教案的编写应侧重于培养学生的综合能力和创新思维能力。教案中的练习和作业要有针对性,既巩固知识点,又激发学生的思考和探究能力。教案是指用于指导教师教学活动的书面计划,它是教学设计的重要组成部分,可以帮助教师合理安排教学内容和教学步骤,提高教学效果。教案的编写需要考虑教学目标、教学内容、教学方法、教学过程和教学评价等方面。我们通过编写教案,可以更好地指导教学,提高教学质量。那么怎样编写一份高质量的教案呢?首先,教案应概括明确的教学目标,明确要教什么、怎样教和完成的标准是什么。其次,教案应根据学生的实际情况,选择合适的教学内容和教学资源。此外,教案还应结合教学方法,合理安排教学步骤,确保教学过程有序、系统。最后,教案应包含评价策略,用于评估和反馈学生的学习效果,以便及时调整教学方法和内容。下面是小编为大家收集的教案范文,供大家参考。教案中包括了教学目标、教学准备、教学过程、教学评价等内容,通过研究这些教案,我们可以更好地了解教学设计的要点和方法,提高自己的教学水平。大家一起来看看吧!
六年级数学面积的变化教案篇一
2.掌握圆柱侧面积和表面积的计算方法。
(二)能力目标。
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点。
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点。
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备。
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学过程:
生:我想对老师们说,我们一定会好好表现的,不会让你们失望。
生:我们的课堂将比赛场更精彩……。
师:我坚信你们一定不会让老师失望的。
一、引入新课:
生:圆柱是由平面和曲面围成的立体图形。
生:我还知道圆柱各部分的名称……。
生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
课件演示这一过程。
师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)。
师:你还想知道什么呢?
生:还想知道怎么求它的表面积......
二、探究新知。
指名学生摸其表面积,并追问:怎样求它的表面积?
学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)。
师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)。
小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。
师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。
课件展示其变化过程。
师生小结:(教师板书)侧面积=底面周长×高。
(评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)。
师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)。
投影呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。
(1)学生独立解答。
(2)投影呈现学生的解答,并让其讲清自己的解题思路。
师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?
生:底面周长和高。
师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。
师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)。
教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)。
指名学生说解题思路,
师:这说明要计算圆柱的表面积需要抓出哪两个量?
生:底面积和侧面积。
3、反馈练习:(略)。
师:想一想,应该先求什么?再求什么?请大家动手试一试。
4实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)。
三、全课小结:这节课你有什么收获?
你有没有想提醒同学们注意的地方?
生:要注意单位,还要注意所要求得圆柱有几个底面……。
最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)。
六年级数学面积的变化教案篇二
在平面图形的学习中圆安排在最后一个,是在学习面积的认识及长方形、正方形、平行四边形、三角形、梯形的基础之上安排的。
本单元安排了圆的认识、圆的周长和圆的面积。《圆的面积》是本单元的一个教学难点,圆是由曲线围成的图形,教材中介绍的把圆通过等分拼成近似的长方形,分的份数越多就越接近长方形,这里体现了极限的思想。另一种思路是在圆内画正内接多边形,使多边形的面积越来越接近圆,这也就是刘徽的割圆术,体现了极限的思想。在这个化圆为方的过程中,加强了转化思想的渗透。与此同时,让学生感受到中国古代的优秀数学成就,增强学生们的民族自豪感。
本课是在学生掌握了面积的含义及长方形等多边形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的。通过课前调查,有20%的同学知道圆的面积公式,但只知道公式却不知道怎么来的,有10%的同学认为知道,但写出的公式不正确。针对以上情况,我把化圆为方定为本课的教学难点,把公式的推导作为重点,学生在自主探究与合作交流发现圆的面积公式。
1、理解圆的面积的意义及公式的推导过程。
2、在自主探究中体验转化思想和极限思想。
3、培养学生独立思考、合作交流的学习方式,学习刘徽、祖冲之勇于探索、严谨治学的科学态度,激发学生对中国传统文化的自豪感。
理解圆的面积公式的推导过程。
化圆为方体会极限思想。
七、
ppt圆片剪刀。
(一)创设情境,引出新知。
课件:小马吃到青草的最大面积是多少?要解决这个问题就是求圆的面积。这节课咱们就来研究圆的面积,揭示课题。
(设计意图:通过本环节帮助学生结合生活实际理解圆的面积的概念,明确本节课的学习任务。)。
(二)回顾复习,总结方法。
1、我们在推导其他图形的面积公式时是怎样研究的呢?复习长方形、平行四边形、三角形、梯形的面积公式推导。
2、前面的学习对研究圆的面积有什么启发吗?
小结:你能把前面学习的方法用到圆面积的研究中,这说明你很会学习。
(设计意图:通过复习找到学生的原有认知,运用正迁移寻找到研究圆面积的方法。)。
(三)尝试转化,推导公式。
1、圆能转化成我们学过的什么图形呢?请你大胆猜测一下。
2、请你先想一想圆能转化成什么图形,然后再动手剪。
活动要求:
(1)圆能转化成我们学过的什么图形?
