教案的编写需要基于教学目标和教学内容进行综合考虑。要写一份较为完美的教案,首先需要对教材内容进行充分的研究和理解。请参考下面的教案样例,结合你的实际情况进行有针对性地编写教案。
六年级数学面积的变化教案篇一
1.通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
2.能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。
理解和掌握圆面积的计算公式的推导过程。
圆面积计算公式的推导。
一、创设情境,提出问题。
(课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)。
生:
1、羊走一圈有多长?
2、羊最多能吃到多少草?
3、羊能吃到草的最大面积是多少?
二、引导探究,构建模型。
a:启发猜想。
师:羊吃到草的最大面积最大是圆形:
1、这个圆的面积有多大猜猜看;
2、试想圆的面积和哪些条件有关?
3、怎样推导圆的面积公式?(生试说)。
b:分组实验,发现模型。
学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:
1、你摆的是什么图形?
2、你摆的图形与圆的面积有什么关系?
3、图形各部分相当于圆的什么?
4、你如何推导出圆的面积?
请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况。
三、应用知识,拓展思维。
1、师:要求圆的面积必须知道什么?
2、运用公式计算面积。
b完成课后“做一做”
c一个圆的直径是10厘米,它的面积是多少平方厘米?
d找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)。
测量物直径(厘米)半径(厘米)面积(平方厘米)。
3、应用知识解决身边的实际问题(知识应用)。
四、归纳总结,完善认知。
今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?
六年级数学面积的变化教案篇二
1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
教学重点。
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点。
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程。
一复习旧知。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的.计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)。
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)。
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)。
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)。
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)。
(2)底面积:3.14×2×2=12.56(平方分米)。
(3)表面积:56.52+12.56=81.64(平方分米)。
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)。
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习。
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)。
六年级数学面积的变化教案篇三
教学目的:
1、培养学生灵活、全面的运用知识的能力,及运用所学知识解决简单实际问题的能力。
2、培养学生认真审题的良好学习习惯。
教学重点:灵活运用周长或面积公式解决实际问题。
教学过程:
概念不同,计算公式不同,单位不同。
3、判断。两个图形相比较,哪个图形的周长长,哪个图形的'面积就大。
(错。周长的长短和面积的大小没有必然的联系。)。
二、运用所学知识解决实际问题。
1、一个圆形花坛,直径是4米,周长是多少米?
3.144=12.56(米)。
2、一个圆形花坛,周长是12.56米,直径是多少米?
12.563.14=4(米)。
3、一个圆形花坛的半径是2米,它的面积是多少平方米?
3.1422=12.56(平方米)。
4、一个圆形花坛的周长是12.56米,它的面积是多少平方米?
r=12.56(23.14)=2(米)3.1422=12.56(平方米)。
5、一个环形铁片,外直径是6米,内直径是4米,它的面积是多少平方米?
6、先测量所需要的数据,再计算半圆的周长和面积。(解答结果保留整厘米数)。
三、综合练习。
1、判断对错,
(1)圆的半径都相等。
(2)在同圆或等圆中圆周长约是半径的6.28倍。()。
(3)半圆的周长是圆周长的一半。()。
(2)一个圆形的铁板的直径是6分米,它的面积是多少平方分米?
(3)一个圆形铁板的周长是28.26分米,它的面积是多少平方分米?
(2)在草地的木桩上栓着一只羊,绳长3米,这只羊能吃到草的面积最大是。
多少平方米?
四、布置作业。
练习十七1-3,思考第4题。
六年级数学面积的变化教案篇四
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
圆面积计算公式的推导。
等分圆教具。
分成十六等分的圆形纸片。
一.谈话导入新课。
同学们,现在展现在你们面前的是聚宝小学教学楼前面的一块空地,我们学校计划在这块空地上,铺一个圆形的草坪。它有多大呢?要求有多大?实际上就是求圆的面积,这节课就让我们一起来研究圆的面积。
二.游戏激趣,理解圆的面积的概念。
生:男生涂的圆大,女生涂的圆小。师:你们所说的大小就是圆的面积。板书:圆所占平面的大小就叫做圆的面积。
师:现在大家知道男生为什么涂得慢呢?
