就是,教学容量单位应该以动手操作及实物演示为主要的教学及学习方式,因此,在课前我利用学生群体收集了大量练习中出现的容器实物,在课上展示给所有学生看,学生通过观察,切实地感受到了“1毫升”是一个很小的容量单位及各种小容量容器的实际大小。

数学教案四年级篇七

1、通过具体的生活情景,结合进行实际操作,了解小数乘法的意义。

2、结合小数乘法的意义,能够计算简单的小数乘整数。

了解小数乘法的意义。

能计算出简单的小数与整数相乘的得数。

引导、发现法

小黑板

一、情景导入呈现目标

1、回顾整数乘法的意义:(求几个相同加数相加的和的简便运算。)

2、3×4的表示什么意思?

0.2×4表示什么意思?组内交流,全班交流。

3、创设情境,提出问题。创设商店一角的情境,引导学生提出数学问题。然后对“买4根棒棒糖需要多少钱?”展开讨论。

二、探究新知

1、学生列出算式,并说明意义。

2、小组讨论算法。

3、汇报:鼓励学生用自己的语言解释理由并进行交流。可以运用连加,元、角、分的转化,几何模型得出结果。

4、引导全班同学讨论这些方法,进一步体会小数乘法的意义。引导学生观察小数乘法的意义和整数乘法的意义一样,也是求几个相同加数的和的简便运算。(参与指导解释疑难问题)

三、点拨升华

小数乘法的意义和整数乘法的意义一样,也是求几个相同加数的和的简便运算。独立思索小组交流总结方法教师点拨。

四、课堂总结

通过这节课的学习,你有什么新的收获或者还有什么疑问?先小组内说一说,最后班上交流。

五、当堂训练

1、算一算。

0.4×5=0.2×5=0.6×5=

0.3×6=0.2×7=0.6×9=

2、完成学案第三题。先独立做,最后组内交流。

六、拓展提高

笑笑看见远处的闪电以后,经过6秒才听见雷声,如果雷声在空气中的传播速度是每秒0.34秒,那么笑笑离闪电有多远?先独立做,最后组内交流。

七、作业布置:教材第34页“练一练”的第2、3题

数学教案四年级篇八

(1)知识与技能:学生在已有的知识基础上经历集合思想的形成过程,初步理解集合知识的意义。能结合具体情境体会用“韦恩图”解决有重叠部分的问题的价值,理解集合图中每部分的含义,能解决简单的有重叠部分的问题。

(2)过程与方法:通过观察、猜测、操作、交流等活动,学生在合作学习中感知集合图的形成过程,能用集合图分析生活中简单的有重复部分的问题。

(3)情感态度价值观:在解决实验问题的过程中感受选择解决问题策略的重要性,养成善于思考的良好习惯,体会数学的严谨性,感受数学与生活的联系,提高学习数学的兴趣。

集合思想方法解决简单的实际问题。

集合思想方法的形成过程。

“学习之星”和“劳动之星”的获奖奖励,“智慧星”和“守纪星”的获奖奖励,集合名称的磁板,获奖学生名字的卡片,课件。

一、脑筋急转弯导入新课师:今天这节课上老师会根据同学们的表现,评选出智慧星和守纪星。想要获得智慧星,那你课上需要积极动脑、认真思考。想要获得守纪星,那你课上就要认真听讲、坐姿端正、书写规范。看谁这节课既能获得智慧星又能获得守纪星。

谈话:同学们,你们玩过脑筋急转弯的游戏吗?想不想玩一玩?出示脑筋急转弯——理发师的困惑:

教师边讲解,边用课件播放声音。

师问:进来的怎么只有三个人呢?你们能帮理发师解决他的困惑吗?生:略师:在这里爸爸有双重身份,他既是孩子的爸爸又是爸爸的孩子。身份在这里重复了一次,所以只有3人。(板书:既??又??)像这样的问题,数学上称之为“重叠问题”今天就让我们一起去研究这类问题。

二、集合圈的深入探究师:根据同学们上一周的表现,李老师评选出了7名学习之星和5名劳动之星,那你们知道一共有多少名同学获奖了吗?(12名)师:有不同意见吗?生:没有师:那你们想不想知道都有谁获奖了?(课件展示获奖学生名单)师:从这张光荣榜里,你发现了什么?生:xxx既获得了“学习之星”又获得了“劳动之星”。

师:你这个词用的真好,既??又??(板书)这样说我们就听得很明白了,谁还能像这位同学一样说说你的发现?生1:xxx既获得了“学习之星”又获得了“劳动之星”。

师:谁能把这两个同学的发现连起来说说?生2:

和都既获得了“学习之星”又获得了“劳动之星”。

师:你真会表达。下面请获奖的同学赶快到前面来,老师给大家颁奖。学习之星站到老师的右手边,劳动之星站到老师的左手边。你们俩应该站到哪儿?师:咦,我发现了一个问题,刚才我们明明算了12名同学获奖了,怎么才来了10个人呢?那两个人呢?(学生举手,迫不及待的回答问题。)你们有话想说,那好,你来说说?生:

和都既获得了“学习之星”又获得了“劳动之星”,所以他们两人在获奖名单里重复了。

师:哦,原来是这样。看来同学真是理解了这两个同学的位置了,那这两边呢?谁来说说右边同学的获奖情况?生:右边同学获得了“学习之星”。

师:“学习之星”还有中间的两个同学呢,我们只描述这5个人的获奖情况。

生:这5个人单单只获得了“学习之星”。

师:那谁来说说左边这3位同学的获奖情况?生:左边这3位同学只获得了“劳动之星”。

师:真不错,这下我们弄清楚了。那老师开始颁奖了,左边的同学每人发一颗“学习之星”,右边的同学每人发一颗“劳动之星”,中间的同学每人既发一颗“学习之星”又发一颗“劳动之星”。(师边说边给学生发小星星)师:那刚开始我们算得有12名同学获奖了,在今天的这种获奖的情况下是不对的,你能用画图的方法表示出今天有10位同学获奖了吗?先听清要求:画图时,要画清同学们的获奖情况,还要让我们能直观的看出一共有多少名同学获奖了,注意老师已经把这些同学的名字编好了相应的序号(课件展示),不要写这些同学的名字了,我们只用序号来表示同学就可以了。

生:独立画图。

师:画好的同学可以小组相互交流一下,看看小伙伴们画的图有没有值得你借鉴的地方。(师巡视学生画的图,选择有代表性的图到前面投影。)师:老师选择了几位同学画的图,下面请这几位同学分别到前面来讲一讲他们画的图。

师:像这种重叠问题,我们可以用韦恩图来表示。它是英国的数学家韦恩在1881年发明的,后来人们为了纪念他把这个图叫作韦恩图,也叫集合圈。(板书:集合)师:下面就请同学们跟老师一起用集合圈的方式来画画图。(师边讲边在黑板上画集合圈)先画一个封闭的椭圆表示“学习之星”,画好之后贴上这个集合圈的名字是“学习之星”。接下来该画什么了?生:“劳动之星”的集合圈。

师:那“劳动之星”的集合圈我们应该画在什么位置呢?师:为什么要把“劳动之星”的集合圈有一部分画到“学习之星”的集合圈里面呢?生:因为有人既获得了“学习之星”又获得了“劳动之星”。

师:再画一个封闭的椭圆表示“劳动之星”。下面我们把这些获奖同学的名字贴在相应集合圈的位置里。

师:这个集合圈我们就算画好了,那集合圈的各部分表示什么呢?我们一起来看大屏幕。阴影部分表示什么?师:根据我们画的集合圈在小卷子上列出算式(生列算式)。

师:谁来说说你怎么列的算式,并给大家讲讲你为什么这样列算式?生:我列的算式是7+5-2=10(名),“7”表示7名“学习之星”,“5”表示5名“劳动之星”,减去“2”是因为有2名同学重复了。

师:你讲的真清楚,大家都听明白了吧。

师:谁还有不同的方法?你们看这个图我们相当于把这些获奖同学分了几部分?(3部分)哪三部分?分别是几人呢?那你会列算式了吗?三、问题拓展师:这个问题我算式弄清楚了,现在老师又有想法了,我们下周还要选出7名“学习之星”,5名“劳动之星”,你们帮老师想一想有可能有多少名同学会获奖吗(出示课件)?今天的获奖情况是有2名同学重复了,有10个同学获奖了。那下次获奖可能多少名同学重复呢?生:3名,1名。

师:最多有多少名同学重复获奖?生:5名。

师:为什么?生:因为“劳动之星”只有5人,所以最多只能有5人重复获奖了。

师:谁能按照一定的顺序把下周我们班获奖的重复情况都想全了,并说一说。

生:没有重复、重复1人、重复2人、重复3人、重复4人、重复5人(随着学生说,课件出示)。

师:那每种情况下有多少人获奖呢?分组做师:没有人重复获奖的情况。

生:7+5=12(人)师:那这个集合图该怎么画呢?生:画两个单独的圈,没有重复的部分。

师:(找学生说重复1人、重复3人、重复4人、重复5人的算式,并让学生说3/4清这样列式的原因。)那重复5人的时候,这个集合圈又该怎样画呢?生:“劳动之星”的圈都跑到“学习之星”的圈里去了(课件展示)。

师:那这个部分表示什么意思?有几人?(课件出示如下)学习之星生:这部分表示只获得了“劳动之星”,有2人。

师:我们来观察这些算式,你发现了什么?生:有几个人重复了,就去掉几人。

四、练习提升师:班里获奖同学的情况,我们都弄清楚了,真了不起,那今天没有获奖的同学呢?比如xxx,我想把他的名字也贴在黑板上,我应该贴在什么位置上。(贴在集合圈的外面)为什么啊?贴在外面表示什么呢?师:所以我们班里其他没有获奖的同学,都可以贴在获奖集合圈的外面。现在班里每位同学都找到了自己的位置,下面我们来帮同学们找到自己的位置。

这节课获得智慧星的有人,获得守纪星的有人,两项都获得的有人,两项都没有获得的有人,来上课的学生一共有多少人?师:请同学们,在小卷上独立完成,要求画出集合圈,并列算式。

六、课堂小结师:

今天我们学习了重叠问题,还用集合知识解决了不少问题,谁来说说你这节课的收获?