(2)圆和转化后的图形有什么联系?
(3)通过转化后的图型你能推导出圆的面积公式啊?
提示:先独立思考,然后再和同桌讨论一下。
预设一:圆内正多边形。
1、圆内只剩正方形。
(1)指名说想法。
(2)对于他的想法你有什么想法吗?
2、圆内画正方形。
(1)出示:把圆转化成正方形和4个小部分。
你看前面同学把这4个小部分去掉了,你为什么粘在这了呢?
(2)方法同上,但是在拼成的椭圆形上画正方形。
请第二个同学说一说。
(3)圆内正六边形。
指名说想法。
比较这正四边形和正六边形两种方法,你发现了什么?
想象一下,如果继续分下去,正十二边形、正二十四边形会怎样呢?
(4)介绍刘徽的割圆术和祖冲之。
预设二、沿半经剪。
1、拼成长方形或平行四边形。
(1)展示学生作品。
指名说想法。(分的份数少的)。
比较沿半径分的几种方法:观察一下这几种方法,你有什么想法呢?
(2)渗透极限思想。
如果继续顺着大家的思路往下分的话,想象一下:16份,32份呢?。
出示课件:电脑演示由8等分到32等分。
小结:我们这几位同学沿着半径把圆剪开,因为圆的半径有无数条且相等,所以圆分的份数就有若干份,分的越多拼的图形就越接近长方形。
(3)圆和转化后的图形有什么联系呢,你能独立推导出圆的面积公式。
预设三、展示其他图形。
指名说想法。
1、转化成梯形、三角形。
2、推到面积公式。
小结:你们的想法独具匠心,思维与众不同。刚才我们努力的把圆转化成其他图形,虽然方法不同,但是殊途同归。咱们同学可真了不起,自己推导出了圆的面积公式。
(设计意图:本环节为学生提供独立探究的空间,调动多种感官使学生在动手剪、开口说的过程,体会转化的思想。通过比较、课件演示,渗透极限的思想。)。
(四)应用公式,解决问题。
1、当这个圆的半径是1米时,小马吃草的面积是多少?
2、当这个圆的直径是2米时,小马吃草的面积是多少?
3、当这个圆的周长是6.28米时,小马吃草的面积是多少?
六年级数学面积的变化教案篇三
教材分析:圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上时行教学的。教材将理解“化曲为直”的转化思想在活动之中。通过一系列的活动将新数学思想纳入到学生原有的认知结构之中,从而完成新知识、的建构过程。学好这节课的知识,对今后进行探究“圆柱圆锥”的体积起举足轻重的作用。
学情分析:学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感和感受数学的价值。教学目标:
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际的问题。
3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学过程:
1、老师引导学生回顾以前学习推导几何图形的面积公式时所用的方法。
2、学生回答后老师让学生上前展示自己的方法。
1、教师引导观察,说说从中得到那些数学信息?
2、老师引导,找出与圆的面积有关的数学问题。
3、学生回答,老师板书(圆的面积)。
(1)与同桌说一说你是怎么估的。
(2)汇报,
(3)老师引导有没有更好的方法。
2、探索圆面积公式。
(1)学生操作。
(2)指名汇报。
(3)操作反思(把圆等分的份数越多,拼成的圆越接近长方形。)。
(4)转化思想:近似长方形的长相当于圆的那一部分?怎么用字母表示?
(5)观察汇报:由长方形的面积公式推导圆形的面积计算公。
式,并说出你的理由。
(6)总结:1、计算圆的面积要那知道那些条件。
2、生活中处处有数学,我们要从小养成培养自己热爱数学,善于观察,爱动脑筋的良好习惯。
教学反思:通过试讲觉得学生对活动的设计比较喜欢,思维活跃,教案设计基本满意。结合自己课堂教学体验反思和学校领导的悉心帮助,总结出以下不足:
一、复习占用的时间不当。
复习设计方式不够合理,教师的演示过程加上学生的叙述占用了宝贵的时间,现在反思,这一环节如此“精细”是在浪费课堂的宝贵时间。
二、探究没有充分放手。
在探究圆的面积公式推导过程中,孩子的兴趣是很高的,但在学生汇报的环节,我总是担心孩子,在孩子操作演示的时候给予帮助,造成了放手不够,造成了引导过度的现象,出现了探究一直是在我的控制下进行的。
三、没给问题爆发的机会。
六年级数学面积的变化教案篇四
1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。
2、发展学生思维,侧重培养学生分析问题的`能力。
教学重点:理解数量关系。
教学难点:根据多几分之几或少几分之几找出所求量是多少。
教具准备:多媒体课件。
教学过程:
1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?
(1)一块布做衣服用去。
(2)用去一部分钱后,还剩下。
(3)一条路,已修了。
(4)水结成冰,体积膨胀。
(5)甲数比乙数少。
2、口头列式:
(1)32的是多少?
(2)120页的是多少?
3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?