三.探究合作,推导圆的面积公式。
生:沿着平行四边形的一条高,切割成两部分,把两部分拼成长方形,哦,请看是这样吗?课件演示生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
2.演示揭疑.把一个圆沿着直径来切,变成两个半圆,在把每个半圆平均分成四份。就把整个圆平均分成八份,每份是一个近似的三角形。这些近似的三角形可以拼成一个近似的平行四边形。如果老师把一个圆平均分成16份,你又会拼成一个近似的什么图形?让我们一起看一看,仔细观察如果老师把一个圆平均分成32份。它就会更接近哪个图形?(长方形)大家想象一下,如果老师再继续分下去,分的份数越多每一份儿就会越小,拼成的图形就会越接近什么图形?长方形。那这个近似的长方形和圆之间会存在着什么样的关系?请看老师给出的三个问题。齐读问题明确要求。
3.合作探究,推导公式小组同学拿出课前准备的学具拼一拼,讨论完成学习卡上的内容。你们明白要求了吗?现在开始吧!学生进行汇报师:板书因为长方形的面积=长×宽所以圆的面积=圆周长的一半×半径。
四.巩固新知,实践运用。
1.俗话说学关键是用好,做游戏时,你们说男生涂的圆大,女生涂的圆小,现在来算一算用数据证明你们的说法是对的。
2.现在你来帮助老师算一算我们学校要铺的草坪面积是多少?又需要多少钱?
五.总结。
1、这节课你们有什么收获?
2、大家的收获真不少你们不但学会了求园的面积,而且用转化的方法推导出圆的面积计算公式,这是你们的一个了不起。另外,你们利用所学的知识解决生活中的问题,这是同学们的第二个了不起。
六年级数学面积的变化教案篇五
目标。
1、知道圆柱侧面积和表面积的含义。
2、通过操作推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
重点。
圆柱侧面积和表面积的计算方法。
难点。
运用所学的知识解决简单的实际问题。
学 习 过 程。
师生笔记。
知识链接:
1、用公式表示出圆的半径、直径、周长、面积之间的关系。
2、圆柱的上下两个底面都是( ),它们的面积( )。
3、长方形的面积= 。
长方体的表面积= 。
正方体的表面积= 。
知识超市:
操作:(一)试一试,怎样可以得到圆柱形的侧面展开图?
把圆柱的侧面沿高剪开,展开图是( ),圆柱的底面周长就是它的( ),圆柱的高就是它的( )。
计算圆柱的侧面积实际就是计算( )。
(1)一个圆柱,底面周长是1.6m,高是0.7m,求它的侧面积。
(2)一个圆柱,底面直径是5cm,高是10cm,求它的侧面积。
操作(二)有两底的圆柱展开后呈什么形状?
圆柱是由( )和( )三部分组成的。
圆柱的表面积包括( )和( )。
(3)一个圆柱的高是15厘米,底面半径是5厘米,求它的表面积。
我会用:一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)。
想:求做这样一顶厨师帽需用多少面料,实际上就是求这顶圆柱形厨师帽的( ),厨师帽由_________和__________组成。
列式计算:。
达标检测:
六年级数学面积的变化教案篇六
1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。
教学重点:理解题中的单位“1”和问题的关系。
教学难点:抓住知识关键,正确、灵活判断单位“1”。
教具准备:多媒体课件。
教学过程:
1、先说下列各算式表示的意义,再口算出得数。
12××。
2、列式计算。
(1)20的.是多少?(2)6的是多少?
3、学生得出:求一个数的几分之几用乘法。
1、通过学习掌握求一个数的几分之几是多少的应用题的解。
题方法并会分析数量关系。
2、知道解这类应用题的关键是什么?
