编写教案要灵活运用不同的教学方法和手段,激发学生的学习兴趣和积极性。教案的设计要注意启发学生的学习兴趣,让他们愿意参与到学习中来。以下是小编为大家收集的教案范文,仅供参考,希望能给大家带来一些启发和启示。
解应用题的教案设计篇一
使学生初步认识什么叫做应用题的条件和问题,初步学会解答一半用图画一半用文字叙述的应用题,为正式学习解答文字叙述的应用题做准备,图文应用题。
主体图和小棒。
1.口算。
9+3=9-4=19-9=9+6=9+8=9-9=10-9=9+9=。
2.9+7,请你说一说你是怎样算的?
3.完成课本102页的第2题。
让学生独立完成,全班填在书上。
1.出示课本101页的例3的主体图。
(1)提问:图中告诉我们有什么?(乐队有5人)又告诉我们什么?(唱歌的有9人)要我们求什么?(一共有多少人?)。
教师:这道题里不论是用图画表示,还是用文字写出来,都把它叫做已知条件。题目中要我们求什么叫做问题。
提问:这道题的第一个已知条件是什么?第二个已知条件是什么?问题是什么?
教师:我们现在已学过的题目,一般都有两个已知条件和一个问题。请大家同桌的互相说一说题目中的两个条件和问题。
(2)要求一共有多少人,用什么方法计算?怎样列式?为什么?(因为是把唱歌的人和乐队合并起来,所以用加法计算,小学数学教案《图文应用题》。)。
列式:9+5。
教师:我们今天学的这种一半用文字表示的应用题叫图文应用题。(板书课题)。
小结:我们以后做这样的应用题时,都要首先看清楚题中告诉我们已知条件,问题是什么。然后再根据已知条件和问题,想一想用什么方法计算。并列出算式来。
(3)9+5怎样计算呢?
请同桌的同学用摆小圆片的方法,讨论9+5怎样计算。
9+5=14(人)。
教师:在14后面写有“(人)”,这“(人)”是单位名称,应用题解答完后都要在得数后面写上单位名称。
2.完成课本101页的做一做。
出示主体图。
用自己的语言叙述一下画面的内容。
要求“一共有多少个南瓜。”图中告诉我们什么条件?
(原来有9个,小朋友拿来6个南瓜。)。
请大家把这道题的两个条件和问题连起来说一说。
想一想,要求“一共有多少个南瓜。”该怎样列式。
列式:9+6=15(个)。
2.完成课本102页的第3题。独立完成后,全班讲评。
汇报:相同点:都有2个已知条件和1个问题,都是根据加法的含义列式计算的。即把两个数合并在一起,求一共是多少,用加法计算。
不同点:图画应用题的已知条件和问题都是用图画表示的,比较简单。有图有文字的应用题,是用图和文字来表示已知条件和问题,比图画应用题难一些。
解应用题的教案设计篇二
教学目标:
1.会分析简单实际问题中的数量关系,会用方程解决实际问题。
2.经历解决实际问题的过程,体验数学与日常生活密切关系,提高收集信息,处理信息和建立模型的能力。
3.能够熟练解决相遇问题的应用题。
教学重点:列方程解决相遇问题中求相遇时间的问题。
教学难点:找出相遇问题的等量关系。
教学过程:
一、创设情境。
师:路程、速度、时间这三个量之间有什么关系?
师:他回答得真不错,咱们掌声鼓励。老师也鼓掌(不碰上)问:怎么没声音呀?
师边作手势边叙述:两手碰在一起在数学中称为“相遇”。
师:两个掌心怎样放着?(面对面)。
师:“面对面”在数学上称为“相对”或“相向”。(板书:相对(向))。
师:两只手掌是怎样运动的?(从两个地方同时相对而行)(板书:两地、同时)。
师:两只手掌同时相对而行,相遇就发出响声。这节课,我们一起来探究有关相遇的问题。(板书课题:相遇)。
师:我们再慢慢鼓掌体会一下。两只手掌相遇这种现象我们在日常生活中经常可以见到。
二、探究新知。
出示路线图:张叔叔要给王阿姨送一份材料,他们约定两人同时坐车出发。遗址公园距天桥50千米。王阿姨的面包车每小时走40千米,张叔叔的小轿车每小时走60千米。
活动一:估计两人在哪个地方相遇。
师:现在请同学们看屏幕,张叔叔、王阿姨是怎样走的?结果会怎样?