4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。
六年级数学面积的变化教案篇五
目标。
1、知道圆柱侧面积和表面积的含义。
2、通过操作推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
重点。
圆柱侧面积和表面积的计算方法。
难点。
运用所学的知识解决简单的实际问题。
学 习 过 程。
师生笔记。
知识链接:
1、用公式表示出圆的半径、直径、周长、面积之间的关系。
2、圆柱的上下两个底面都是( ),它们的面积( )。
3、长方形的面积= 。
长方体的表面积= 。
正方体的表面积= 。
知识超市:
操作:(一)试一试,怎样可以得到圆柱形的侧面展开图?
把圆柱的侧面沿高剪开,展开图是( ),圆柱的底面周长就是它的( ),圆柱的高就是它的( )。
计算圆柱的侧面积实际就是计算( )。
(1)一个圆柱,底面周长是1.6m,高是0.7m,求它的侧面积。
(2)一个圆柱,底面直径是5cm,高是10cm,求它的侧面积。
操作(二)有两底的圆柱展开后呈什么形状?
圆柱是由( )和( )三部分组成的。
圆柱的表面积包括( )和( )。
(3)一个圆柱的高是15厘米,底面半径是5厘米,求它的表面积。
我会用:一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)。
想:求做这样一顶厨师帽需用多少面料,实际上就是求这顶圆柱形厨师帽的( ),厨师帽由_________和__________组成。
列式计算:。
达标检测:
六年级数学面积的变化教案篇六
教学目的:
1、培养学生灵活、全面的运用知识的能力,及运用所学知识解决简单实际问题的能力。
2、培养学生认真审题的良好学习习惯。
教学重点:灵活运用周长或面积公式解决实际问题。
教学过程:
概念不同,计算公式不同,单位不同。
3、判断。两个图形相比较,哪个图形的周长长,哪个图形的'面积就大。
(错。周长的长短和面积的大小没有必然的联系。)。
二、运用所学知识解决实际问题。
1、一个圆形花坛,直径是4米,周长是多少米?
3.144=12.56(米)。
2、一个圆形花坛,周长是12.56米,直径是多少米?
12.563.14=4(米)。
3、一个圆形花坛的半径是2米,它的面积是多少平方米?
3.1422=12.56(平方米)。
4、一个圆形花坛的周长是12.56米,它的面积是多少平方米?
r=12.56(23.14)=2(米)3.1422=12.56(平方米)。
5、一个环形铁片,外直径是6米,内直径是4米,它的面积是多少平方米?
6、先测量所需要的数据,再计算半圆的周长和面积。(解答结果保留整厘米数)。
三、综合练习。
1、判断对错,
(1)圆的半径都相等。
(2)在同圆或等圆中圆周长约是半径的6.28倍。()。
(3)半圆的周长是圆周长的一半。()。
(2)一个圆形的铁板的直径是6分米,它的面积是多少平方分米?
(3)一个圆形铁板的周长是28.26分米,它的面积是多少平方分米?
(2)在草地的木桩上栓着一只羊,绳长3米,这只羊能吃到草的面积最大是。
多少平方米?
四、布置作业。
练习十七1-3,思考第4题。
六年级数学面积的变化教案篇七
1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。
教学重点:理解题中的单位“1”和问题的关系。
教学难点:抓住知识关键,正确、灵活判断单位“1”。
教具准备:多媒体课件。
教学过程:
1、先说下列各算式表示的意义,再口算出得数。
12××。
2、列式计算。
(1)20的.是多少?(2)6的是多少?
3、学生得出:求一个数的几分之几用乘法。
1、通过学习掌握求一个数的几分之几是多少的应用题的解。
题方法并会分析数量关系。
2、知道解这类应用题的关键是什么?
3、知道如何找单位“1”。
六年级数学面积的变化教案篇八
2.使学生能利用正、反比例的意义正确解答应用题.。
3.培养学生的判断推理能力和分析能力.。
教学重点。
教学难点。
利用正反比例的意义正确列出等式.。
教学过程。
一、复习准备.(课件演示:比例的应用)。
(一)判断下面每题中的两种量成什么比例关系?
1.速度一定,路程和时间.。
2.路程一定,速度和时间.。
3.单价一定,总价和数量.。
4.每小时耕地的'公顷数一定,耕地的总公顷数和时间.。
5.全校学生做操,每行站的人数和站的行数.。
(二)引入新课。
教师板书:比例的应用。
二、新授教学.。
(一)教学例1(课件演示:比例的应用)。
1.学生利用以前的方法独立解答.。
14025。
=705。
=350(千米)。
2.利用比例的知识解答.。
(1)思考:这道题中涉及哪三种量?
哪种量是一定的?你是怎样知道的?
行驶的路程和时间成什么比例关系?
教师板书:速度一定,路程和时间成正比例。
教师追问:两次行驶的路程和时间的什么相等?
怎么列出等式?
解:设甲乙两地间的公路长千米.。
答:两地之间的公路长350千米.。
3.怎样检验这道题做得是否正确?
4.变式练习。
(二)教学例2(课件演示:比例的应用)。
1.学生利用以前的方法独立解答.。
2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)。
3.如果设每小时需要行驶千米,根据反比例的意义,谁能列出方程?