生1:我学会了画集合圈。

生2:我学会了重叠的问题可以用画集合圈的方法来解决。

生3:集合圈的画图方法能让我们很清楚得看清每个部分有多少人和一共有多少人。

师:你们的收获还真不少同学们,集合圈可以帮我们解决生活中有重复现象的问题以后这样的问题还有很多很多,就等着同学们去发现和解决。好,这节课就上到这里,下课。

数学教案四年级篇九

:1。

1、结合具体情境,探索加减法的计算方法,正确计算两位小数的加减法。

1、能结合具体情景,提出数学问题;能运用小数加见方解决日常生活中简单的实际问题,在解决问题的过程中培养估算的意识和能力。

一、创设问题情境。

二、自主探究,构建数学模型。

3、讨论:为什么要把小数点对齐?

5、第12页第3题。怎么样才能写得准确呢?看一看,和什么有关系?

6、第12页第4题。觉得要比较他们的身高最大的麻烦是什么?单位问题,不同的单位很难比较。自己想办法比较,把他们从矮到高的顺序排列起来。

三、游戏。

1、第13页第6题。

四、总结。

数学教案四年级篇十

一、情境引入:

师生谈话引出生活中的乘法话题。

二、展示目标。

1.经历学习三位数乘两位数乘法计算的过程。

2.掌握三位数乘两位数的笔算方法,能用竖式计算三位数乘两位数的乘法。

三、自学与交流研讨。

1.出示例1。

让学生说一说怎样列式,并说说为什么这样列。

2.学生自己试着用竖式计算,指一人板演。算完后用计算器验算结果是否正确。

3.完成后说说是怎样算的。

同桌说说后,在全班说说。

4.用计算器验算结果是否正确。

四、质疑答疑。

五、专项练习。

用竖式计算下面各题。

368×19=292×46=109×37=。

六、课堂小结:这节课你有什么收获?

第二课时。

1.在自主尝试计算、交流等活动中,经历学习乘数末尾有0的三位数乘两位数简便算法的过程。

2.计算乘数末尾有0的三位数乘两位数的乘法,会口算整百、整十数乘整十数。

3.在探索计算方法的过程中,感知数学知识的内在联系,培养知识迁移和自主学习的能力。

一、情境的创设:

教师谈话,引出旅游团就餐问题。

二、展示目标。

1.经历学习乘数末尾有0的三位数乘两位数简便算法的过程。

2.计算乘数末尾有0的三位数乘两位数的乘法,会口算整百、整十数乘整十数。

三、自学与交流研讨。

1.观察情景图说说了解到的信息。

2.分别计算选择两种自助餐各需要多少元钱。

3.学生试着笔算乘数末尾有零的乘法。

找不同选择的同学各一人板演,其余的写在本上。

交流计算的方法。

重点交流乘数末尾的0的处理方法。

四、质疑答疑。

五、专项练习:试一试。

先估计积是几位数再口算。

六、课堂小结:这节课你获得了哪些知识?

七、综合练习。

采用书中的练习题。

第三课时。

(1)结合具体事例,经历选择合适的估算方法进行估算的过程。

(2)能用合适的方法进行乘法估算,会解答有关乘法估算的实际问题。

(3)估算、计算的过程中,体会估算的实际意义,培养估算的习惯,培养数感。

设计意图教学是一门需要不断更新和反思的艺术,只有牢牢搭住时代发展的脉搏,与时具进,才能教给孩子更多的东西,这朵艺术之花才会永不凋谢。

一、情境的创设:

谈话引入(也可用其他形式引入)。

二、展示目标。

1.选择合适的估算方法进行估算的过程。

2.能用合适的方法进行乘法估算,会解答有关乘法估算的实际问题。

三、自学与交流研讨。

1.让学生看图并说出图中的信息,再提出问题:估算这列火车大约有多少个座位。

2.展示:说说这列火车大约有多少个座位,你是怎样估算的。先小组内交流,再班级交流。

四、质疑答疑。

五、专项练习。

试一试。

六、课堂小结。

这节课你有什么收获?