3、知道如何找单位“1”。
六年级数学面积的变化教案篇七
对学生整理和复习不但要起到一个回顾知识点的作用,更重要的是将这一章节的内容进行梳理,从而找出知识之间的内在联系,形成更加完善的知识网络体系。从这个角度上来说,整理和复习课应该让学生成为课堂的主人,通过学生之间的交流碰撞,引发知识的重新构建,并形成一个完善的体系。这堂课的重点,林老师就将其定位在学生复习整理的学法指导上。而事实证明,当学生通过自己整理得到的复习方法印象非常深刻,学生愿意并且重视相互之间的学习。在学生自主探究整理复习的'方法之后,安排了一定量的相关练习。但是复习中的练习应定于哪里呢?我觉得应定位于让学生利用已有的知识解决实际问题,并在解决问题的过程中克服思维“定势”的消极性影响,灵活应用,挖掘提升。在教学设计中,林老师首先关注到在知识迁移能力的形成过程中培养学生解决类似问题的“定势”,形成知识迁移的一般性规律和方法,所以在练习中林老师先安排了一组根据直径和半径求周长和面积的练习,让学生的思维的热热身,也为后面的提高练习打下基础。之后为了让学生形成遇到用习惯方法难以解决的有关问题时,能够从其他角度去分析、解决问题的能力,为学生提供了一组具有代表性的练习,这些问题不但可以帮助孩子更加深入考虑问题,形成良好的思考习惯,发展求异思维和发散思维的意识与能力,还可以提醒其他学生,避免发生类似错误。
复习课并不是单纯重温旧的知识,而是在此基础上,使学生对知识的掌握更加牢固,对各种常规方法的运用更加熟练,最终使学生分析问题、解决问题的能力得到充分提高。只要我们教师能多些创新,复习课照样可以精彩纷呈。
将本文的word文档下载到电脑,方便收藏和打印。
六年级数学面积的变化教案篇八
教学目标:
知识与技能:结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。
过程与方法:根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。
情感、态度与价值观:能运用组合图形的知识,解决生活中组合图形的实际问题。
教学重点:理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的条件。
教学难点:根据组合图形的条件,有效地选择汁算组合图形面积的方法。
教学方法:动手实践、自主探索、合作交流。
教学准备:师:多媒体、各种平面图形。
生:七巧板、简单图形学具、少先队中队旗实物。
教学过程。
一、情境导入。
1.创设情境导入:同学们都玩过七巧板吧,在七巧板里都有哪些图形呢?(长方形、三角形、平行四边形……)。
2.你能用七巧板拼出什么图形来?指几名学生用七巧板拼出图形,并展示。
通过学生拼出的图形引出组合图形的定义:由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
3.这节课我们就一起来学习求组合图形的面积。(板题:组合图形的面积)。
二、互动新授。
l.谈话:在实际生活中,有许多图形都是由几个简单的图形组合而成的。出示教材第99页的各种图形。
这些组合图形里有哪些是学过的图形?同学们试着找一找。
小组合作,尝试找出情境图中的组合图形是哪些图形组成的,并交流汇报。
2.说一说:在生活中还有哪些地方有组合图形?请同学们说一说。
学生可能会想到:厨房里的三角架、房子的分布图、桌子等。
3.引导思考:关于组合图形,你还想研究它的什么知识?
4.出示教材第99页例4:一间房子侧面墙的形状图。
组织学生小组合作学习,说一说是怎样分的',然后再算一算。集体汇报。
三、巩固拓展。
1.完成教材第101页“练习二十二”第1题。
2.完成教材第101页“练习二十二”第2题。
3.完成教材第101页“练习二十二”第3题。
四、课堂小结。
师:这节课你学会了什么?有哪些收获?
板书设计:
由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。
5×5+5×2÷2(5+5+2)×(5÷2)÷2×2。
=25+5=12×2.5÷2×2。
=30(2)=30(2)。
教学反思:
六年级数学面积的变化教案篇九
教学目标:
1、使学生进一步掌握求平面组合图形面积的计算方法,并能合理地把平面组合图形转化为简单图形,再进行面积的计算。
2、培养学生分析、判断能力,并发挥学生的主体作用,积极探索解决新问题,培养学生的创新意识。
教学重点:进一步培养学生学会观察。
教学难点:进一步学会找隐蔽条件。
教学过程:
一、复习基本知识。
1、我们已学过哪些平面图形?(请生回答,并出示图形)。
2、请生回答这些平面图形的面积怎样计算?用字母公式表示。
3、基本练习:求各图形面积。(单位:厘米)开火车。
二、变化练习。
1、小组讨论:从刚才的简单图形中挑选两个图形组成一个新的图形,你会计算他们的面积吗?你们有几种情况?(让生拼一拼,摆一摆。)。
2、学生汇报:(边出示,边板书)。
(1)三角形面积+正方形面积列式:4×4÷2+4×4(图略)。
(2)正方形面积-角形面积列式:4×4-4×4÷2。
(3)半圆的面积+梯形面积列式:3.14×22÷2+(3+5)×4÷2。
(4)梯形面积-半圆的面积列式:(3+5)×4÷2-3.14×22÷2。
(5)长方形面积+半圆的面积列式:3.14×22÷2+4×2。
(6)长方形面积-半圆的面积列式:4×2-3.14×22÷2。
3、,并回答以下问题:
(1)由几个简单图形组成的图形叫做。
(2)在你拼摆的过程中,你发现图形的组合一般有几种情况?