六年级数学面积的变化教案篇九
《组合图形面积》是义务教育课程标准实验教科书,北师大版五年级上册第五单元的第一课,学生在三年级已经学习了长方形与正方形的面积计算,在本册的第二单元又学习了平行四边形、三角形与梯形的面积计算,本课是这两方面知识的发展,也是日常生活中经常需要解决的实际问题。在此基础上学习组合图形,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。教材在内容呈现上突出了两个部分,一是感受计算组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。
2、学情分析。
根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难。所以在探索组合图形面积的计算方法时,我通过自主探索、小组合作交流等方式达到方法的多样化。重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。因此我设计本节课的教学目标如下:
3、教学目标。
(1)在自主探索的活动中,归纳计算组合图形面积的多种方法,并运用计算方法解决生活中的实际问题。
(2)通过学生动手拼、剪、补的方法,引导学生探究计算组合图形面积的计算方法。
(3)进一步渗透转化的数学思想。培养学生探索数学问题的积极性,增强学生学习数学的信心和兴趣。
4、教学重、难点。
针对五年级年级学生的年龄特点和认知水平我确定本节课的教学重点为:
教学难点:理解、运用“分割”与“添补”法,正确计算组合图形的面积.
二、说教法、学法。
1、说教法。
(1)多媒体教学法。
在教学中,我充分利用多媒体教学课件引发学生的兴趣,调动学生的积极性,激活学生原有知识和经验并以此为基础展开想象和思考,自觉地构建良好的知识体系,特别是转化图形的几种方法通过课件的演示,学生一目了然,直观形象,更好的突出了教学重点、突破了教学难点。
(2)自主探索和合作交流教学法。
动手实践、自主探索、合作交流是学生学习数学的重要方式,转变教师角色,给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考,并与同伴交流,亲身经历问题提出、问题解决的过程,体验学习成功的乐趣。
2、说学法。
(1)自主观察思考。
学生是学习的主体,只有当学生真正自己主动、积极的参与到学习中时,才能最为有效地提高学生的学习效果。引导学生自己来观察组合图形的特点,思考解决问题的方法,逐步构建自己的知识体系,也有利于后面小组的合作学习以及更好地倾听他人的不同意见,进一步完善自己的.知识体系。
(2)小组合作学习。
小组合作学习能够帮助学生在有限的时间里,通过与他人的交流与合作,获取更多的方法,找到合适、有效的解决问题的方法。本课让学生在自主观察思考的前提下,通过小组合作学习来进一步拓宽学生的思维空间,提升学生的学习能力。
(3)学习归纳。
改变了以往的教师总结为学生自己归纳总结,相对来讲学生收获的不仅仅是知识还有更多的学习经验。
三、教学流程。
为完成本节教学目标,突出教学重点,突破教学难点,根据小学数学新课程标准强调的数学与现实生活的联系,我在教学本节课时从学生感兴趣的事物和熟悉的生活情境出发,让学生充分体会到数学就在身边,感受到组合图形的趣味性,体会到数学的魅力。所以制定了以下教学环节:
(一)、创设情境、复习引入。
(二)、自主探索、合作交流。
(三)、运用新知、学以致用。
(四)、当堂检测、实践新知。
(五)、畅谈收获、总结全课。
(一)创设情境,复习导入。
让学生拆开老师给大家的礼物袋,看看里面是什么礼物,学生会立刻认识到正方形、长方。
形、平行四边形、三角形、梯形,从而复习正方形、长方形、平行四边形、三角形、梯形的面积公式,为确保正确的计算组合图的面积打下基础。
(二)自主探索、合作交流。
1、(活动一)拼一拼。
(这一环节设计的目的是让学生在拼一拼,看一看,说一说的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识来源于生活.)。
教师出示如何求组合图形的面积?引发学生思考总结归纳出用分割的方法求组合图形的面积。
2、(活动二)剪一剪,补一补。
通过对一个长方形的剪切和还原,引发学生小组讨论进而归纳总结出用添补的方法求组合图形的面积。
3、师生总结分割法添补法:
接下来让学生自主观察比较上面几种方法的不同之处后,再总结出求组合图形面积的计算方法,掌握“分割法”和”添补法”这两种计算方法,并且让学生明确,在分割组合图形时,分割图形越简洁,解题方法越简单。无论是分割还是添补,都是要把组合图形转化为我们学过的基本图形,这样就很容易计算出它的面积了。
(三)运用新知、学以致用。
4、出示例题图。