七、综合训练。

采用书中练一练的习题。

数学教案四年级篇十一

1、能发现、再现物体的序列,体验不同的排序方法,在操作活动中有规律地设计图案,提高动手能力。

2、培养幼儿思维的多样性,初步感知数学中的规律美。

1、多媒体课件。

2、彩色珠子、彩皮、腰带、彩带等。

3、玩具小熊一个,篮子若干。

一、感知规律

1、观看课件,引导幼儿发现并讲出其中的规律出示玩具小熊,师:小朋友你们看,这是谁呀?(小熊)

师:小熊他今天可开心了,因为他搬新家了,让我们一起看看他家的新房子吧!(观看课件画面)小熊的新家漂亮吗?(漂亮)

师:今天小熊还请了三位好朋友到家里做客呢,看看他们是谁呀?(小兔,小猫,小狗)

师:三位好朋友接到小熊的邀请可高兴了,他们要出发啦!

师:(观看课件画面)哦,这三位好朋友每人都走了一条小路,哇小路上还有好看的小石头呢!让我们一起看看他们走的小路上的小石头是怎样的。

师:先来看小兔,他走的小路上的石头是怎样的呢?(一块红色一块绿色一块红色一块绿色……)

师:小兔走的小路是一格一排列的石头小路。小猫走的小路呢?(一块绿色两块蓝色一块绿色两块蓝色……)

师:小猫走的路是一格二排列的石头小路。小狗呢?(一块红色一块蓝色一块黑色一块红色一块蓝色一块黑色……)

师:小狗走的小路是一、一、一排列的石头小路。

师:小朋友,你们觉得这三条小路看上去漂亮吗?(漂亮)为什么?(引导幼儿说出小石头的排列有规律)

2、观看课件,引导幼儿按规律排列

(1)引导幼儿发现并尝试接着规律排列师:到了小熊家,小熊请三位好朋友吃点心啦!咦?怎么是个空盘子呀?原来这是个神奇的盘子哦,盘子上有一些花纹,只要将盘子上的花纹按一定的规律说下去,好吃的点心就会出现了。你们想不想试一试呀?(想)师:看看小兔拿到的盘子是什么花纹?(一块红色一块黄色一块红色一块黄色)接下来应该怎么排呢?(与老师一起讲述)(一块红色一块黄色一块红色一块黄色……)看看对不对?哇,是什么好吃的点心呀?(萝卜)师:小猫的盘子呢?(一朵大花二朵小花一朵大花二朵小花)接下来应该怎样呢?(请幼儿讲述)(一朵大花二朵小花一朵大花二朵小花……)是什么点心呀?(小鱼)幼儿与老师一起吃美味的"小鱼"。

师:我们也来帮帮小狗吧!谁愿意来说一说?(正方形、圆形、三角形,正方形、圆形、三角形)接下来呢?(正方形、圆形、三角形,正方形、圆形、三角形……)(骨头出现)

(2)拓展幼儿思维师:小朋友,除了这些排列,你们还有没有不一样的排列?(两个高人两个矮人……三个大碗两个小碗……)

二、应用创作师:吃完了点心,小熊要请大家唱歌跳舞啦,你们看,小熊打扮的漂亮吗?(漂亮)那让我们也把自己打扮一下和小熊一起跳舞吧!

1.简单介绍各小组的活动内容师:老师为你们准备了各种材料:花环和大小彩色花;彩色珠子和线;腰带和彩色丝带。选择你自己喜欢的材料开动吧!

2.幼儿自选小组活动(1)装饰花环(2)串项链(3)装饰彩带裙

三、评价活动师:谁来介绍一下你的作品呢?

互相观赏,评价个别作品,表扬有创意的幼儿。

四、结束活动

师:孩子们,把自己打扮起来吧!(一起把自己的作品戴在身上欢乐起舞)

师:时间不早啦,我们该和小熊说再见了,小熊再见!(挥手离开小熊家)

数学教案四年级篇十二

1. 使学生知道素数与合数的意义,会判断一个数是素数还是合数,会将自然数按因数的个数进行分类。

2. 使学生在探究活动中,进一步培养观察、比较、分析和归纳能力,感受数学文化的魅力,培养勇于探索的精神。

谈话:同学们,今天先向大家介绍一个世界数学史上著名的猜想。

课件播放:哥德巴赫是200多年前德国的数学家,他提出了一个伟大的猜想任何一个大于4的偶数都可以表示成两个奇素数的和。另一个大数学家欧拉又补充指出:任何大于2的偶数都是两个素数之和。这一猜想被称为哥德巴赫猜想。虽然人们知道这一猜想是正确的,但一直没能从理论上加以证明。数学家们把这一猜想称为数学皇冠上的明珠。我国数学家王元、潘承洞、陈景润先后在哥德巴赫猜想的证明上取得了重大进展,特别是陈景润所取得的研究成果,轰动了国内外数学界,被公认为是最具有突破性和创造性的,是当代在哥德巴赫猜想的研究和证明方面最好的成果。

提问:看了上面的短片,你想到了什么?有什么问题想问吗?(学生可能提出什么样的数是素数等问题)

谈话:大家想知道什么样的数是素数吗?我们今天就一起来研究这一问题。(板书:素数)

谈话:我们来做个实验。请同学们拿出信封里的小正方形,小组分工合作,分别用2个、3个、4个、6个、7个、11个、12个小正方形拼长方形,看看拼出的结果怎样。

学生在小组内活动,教师巡视并指导。

引导:仔细观察拼出的结果,你发现了什么?