(3)求组合图形的面积时,解答的步骤是什么?关键是什么?
三、强化练习。
1、如图:阴影部分平行四边行的面积是36平方厘米,求出三角形的面积。(单位:厘米)。
6(1)先让学生独立思考,然后再请生回答。
(2)你有几种解法?并在大屏幕出示。
9
2、求下列各个阴影部分的面积。(单位:厘米)。
(1)(2)。
6
6d=6。
a:先让学生做在自己的本子上。
b:并让学生说一说你是怎样解答的?
c:核对,并在大屏幕演示。
d::如果组合图形不能直接拆成几个简单图形,那该怎么办呢?
3、计算阴影部分的面积。(单位:厘米)(图略,书本第127页练一练2中的第3小题)。
先让学生思考,说一说应该怎么办?然后借助多媒体演示,请生列式。并说一说有几种方法。
4、:通过图形的平移、翻转,可以使它成为两个或两个以上的简单图形。
四、发散练习。
(5分钟内看谁做得最多,方法最巧妙)。
五、板书设计。
(1)三角形面积+正方形面积。
列式:4×4-4×4÷2。
(2)正方形面积-角形面积。
列式:4×4÷2+4×4。
(3)半圆的面积+梯形面积。
列式:(3+5)×4÷2-3.14×22÷2。
列式:3.14×22÷2+(3+5×4÷2。
(5)长方形面积+半圆的面积。
列式:3.14×22÷2+4×2。
(6)长方形面积-半圆的面积。
列式:4×2-3.14×22÷2。
六年级数学面积的变化教案篇十
本节课根据新课程的理念和要求,通过创设问题情境,小组合作交流,学法迁移等形式,让学生在动手、动口、动脑中主动探究圆面积公式推导的多种方法。并借助学生的想像,发展学生的空间观念。然后引导学生探究,得出圆面积的两种推导方法,旨在拓展学生的思维。在练习设计时,选用了一些联系生活实际的问题,在于培养学生解决实际问题的能力,使教学内容生活化。
一、创设情景,明确目标。
师:今天这节课,我们就来讨论怎样求圆的面积。
二、利用迁移,探究方法。
师:下面请同学们回忆一下,我们以前学过哪些平面图形的面积计算?(学生答师板书)。
师:它们的面积公式分别是怎样得到的?(学生答略)。
师:除了长方形用“面积单位”去量之外,其它几个图形面积推导方法有什么共同特点?
生:都是用转化的方法推导出来的。
师:今天我们要学习的圆形与以上几种图形有什么明显的区别?
生:圆形是由曲线围成的。
师:能不能也用“面积单位”去量呢?
生:不能。
师:那我们该用什么方法解决呢?
生:也可以用转化的方法,把圆转化成我们熟悉的图形。
师:那好,下面请同学们打开课本,看看书上是用什么方法得出圆面积公式的。
生(看书后),师指定一名学生借助教具介绍书上的推导方法,(师板书)从而得出圆面积的计算公式。
三、借助想像,感悟“极限”
师:同学们,你们听了他的介绍后,心里还有什么疑问吗?
生:这个拼成的图形好像真的是长方形吗?
生:既然形状是近似的,那这个图形的计算结果也是近似的。这里的计算公式也不能用等号表示了。
师:那我们得想个办法,把它变直,谁有办法?
生:等分的份数多一点?
师:究竟能分多少份?16份?32份?64份?
生:等分的份数越多,拼成的图形就越接近于长方形。
生:拼成的图形就真的变成长方形,因为边越来越直了。
四、小组合作,拓展思路。
(学生回答,师板书)。
师:下面,请你们每四人组成一小组,选择其中的一种,拿出事先等分好的圆片,一边讨论,一边操作,写出推导过程。如果你们不选择以上的方法,想出与众不同的方法更好。
上来汇报的小组派出两位代表,一位拿出拼好的图形在投影仪上介绍推导过程,另一位在黑板上写出推导过程。
师:谁还有与众不同的方法吗?