由老师拼的一个图形,引导学生观察,看看像什么?学生会说像我家客厅的地面的形状,老师再次引出,我家客厅的地面形状也是这样的(出示ppt1),最近我家的房子正在装修,正计划铺地板呢?我量了一下,(出示ppt2)给出数据信息,提出问题,你能根据这些信息帮我算一算我该买多少平方米的地板呢?(在解决这一生活问题环节中,给学生足够的时间和空间,让学生积极主动地参与到学习中,通过自主探索,小组交流,获取更多的解题方法,让他们在小组活动中都有成功的体验和经验的收获)。
2、小组汇报学习情况。
汇报时用多媒体将学生的学习成果演示出来,会出现下面几种情况:。
(1)将组合图形分割成两个长方形。
(2)将组合图形分割成一个正方形和一个长方形。
(3)将组合图形分割成两个梯形。
(4)将组合图形填补上一个小正方形,使它成为一个大长方形,再用大长方形的面积减去小正方形的面积。
(5)将组合图形分割成两个长方形和一个正方形(或则其他情况)。
(学生汇报时,其他同学一边倾听,一边与自己的思路进行比较,一边质疑,一边引起集体的讨论,并及时发现错误及时纠正过来。汇报结束后,再让学生对小组成员的汇报情况作评价,最后其他小组作补充汇报)。
(四)当堂检测、实践新知。
为了巩固新知,又突出本课的教学难点,将书上练一练的2道练习题以随堂测试的形式出示学生独立完成并汇报展示。
(五)畅谈收获、总结全课。
同学们,今天,我们共同探索学习了什么知识?你有什么收获,或者有什么心得?(学生可以说知识上的收获,也可以说情感上的收获,既发挥了学生的主动性,又将本堂课的内容进行了总结.也可以评价他人的学习表现,生生互动评价,学生既认识自我,建立信心,又共同体验了成功,促进了发展)。最后,我鼓励学生利用今天所学的知识,解决上课开始时,自己设计的组合图形的面积,由课内延伸到课后,让学生把掌握的知识拓展到实际生活中去,引导学生对学习内容进行梳理,将知识系统化、条理化。对在获取新知中体现出的数学思想方法策略进行反思,从而加深对知识的理解。
本节课,我紧密联系学生的实际经验,向学生展示了生活中的组合图形,并联系实际生活情景,从中提出数学问题,并加以解决,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣,也培养了学生提出问题,解决问题的能力。
四、板书设计。
六年级数学面积的变化教案篇十
1、经历了解税收的意义、解决有关税收实际问题的过程。
2、了解税收的有关知识,会解答有关税收的实际问题。
3、体会税收在国家建设中的重要作用,培养依法纳税的意识。
会解答有关税收的实际问题。
学生课前去进行各种税种的调查,初步了解它们的含义。
(一)谈话导入。
对,这个餐厅知法、守法,开发票对谁有好处?
开发票减少了餐厅的利润,但却增加了国家的税收,看来越来越多的人具有了纳税意识,今天我们就一起来学习有关纳税的'知识。
板书:纳税。
(二)了解纳税及其作用。
1、你知道哪些纳税的知识?
2、那今天这节课你还想学习哪些纳税方面的知识?
(什么是纳税?为什么要纳税?怎样纳税?……)。
3、要想更多更准确地了解这方面的知识,可以通过什么样的方法或途径来学习呢?
(看书、查资料、上网、去税务局或向税务局的亲戚朋友了解这方面的知识……)。
4、让学生自由说一说。
纳税就是根据国家各种税法的规定,按照一定的比率,把集体或个人收入的一部分缴纳给国家,纳税是件利国利民的大事,只要人人都有纳税意识,我们的国家一定会更加繁荣、富强!
5、说得很好,同学们通过刚才的学习已经了解了什么是纳税,为什么纳税,可作为小学生,光了解这些还不够,还应争当小纳税人,学会怎样纳税!
教师介绍上网查询内容,纳税有哪几个步骤?
在这几个步骤中,哪个与数学密切相关?要运用到哪部分数学知识?
(百分数、百分数的计算)。
究竟怎样运用这部分知识呢?谁知道如何纳税?怎样计算税款?
(应纳税额与各种收入的比率叫税率。应纳税额=各种收入×税率)。
板书公式:各种收入×税率=应纳税额。
应纳税额简单的说就是指什么?(应交的税款)。
各种收入呢?是一定的吗?税率是一定的吗?你了解哪些税率(不同的税率)。
那我选这个3%的来还!为什么不行?(根据税种选择税率来还。)。
那你会哪种税种的计算方法?(消费税、营业税……)。
都会算了吗?看这道题会算吗?(例1)。
板书:230×5%=11、5(万元)。
230是什么?5%是什么?230×5%表示什么?
可能说,什么是应纳税所得额。
师:谁能帮助他?个人所得税怎样计算?
师:对,只要有工资收入的公民都有可能要交个人所得税!
(出示:个人所得税图表)。
能看懂吗?什么意思?
帮我算算好吗?(猜猜我的工资收入?)。
板书:2100+380—20xx=480(元)。
480×5%=24(元)。
谢谢大家,我一定会依法纳税的!
(三)练一练。
练一练1—4题。
(四)总结。
如果没有,那老师这有几个话题想和同学们一起探讨!
主题。
1、你能为自觉纳税设计一句广告语吗?
2、如果我是税务稽查员,如何防止偷税、漏税行为?
3、我们能为纳税做些什么?