通过比较学生会发现:用2个、3个、7个或11个小正方形拼长方形,只有一种拼法;用4个、6个或12个小正方形拼长方形,可以有两种或两种以上的拼法。

提问:为什么用2个、3个、7个或11个小正方形拼长方形只有一种拼法,而用4个、6个或12个小正方形拼长方形可以有两种或两种以上的拼法呢?(2、3、7或11只有两个因数,而4、6或12都有三个或三个以上的因数)

谈话:请同学们先在自己的练习本上写出1~20,并找出每一个数的所有因数,然后根据每个数因数的个数,将它们进行分类。

学生活动,教师巡视。

反馈:根据每个数因数的个数,你把这些数分成了几类?是哪几类?(根据每个数因数的个数,可以把它们分成三类:一类是只有两个因数的;一类是有三个或三个以上因数的;1只有一个因数,分为一类)

提问:只有两个因数的数,它们的因数有什么特点?(两个因数分别是1和它本身)

提问:有三个或三个以上因数的数,它们的因数有什么特点?(除了1和它本身外,还有其他的因数)

再问:为什么把1单独分为一类?(1是一个很特殊的数,它只有1个因数)

谈话:同学们通过自己的活动把自然数分成了三类,并总结出了这三类数的不同特点,那么,它们分别叫什么数呢?打开课本第78页,把例题认真地读一读,填一填,并和同桌的同学说一说你知道了什么。

学生自学课本之后,师生共同揭示素数和合数的概念(补充板书:和合数),同时明确1既不是素数,也不是合数。

提问:在2~20各数中,哪些数是素数?哪些数是合数?

谈话:关于素数和合数,你还想研究哪些问题?还有哪些不懂的问题?

根据提出的问题,有选择地引导学生交流和探索,同时解答学生提出的问题。

出示题目:先找出21、23、29的所有因数,再写出这三个数分别是素数还是合数。

先让学生说一说怎样找出每一个数的所有因数,再判断这三个数是素数还是合数,并说明理由。

先让学生按要求划一划,再说一说哪些数是素数,哪些数是合数。练习后引导学生说一说怎样判断一个数是素数还是合数。

学生独立完成判断,并说明理由。

提问:通过今天的学习,你知道了哪些知识?有什么新的收获?

学生举例检验。

谈话:通过检验,我们发现哥德巴赫猜想是正确的,只是至今还没有人能从理论上完全证明它。我相信,在不久的将来,一定有人能解开哥德巴赫猜想之谜,让我们一起努力吧!

在典型的数学背景材料中激发探索新知的兴趣。数学是人类的一种文化。本节课的设计,教师独具匠心地把素数与合数的教学置于数学文化的背景之中,让学生感受数学文化的魅力,激发了学生对数学的兴趣。课的开始,为学生呈现了有关哥德巴赫猜想的数学背景材料,这是一个200多年来诸多数学家不能解决的问题,但中国的数学家在这方面取得了重大的突破,激发了学生的民族自豪感,数学的奇妙吸引了学生的眼球。而这一情境中素数的概念学生还不了解,解开素数的奥秘自然地成为学生的自觉需要。课的结尾,再一次提出哥德巴赫猜想的问题,让学生通过举例检验猜想的正确性,使课的首尾呈呼应之势。同时,通过简短的语言,引导学生树立探索数学奥秘的理想,体现了教师对促进学生持续发展的关注。

在有效的探索活动中逐步明确素数和合数的内涵。动手实践、自主探索与合作交流是学生学习的重要方式。本课中,教师寓素数与合数的概念于拼长方形的操作活动中,先让学生在操作中初步感受小正方形的个数与拼成长方形的种数之间的关系,将注意力集中到一个数的因数上来;接着,通过写出1~20的所有因数,并根据各个数因数的个数对这些数进行分类,引导学生逐步概括出素数和合数的共同点;最后,让学生自主阅读课本,明确素数和合数的内涵。学生在这一过程中,积累了丰富的数学活动经验,发展了自主探索的意识和数学思考能力,增强了学好数学的信心。

数学教案四年级篇十三

这部分内容是在学生认识了一些立体图形、平面图形的基础上进行教学的。主要是让学生经历具体的图形分类活动,对已学过的一些图形进行归类和梳理,了解图形的类别特征以及图形之间的联系。通过拉一拉,亲身体验、发现三角形和平行四边形的特性。

通过联系生活实际理解、感受三角形稳定性和平行四边形不稳定性在实践中的应用。教材安排了三次对图形的分类活动。第一次是对已学的一些图形按是否是平面图形进行分类,第二次是对平面图形按其是否由线段围成进行分类,第三次是对线段围成的图形的边数进行分类。由此可见,根据一定的标准对图形进行分类,了解这些图形的类别特征是本节课的教学重点,也应该是一个主要的目标。三角形的稳定性和平行四边形的易变性在日常生活中应用非常广泛,实用价值很高。由于特性比较抽象,学生理解起来还是有一定的难度。所以,这既是本节课的教学重点,也是教学的难点。