生:我们知道,如果把这个近似长方形无限等分下去,确实就是长方形,其中1份可以看作是三角形,只要算出这1份三角形的面积再乘以份数就是圆的面积了。
师:你真聪明,能不能以16等份为例写出推导过程呢?
(生写出推导过程)。
生:一个大三角形。
师:真棒,这个大三角形的底就是什么?高就是什么?
生:这个大三角形的底就是圆的周长,高就是圆的半径。
师:同学们真厉害,能不能写出推导过程呢?
(生写出推导过程)。
师:大家真了不起,竟然想出了那么多好办法。学习就应该这样,要敢于向书本挑战,要善于探究。
五、联系生活,应用知识。
师:现在你们会解决校门口花坛的草坪面积了吗?
生:条件不够,要知道半径是多少?
师:好,半径是5米。
学生计算,师提醒学生注意计算时r2不要算成2×r。
师:直径是10米行吗?(指名汇报)。
师:不管给你们什么条件,要求圆面积,只要先求出什么就可以了。
生:半径。
师出示深化题,学生练习。
2.半径是1米的圆,面积是3.14平方米,半径是2米的圆面积是多少平方米?
3.一个圆的直径和正方形的边长相等,圆和正方形哪个面积大?为什么?
六年级数学面积的变化教案篇十一
数学来源于生活,生活中处处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极性参与的有效方法。在第一环节中,教师就创设了“可比克”情景,要求商标纸的面积就是求圆柱的侧面积,如何求一个曲面的面积?导入新课。激发了学生求知的愿望。再有就是练习的设计,也是从生活实际出发,解决生活中求圆柱侧面积的问题(如,压路机前轮压过的.路面的面积大小;油漆圆柱状的柱子需要多少油漆?……)。
2、重视学习过程的实践性。
创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。本节课的第二环节让学生在动手操作中发现圆柱侧面展开的情形,在实践中推出圆柱的侧面积的计算,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
3、重视练习设计的层次性和多样性。
当学生推导出圆柱的侧面积公式后,先后设计了已知底面周长和高求侧面积、已知直径和高求侧面积及已知半径和高求侧面积的梯度练习,使学生的应用能力不断提高。在巩固阶段,我又设计了判断、填表等形式多样的练习,加深学生对本节课内容的理解。在解决生活实际问题中,处处从生活入手,紧密联系生活实际,增强学生的学习兴趣,提高学生解决实际问题的能力。
不足之处:
1.课前的导入,可以不用教具,用和学生一样的“可比克”,和学生更加贴近。
2.限制学生思维的发展。在让学生思考长方形的长与宽和圆柱的关系时,可让学生充分思考,在这里我让学生很明显可以感受到教师的暗示,让他们要注意研究的方向。束缚了学生的思维。对于学生思维的训练教师要有长远的培养计划。
六年级数学面积的变化教案篇十二
出示例题。
出示例3:算出下面长方形的面积和周长各是多少。
学生试做,指名板演。评析板演情况。
2、比较整理。
学生回答后板书:
概念计算方法计量单位。
(2)分组讨论:周长和面积在概念、计算方法、计量单位上有些什么不同?并完成下表。
投影展示各组填写的表?并指名说一说长方形和正方形的周长、面积有哪些不同。
(3)学生看表回答:
为什么计算长方形的周长用(长+宽)×2,
计算长方形面积用“长×宽”?
正方形的周长、面积方法分别与长方形的周长、面积计算方法有什么关系?
三、练习中深化比较。
1、出示:一张长30厘米、宽5厘米的长方形纸。
(1)指名回答:
根据学生的回答,板书解答过程。
(2)&n。
[1][2]。
六年级数学面积的变化教案篇十三
(1)用一张长2.5米,宽1.5米的铁皮做一个圆柱形烟筒,这个烟筒的侧面积是多少?(接口处忽略不计)。
(2)一个圆柱形无盖的水桶,底面的直径是60厘米,高是40厘米,做这样一个水桶,需要多少平方分米的铁皮?(得数保留整数)。
(7)一个圆柱的侧面积是12.56平方米,底面半径是4分米,它的高是多少分米?
(8)一个圆柱高9分米,侧面积226.08平方分米,它的底面积是多少平方分米?
(10)做5节底面直径是2分米,长8分米的圆柱形通风管,至少需要多少铁皮?
【本文地址:http://www.xuefen.com.cn/zuowen/18920571.html】