板书设计:
纳税。
各种收入×税率=应纳税额。
230×5%=11.5(万元)。
六年级数学面积的变化教案篇十一
本节课根据新课程的理念和要求,通过创设问题情境,小组合作交流,学法迁移等形式,让学生在动手、动口、动脑中主动探究圆面积公式推导的多种方法。并借助学生的想像,发展学生的空间观念。然后引导学生探究,得出圆面积的两种推导方法,旨在拓展学生的思维。在练习设计时,选用了一些联系生活实际的问题,在于培养学生解决实际问题的能力,使教学内容生活化。
一、创设情景,明确目标。
师:今天这节课,我们就来讨论怎样求圆的面积。
二、利用迁移,探究方法。
师:下面请同学们回忆一下,我们以前学过哪些平面图形的面积计算?(学生答师板书)。
师:它们的面积公式分别是怎样得到的?(学生答略)。
师:除了长方形用“面积单位”去量之外,其它几个图形面积推导方法有什么共同特点?
生:都是用转化的方法推导出来的。
师:今天我们要学习的圆形与以上几种图形有什么明显的区别?
生:圆形是由曲线围成的。
师:能不能也用“面积单位”去量呢?
生:不能。
师:那我们该用什么方法解决呢?
生:也可以用转化的方法,把圆转化成我们熟悉的图形。
师:那好,下面请同学们打开课本,看看书上是用什么方法得出圆面积公式的。
生(看书后),师指定一名学生借助教具介绍书上的推导方法,(师板书)从而得出圆面积的计算公式。
三、借助想像,感悟“极限”
师:同学们,你们听了他的介绍后,心里还有什么疑问吗?
生:这个拼成的图形好像真的是长方形吗?
生:既然形状是近似的,那这个图形的计算结果也是近似的。这里的计算公式也不能用等号表示了。
师:那我们得想个办法,把它变直,谁有办法?
生:等分的份数多一点?
师:究竟能分多少份?16份?32份?64份?
生:等分的份数越多,拼成的图形就越接近于长方形。
生:拼成的图形就真的变成长方形,因为边越来越直了。
四、小组合作,拓展思路。
(学生回答,师板书)。
师:下面,请你们每四人组成一小组,选择其中的一种,拿出事先等分好的圆片,一边讨论,一边操作,写出推导过程。如果你们不选择以上的方法,想出与众不同的方法更好。
上来汇报的小组派出两位代表,一位拿出拼好的图形在投影仪上介绍推导过程,另一位在黑板上写出推导过程。
师:谁还有与众不同的方法吗?
生:我们知道,如果把这个近似长方形无限等分下去,确实就是长方形,其中1份可以看作是三角形,只要算出这1份三角形的面积再乘以份数就是圆的面积了。
师:你真聪明,能不能以16等份为例写出推导过程呢?
(生写出推导过程)。
生:一个大三角形。
师:真棒,这个大三角形的底就是什么?高就是什么?
生:这个大三角形的底就是圆的周长,高就是圆的半径。
师:同学们真厉害,能不能写出推导过程呢?
(生写出推导过程)。
师:大家真了不起,竟然想出了那么多好办法。学习就应该这样,要敢于向书本挑战,要善于探究。
五、联系生活,应用知识。
师:现在你们会解决校门口花坛的草坪面积了吗?
生:条件不够,要知道半径是多少?
师:好,半径是5米。
学生计算,师提醒学生注意计算时r2不要算成2×r。
师:直径是10米行吗?(指名汇报)。
师:不管给你们什么条件,要求圆面积,只要先求出什么就可以了。
生:半径。
师出示深化题,学生练习。
2.半径是1米的圆,面积是3.14平方米,半径是2米的圆面积是多少平方米?
3.一个圆的直径和正方形的边长相等,圆和正方形哪个面积大?为什么?
六年级数学面积的变化教案篇十二
从知识角度分析为什么难。
打折销售与学生的日常生活息息相关,学生并不感到陌生,但在促销活动中选择最佳消费方式,要运用所学的百分数知识解决问题有一定的难度。
从学生角度分析为什么难。
学生在解题的过程中,要懂得“满100元减50元”的促销方式,对于消费者来说不如打五折实惠;如果总价是整百元的,那两种促销的方式优惠的结果是一样的,但要得出这种结论,对于学生来说有一定难度,需要运用所学的百分数知识去分析、交流、比较才能解决。
在教学时,先让学生结合自己的生活经历去理解“满100元减50元”的含义,然后根据实际情况进行表述,再引导学生体会这种促销方式的计算方法,接下来要由学生独立完成两种购买方式所要支付的钱,并通过比较来解决题目中的问题。
一、复习旧知,引入新课。
1、提问“一件物品打九折出售”表示什么意思?
2、生活中,是不是所有的优惠都是以“几折”来表示的呢?
3、购物中优惠的形式有很多种,我们要做一个精明的小买家。今天,我们就来研究购物中的折扣问题。(板书:购物中的折扣问题)。
二、教学新知。
(一)出示例5:某品牌的裙子搞促销活动,在a商场打五折销售,在b商场按“满100元减50元”的方式销售。妈妈要买一条标价230元的这种品牌的裙子。
1、根据这些信息,学生提问题。
教师板书:
(1)在a、b两个商场买,各应付多少钱?