教学目标:

1、通过分类,对已学过的一些图形进行整理归类,了解图形之间的类别特征;

3、体会数学知识在实际生活中的应用,激发学生学习的兴趣。

第一、二个教学目标将在教学第二个环节“合作交流,探究新知”通过学生动手操作、小组合作交流来落实。第三个教学目标主要通过第三个教学环节“运用拓展,课外延伸”来落实。

学生在前面已经认识了这些图形,对它们的特征有了一个基本的了解。分类的思想,学生也已经接触过,曾进行过数的分类。加上城区学生基础比较好,所以按一定的标准进行分类应该不难。只是学生对三角形和平行四边形的特性应用平时关注的较少,理解起来可能会有困难。

1、说教法

(1)多媒体教学法

在教学中,我充分利用多媒体教学课件引发学生的兴趣,调动学生的情感投入,激活学生原有知识和经验并以此为基础展开想象和思考,自觉地构建良好的知识体系,特别是通过课件展示三角形和平行四边形特性在生活中的应用的实例,非常形象。,有助于学生理解。

(2)自主探索和合作交流教学法

动手操作、自主探索、合作交流是学生学习数学的重要方式,转变教师角色,给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考,并与同伴交流,亲身经历问题提出、问题解决的过程,体验学习成功的乐趣。

2、说学法

(1)自主观察思考

学生是学习的主体,只有当学生真正自己主动、积极的参与到学习中时,才能最为有效地提高学生的学习效果。引导学生自己来观察图形的特点,思考分类的标准,有助于培养学生的独立思考能力。

(2)小组合作学习

小组合作学习能够帮助学生在有限的时间里,通过与他人的合作获取更多的方法,找到合适、有效的解决问题的方法。本课让学生在自主观察思考的前提下,通过小组合作学习来进一步拓宽学生的思维空间,提升学生的学习能力。

本节课我主要设计了五大教学环节:

(一)创设情境,激趣导入

通过对话交流,引导学生回忆已经学过的图形,借机引出课题,交代学习目标。

(二)合作交流,探究新知

1、学生分组尝试分类

提出分类问题之后,让学生先思考一下如何分类,在独立思考的基础上再让学生借助学具分小组动手分一分,说一说。

2、集中交流分类标准

先让学生上台粘贴,再说一说是怎样分的。然后逐步引导学生一步一步地分。边分边交流分类的标准。

3、梳理思路,展示过程。教师用课件演示分类的过程,加深学生对图形类别特征的认识。

4、动手实践,探讨特性

先由生活中大桥、伸缩门等图片引出问题,引导学生大胆猜想,如果换成三角形、平行四边形将会出现怎样的情况。然后让学生借助学具动手操作,亲身体验、发现三角形和平行四边形的特性。再让学生回忆学生中应用了特性的实例,加深对特性的理解。

(三)运用拓展,课外延伸

1、谁能说说图的意思(教材23页第3题)。为什么现在可以坐了?

2、欣赏图片:其实在我们生活当中存在着许多我们学过的图形,聪明的建筑师们不仅利用他们设计出了许多漂亮的建筑,同时又利用他们的特性设计出了不可思议的雄伟建筑。它们中有的都有好几百年的历史了,虽然历经风雨沧桑,但是依然完好无损保持了原样。下面就请同学们跟着老师一起欣赏这些有名的建筑图片,去感受图形带来的魅力。

3、课外观察:生活中哪些地方应用了三角形的稳定性和平行四边形的不稳定性。

4、运用今天学过的知识加固摇晃的椅子。

(四)总结评价,交流收获

“这节课马上就要结束了,你能谈谈你的收获,并对自己或者其他同学的学习给出一个评价吗?”学生可以说知识上的收获,也可以说情感上的收获,既发挥了学生的主动性,又将本堂课的内容进行了总结。评价自己或他人的学习表现,生生互动评价,学生既认识自我,建立信心,又共同体验了成功,促进了发展。

数学教案四年级篇十四

北师大版小学数学四年级第七册第二单元《画角》。

本教材是在学习了量角器使用方法的基础上进行的,使学生认识到量角器不光能量角,而且还能帮助我们画角。

本班情况及学生特点分析:本班有学生19名,其中男生有12名,女生有7名,班上学习风气比较正,大多数学生能自觉学习,只有两名学生因年龄小有些吃力,学生合作意识比较强。

1、会用量角器画指定度数的角。

2、会用三角板画一些特殊度数的角。

:用量角器画指定度数的角。

在使用量角器画角时,内外圈不分。

通过回忆量角器的使用方法,激励学生,量角器不光能量角,还能帮助我们准确地画角,你们愿意试试吗?自然地过渡到今天的知识点。之后给学生宽松的环境,充分的时间,让学生在自主探索中获取有用的技能和方法。同时边画边说基本步骤,培养学生的语言表达能力和逻辑思维能力。通过用三角板画一些特殊度数的角。培养学生灵活解决问题的能力。

教学过程:

1、学生任意画角,并量出自己所画角的度数。

教师巡视,发现问题。

2、展示量角中读错的度数,巩固量角方法,引起学生注意

1、师:刚才画的角度数不一,小组能不能想办法让组内每个同学所画角的度数都相等?

师巡视,发现:有的小组同学没有按要讲求去做,仍“各自为政”,自画自角。

2、教师再次强调要求:

大多组:由小组同学发现直接用三角板画比较快,统一采用此方法

3、画角方法

(1)以50度为例:

生1:错误画法

生2:展示正确画法!

纠正画角中的问题:

a.点顶点。

b.画其中一条边。

c.确定另一条边另一条边如何确定?自学书本:p58页

(2)展示借助三角板画角的方法

4、小组再次画同样的角

要求:不画直角、平角、周角这类特殊角

5、巩固练习:

(1)画出下列度数的角:

40度140度

(2)在点和射线上分别画出70度、120度角:

1、画60度角(你想怎么画?)

(一般会出现有的用三角板画,有的同学用量角器画。)

说一说,哪种更方便。

2、画75度角

(你想怎么画?)

(一般会出现有的用三角板画,有的同学用量角器画。)

说一说,哪种更方便。

画150度角

3、画15度角

在发现用两个三角板拼不出来后,学生们都用量角器画角,只有一个学生采用展示量角器画15度角的方法。

展示用三角板“减角”的方法画。

4、画100度角

看到100度角很多学生采用三角板拼的方法,短暂时间后放弃三角板用量角器画。

师:三角板只能拼(减)特殊角,很多角需要用量角器画

数学教案四年级篇十五

1、通过操作和实验,让学生亲身经历测量与估计的过程,讨论得出一种即合理又方便的方法。

2、重视引导学生总结活动过程,让学生在合作交流中有能力针对具体的问题设计测量的方案。

3、提高学生解决实际问题的能力,让学生感受到测量与估计在现实生活中的应用,提高估算技能。

天平铁钉米粒黄豆铁丝纸张

1、教师出示实物:一堆钉子和一堆米粒

提问:你能看一眼知道这些钉子和米粒的数量吗?

1、先来估计钉子的数量:

在操作之前老师给大家提供了一个工具--天平

让学生独立思考:有什么方法利用天平这个工具知道这些钉子的数量。(提示:想一想钉子的质量和数量的关系)

小结:既方便又合理的方法--算出一个钉子的质量,再用总质量除以一个钉子的质量,就可以得出钉子的数量。

2、估计一亿粒米的质量。

要求小组合作讨论出估计的方法。

提示:有的时候为了提高准确性还需要采取多次实验的方法。

合作要求:

*先用天平称出一克米或者2克米。

*数出一克米或者2克米的数量。

*根据书上表格,填写实验记录。

*写出算式,得出结果。

1、用两种方法计算一粒黄豆的平均质量。

2、每个小组选择一道题进行估计或测量。

学生踊跃回答,大胆猜测。鼓励学生能说出猜测的理由。

学生很有兴趣,积极性比较高。

希望学生通过独立思考,得出估计钉子数量的方法。

在这个过程中会有学生建议用天平称一个钉子的质量,老师让学生通过实验,发现由于一个钉子的质量太轻,无法测出。因此很自然的改成称其中一小堆的质量,通过计算得出一个钉子的大概质量。

先让学生讨论方法,利用前面测量钉子数量的经验四人小组讨论测量估计米粒的方法。

师生一起总结出合理简便的方法,有条理的整理出来,按步骤开始进行测量与估计。

数学教案四年级篇十六

1.使学生知道素数与合数的意义,会判断一个数是素数还是合数,会将自然数按因数的个数进行分类。

2.使学生在探究活动中,进一步培养观察、比较、分析和归纳能力,感受数学文化的魅力,培养勇于探索的精神。

教学过程。

一、创设情境,激趣引入。

谈话:同学们,今天先向大家介绍一个世界数学史上著名的猜想。

课件播放:哥德巴赫是200多年前德国的数学家,他提出了一个伟大的猜想任何一个大于4的偶数都可以表示成两个奇素数的和。另一个大数学家欧拉又补充指出:任何大于2的偶数都是两个素数之和。这一猜想被称为哥德巴赫猜想。虽然人们知道这一猜想是正确的,但一直没能从理论上加以证明。数学家们把这一猜想称为数学皇冠上的明珠。我国数学家王元、潘承洞、陈景润先后在哥德巴赫猜想的证明上取得了重大进展,特别是陈景润所取得的研究成果,轰动了国内外数学界,被公认为是最具有突破性和创造性的,是当代在哥德巴赫猜想的研究和证明方面最好的成果。

提问:看了上面的短片,你想到了什么?有什么问题想问吗?(学生可能提出什么样的数是素数等问题)。

谈话:大家想知道什么样的数是素数吗?我们今天就一起来研究这一问题。(板书:素数)。

二、设疑引探,自主建构。

1.操作感受。

谈话:我们来做个实验。请同学们拿出信封里的小正方形,小组分工合作,分别用2个、3个、4个、6个、7个、11个、12个小正方形拼长方形,看看拼出的结果怎样。

学生在小组内活动,教师巡视并指导。

引导:仔细观察拼出的结果,你发现了什么?