(2)哪个商场省钱?
2、分析问题,理解题意。
(1)结合题目给出的数学信息,哪些是关键的?
(2)怎样理解“满100元减50元”?
(3)不足100元的部分呢?怎么办?
3、独立思考,尝试解决。
师:请同学们独立思考,看能否解决黑板上的这两个问题?
4、交流并汇报方法。
师:谁来说说自己的解决方法?
学生展示自己的算式,并解释。
5、启发思考,辨析原因。
(1)满100元减50元,少了50元,也是打五折啊,怎么优惠的结果却不一样呢?
(2)什么情況下两种优惠是一样的呢?
6、小结:在今天的折扣问题中,我们知道了优惠的形式有很多种,解决这些问题时要注意的是“满100元减50元”和打五折的区别:
(1)“满100减50”,就是够100才能减50,不够则不减。
(2)打五折实际售价都是原价的50%,不满100元的也能按50%计算。
(3)售价刚好是整百元的时候,两种优惠结果才是一样的。
三、练习巩固,提高能力。
1、做一做。
某品牌的旅游鞋搞促销活动,在a商场“每满100元减40元”的方式销售,在b商场打六折销售,妈妈准备给小丽买一双标价120元的这种品牌的旅游鞋。
(1)在a、b两个商场买,各应付多少钱?
(2)选择哪个商场更省钱?
同学们,在今天学习的折扣问题中,我们知道了不同形式的优惠有很多种,在解决这些问题时要注意的是“满100元减50元”和打五折的区别。
六年级数学面积的变化教案篇十三
教材首先设计了估算飞标板面积的活动。呈现了两种估算方法:一是先估算每个小三角形的面积,再估算飞标板的面积;二是把飞标板剪开,拼成近似的长方形,然后利用长方形的面积公式计算出飞标板的面积。接着是,小组合作探索圆面积的计算公式,在试一试中,让学生用刚推导出的面积公式计算飞标板的面积。教学中要给学生充分的观察、动手操作和讨论交流的空间,使学生学会转化的数学方法,体会极限的思想。
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形面积时,已学会了用割、补、移等方法,把把新知识转化为旧知识,探究推导直线平面图形的面积。因此教学本课时,可引导学生用以前学的“转化”的数学思想来推导圆的面积公式,在推导学习中不仅扩大了学生的知识,提高学生分析、解决问题的策略,空间观念也得到进一步的发展,为以后学习圆柱、圆锥等知识打好良好基础。
知识与技能目标:
1、理解圆的面积计算公式的推导,让学生利用已有的知识,运用转化的思考方法,推导出圆面积的`计算公式。
2、初步运用圆面积计算公式进行圆面积的计算。
过程与方法目标:
通过教师设置问题情境————学生猜想————小组合作————表达交流————归纳总结,引导学生通过多次不同的实验,运用转化方法,通过多媒体课件演示,把曲线平面图形转化为直线平面图形,推导圆的。面积计算公式。
情感态度和价值观:
通过圆面的剪拼,境况学生操作、观察、分析的能力,渗透极限思想。
教学重点:圆面积公式的推导。
教学难点:极限思想的渗透与公式的推导。
教学方法:通过直观教具演示和课件展示,学生通过猜想然后再用合作学习法动手操作验证猜想,得出结论。
教学手段:利用游戏、媒体等手段激发学生思维,让学生亲自动手操作,感受学习的乐趣。
多媒体课件一套、圆形纸片。
两个完全一样的圆片、透明胶带、刻度尺、量角器、剪刀、小刀。
一、复习引入。
1、幻灯片出示复习题目。
2、激趣导入。
同学们,今天我请你们欣赏一幅图。请看!(课件出示)在欣赏图的同时,思考右面的问题。学生猜想牛最多吃多少草是什么的图形?(课件出示)是一个圆形,要求牛吃多少草也就是求圆的面积,引出圆的面积(板书课题)。
二、合作探究,推导公式。
1、圆面积定义。
2、圆面积公式推导。
那么怎样计算圆的面积呢?我们知道圆有大有小,如果用面积单位直接。
教师根据学生说的过程,通过课件演示出转化的过程。
想一想:这些图形面积公式的推导过程有什么共同点?(学生回答)。
下面请同学们小组合作,动手剪一剪、拼一拼,看可以把圆转化成什么图形?
(小组合作,探究交流。)。
谁能告诉老师你们小组把圆转化成了什么图形?(小组汇报并展示所拼图形)。
小组1:我们平均分成了8份,拼成的图形非常像平行四边形。
小组2:我们把圆平均分成了16份,拼成的图形也像个平行四边形。
小组3:我们把圆平均分成了16份,拼成的图形很像一个三角形。
小组4:我们拼的图形像个梯形。
小组5:我们平均分成了4份,拼成的图形像平行四边形。
学生回答:分的份数越多越接近长方形。
下面请同学们仔细观察、分析拼成的长方形与圆的关系,小组讨论并思考以下几个问题:
(1)圆的面积与这个长方形的面积有什么关系?