通过比较学生会发现:用2个、3个、7个或11个小正方形拼长方形,只有一种拼法;用4个、6个或12个小正方形拼长方形,可以有两种或两种以上的拼法。

提问:为什么用2个、3个、7个或11个小正方形拼长方形只有一种拼法,而用4个、6个或12个小正方形拼长方形可以有两种或两种以上的拼法呢?(2、3、7或11只有两个因数,而4、6或12都有三个或三个以上的因数)。

2.分类建构。

谈话:请同学们先在自己的练习本上写出1~20,并找出每一个数的所有因数,然后根据每个数因数的个数,将它们进行分类。

学生活动,教师巡视。

反馈:根据每个数因数的个数,你把这些数分成了几类?是哪几类?(根据每个数因数的个数,可以把它们分成三类:一类是只有两个因数的;一类是有三个或三个以上因数的;1只有一个因数,分为一类)。

提问:只有两个因数的数,它们的因数有什么特点?(两个因数分别是1和它本身)。

提问:有三个或三个以上因数的数,它们的因数有什么特点?(除了1和它本身外,还有其他的因数)。

再问:为什么把1单独分为一类?(1是一个很特殊的数,它只有1个因数)。

谈话:同学们通过自己的活动把自然数分成了三类,并总结出了这三类数的不同特点,那么,它们分别叫什么数呢?打开课本第78页,把例题认真地读一读,填一填,并和同桌的同学说一说你知道了什么。

学生自学课本之后,师生共同揭示素数和合数的概念(补充板书:和合数),同时明确1既不是素数,也不是合数。

提问:在2~20各数中,哪些数是素数?哪些数是合数?

3.交流质疑。

谈话:关于素数和合数,你还想研究哪些问题?还有哪些不懂的问题?

根据提出的问题,有选择地引导学生交流和探索,同时解答学生提出的问题。

三、巩固练习,深化认识。

1.试一试。

出示题目:先找出21、23、29的所有因数,再写出这三个数分别是素数还是合数。

先让学生说一说怎样找出每一个数的所有因数,再判断这三个数是素数还是合数,并说明理由。

2.做想想做做第2题。

先让学生按要求划一划,再说一说哪些数是素数,哪些数是合数。练习后引导学生说一说怎样判断一个数是素数还是合数。

3.做想想做做第3题。

学生独立完成判断,并说明理由。

四、全课总结。

提问:通过今天的学习,你知道了哪些知识?有什么新的收获?

五、举例检验。

学生举例检验。

谈话:通过检验,我们发现哥德巴赫猜想是正确的,只是至今还没有人能从理论上完全证明它。我相信,在不久的将来,一定有人能解开哥德巴赫猜想之谜,让我们一起努力吧!

[总评]。

在典型的数学背景材料中激发探索新知的兴趣。数学是人类的一种文化。本节课的设计,教师独具匠心地把素数与合数的教学置于数学文化的背景之中,让学生感受数学文化的魅力,激发了学生对数学的兴趣。课的开始,为学生呈现了有关哥德巴赫猜想的数学背景材料,这是一个200多年来诸多数学家不能解决的问题,但中国的数学家在这方面取得了重大的突破,激发了学生的民族自豪感,数学的奇妙吸引了学生的眼球。而这一情境中素数的概念学生还不了解,解开素数的奥秘自然地成为学生的自觉需要。课的结尾,再一次提出哥德巴赫猜想的问题,让学生通过举例检验猜想的正确性,使课的首尾呈呼应之势。同时,通过简短的语言,引导学生树立探索数学奥秘的理想,体现了教师对促进学生持续发展的关注。

在有效的探索活动中逐步明确素数和合数的内涵。动手实践、自主探索与合作交流是学生学习的重要方式。本课中,教师寓素数与合数的概念于拼长方形的操作活动中,先让学生在操作中初步感受小正方形的个数与拼成长方形的种数之间的关系,将注意力集中到一个数的因数上来;接着,通过写出1~20的所有因数,并根据各个数因数的个数对这些数进行分类,引导学生逐步概括出素数和合数的共同点;最后,让学生自主阅读课本,明确素数和合数的内涵。学生在这一过程中,积累了丰富的数学活动经验,发展了自主探索的意识和数学思考能力,增强了学好数学的信心。

【本文地址:http://www.xuefen.com.cn/zuowen/19270703.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档