(2)这个长方形的长与圆的周长有什么关系?
(3)这个长方形的宽与圆的半径有什么关系?
(4)如果圆的半径是r,这个长方形的长和宽各是多少?
(小组合作,探究交流,推导出面积公式)。
小组内说一说圆面积计算公式推导过程,师板演。
小组合作推导三角形和梯形的面积公式,并汇报交流,师演示课件。
小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!那么,求圆的面积需要什么条件呢?(半径)。
三、实践运用,体验生活。
那么圆的面积公式到底有什么用呢?
现在我们会求牛最多吃多少草吗?
四、课堂小结。
这节课你有什么收获,学到了哪些知识?
五、课外思考。(幻灯片出示)。
已知一个圆的周长,你能计算这个圆的面积吗?
六年级数学面积的变化教案篇十四
教学目标:
知识与技能:结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。
过程与方法:根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。
情感、态度与价值观:能运用组合图形的知识,解决生活中组合图形的实际问题。
教学重点:理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的条件。
教学难点:根据组合图形的条件,有效地选择汁算组合图形面积的方法。
教学方法:动手实践、自主探索、合作交流。
教学准备:师:多媒体、各种平面图形。
生:七巧板、简单图形学具、少先队中队旗实物。
教学过程。
一、情境导入。
1.创设情境导入:同学们都玩过七巧板吧,在七巧板里都有哪些图形呢?(长方形、三角形、平行四边形……)。
2.你能用七巧板拼出什么图形来?指几名学生用七巧板拼出图形,并展示。
通过学生拼出的图形引出组合图形的定义:由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
3.这节课我们就一起来学习求组合图形的面积。(板题:组合图形的面积)。
二、互动新授。
l.谈话:在实际生活中,有许多图形都是由几个简单的图形组合而成的。出示教材第99页的各种图形。
这些组合图形里有哪些是学过的图形?同学们试着找一找。
小组合作,尝试找出情境图中的组合图形是哪些图形组成的,并交流汇报。
2.说一说:在生活中还有哪些地方有组合图形?请同学们说一说。
学生可能会想到:厨房里的三角架、房子的分布图、桌子等。
3.引导思考:关于组合图形,你还想研究它的什么知识?
4.出示教材第99页例4:一间房子侧面墙的形状图。
组织学生小组合作学习,说一说是怎样分的',然后再算一算。集体汇报。
三、巩固拓展。
1.完成教材第101页“练习二十二”第1题。
2.完成教材第101页“练习二十二”第2题。
3.完成教材第101页“练习二十二”第3题。
四、课堂小结。
师:这节课你学会了什么?有哪些收获?
板书设计:
由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
5×5+5×2÷2(5+5+2)×(5÷2)÷2×2。
=25+5=12×2.5÷2×2。
=30(2)=30(2)。
教学反思:
六年级数学面积的变化教案篇十五
1、使学生初步了解归总应用题的基本结构和数量关系,能够正确地解答这种应用题。
2、进一步提高学生分析问题和解决实际问题的能力。
使学生掌握乘、除应用题的数量关系,结构特征和解答方法。
学画线段图,并借助线段图分析题中数量关系。
投影片或教学课件。
1、学习例5(为了贴近学生生活,便于学生理解、计算,将例题进行了改编)。
(1)教师说:小华读一本书,如果每天读9页,几天可以读完?(学生各抒已见)。
(3)小组展开讨论,并独立列式试做。(教师注意巡视,及时发现学生出现的问题。)
(4)小组汇报自己的想法,教师点拨,小组间相互质疑问难。
(5)教师根据小组的汇报情况,边小结边进行必要的板书:
先求这本书一共多少页?126=72(页)
再求几天能读完?729=8(天)
(6)让学生根据分步算式,独立列出综合算式。
2、改编例题,引出题目:(如果小华8天读完,他每天读几页?)
(1)学生独立思考,并试着列式解答出来。
(2)请一名学生汇报。通过学生之间的质疑问难,教师根据出现的情况,及时进行小结:要求每天读几页?首先知道这本书一共有多少页?遇到问题,一定要分析清楚先求什么、再求什么。
(3)学生独立列出综合算式。
3、比较例题和改编的问题有什么相同点和不同点?
让学生说一说自己的想法,教师根据学生的回答,小结。相同点:都是先求这本书的总页数。不同点:例题是求几天读完,改编后的问题是求每天读几页。
4、教科书第112页做一做的第2题和例5,让学生独立完成。
1、做练习二十五的第1题。
让学生认真读题,独立完成,并找出两个小题的异同点。
让学生说一说想法,然后独立列式解答。
3、做练习二十五的第3、4题。
让学生独立列式解答。做完后,集体订正。
通过师生交流,突出两步应用题的数量关系。
板书设计:
两步应用题
(1)先求这本书一共多少页?(2)先求这本书一共多少页?
126=72(页)126=72(页)
再求几天能读完?再求每天读几页?
729=8(天)728=9(页)
答:8天可以读完。答:每天读9页。
【本文地址:http://www.xuefen.com.cn/zuowen/19001125.html】