媒体演示:屏幕显示张叔叔所在的天桥和王阿姨所在的遗址公园媒体不断地闪烁,当发出一声悦耳的响声后,张叔叔、王阿姨分别从两地同时出发,相对而行,经过0.5小时后两人相遇,这时又发出一声悦耳的响声,张叔叔走的路程用蓝色表示,王阿姨走过程的路程用红色表示,屏幕底色是浅黄色,色彩清晰艳丽。
师:几个人共同走完全程?。
师:出发时间怎样?从哪里出发?出发后方向怎样?结果怎样?(时间:同时;地点:两地;方向:相向(相对);结果:相遇。)。
师:谁来说一说他们会在哪个地方相遇?并说出你的依据。(会在李村附近。因为王叔叔速度快,所以走的路程要远一些。)。
师:因为他们的速度不同。在时间相同的情况下,速度快的走的路程长一些。所以王叔叔走的路程要多一些。所以,看图可知,相遇地在李村附近(师标上二人相遇地点)。
活动二:思考并解决“出发后几时相遇?”问题。
1、组织学生讨论:如果我们用线段图将相遇问题的过程表示出来,应该怎样画?
2、师:你能从中找出等量关系吗?
(小轿车行驶的路程+面包车行驶的路程=总路程)。
3、师:依据这个等量关系列方程解答。
4、还有其它等量关系吗?怎样解答?(小组讨论)。
活动三:解决“相遇地点离遗址公园的路程是多少千米?”问题。
答:相遇地点离遗址公园的路程是20千米。
2、你还能提出什么问题?
(相遇地点离遗址公园的路程是多少千米?)。
总结:我们用方程的.方法解决了相遇问题中求相遇时间的问题,生活中还有许多类似相遇问题的情况。
三、扩展练习。
四、课堂总结。
同学们,通过这节课的学习你们学到了什么?
教学反思:
1、从生活实际入手,引导学生将生活问题转化成数学问题,能自主地分析并尝试解决问题,本着“从生活入手——抽象成数学问题——尝试解决方案——应用生成的知识解决更多问题”的思路展开教学,有利于培养学生从生活中发现数学问题并尝试分析解决实际问题的能力。
2、教学中较为充分地发挥学生的自主性,教师创设问题情景,让学生在观察、思考中明确问题的产生,经历尝试解决问题的探究过程,从而获得到成功的体验。尤其是在得到用列方程方法解决相遇问题的最初步骤,我利用了学生的演示作用,整个过程在教师的“主导”下,充分发挥了学生自我思考、探索、思辩的作用,将学生的主动性发挥的淋漓尽致。
另外本节课的教学,我想为我们的应用题教学提供一个思考的空间:怎样才能让我们的应用题教学充分与学生生活实践相联系,达到引导学生自主探索解决生活问题,进而培养学生学习解决实际问题的能力。
解应用题的教案设计篇三
应用题教学是培养学生分析问题和解决问题的一个非常重要的手段。但应用题阅读量大、建模难度高,学生往往无从下手。在教学中,我发现教师教的吃力,学生学的也很吃力,很多学生看见应用题就有一种说不出的恐惧感。于是在列分式方程解应用题的教学中,我试着运用表格分析法来进行应用题的教学,让学生有章可循,并取得了很好的效果。
一、教学案例展示。
分析:题中涉及工作量、工作效率、工作时间三量关系,甲、乙两种状态。根据题意,设乙每分钟能输入x名学生的成绩,则甲每分钟能输入2x名学生的成绩,用表格分析问题。
步骤一:列出表格。
步骤二:依次填写表格信息。
解应用题的教案设计篇四
教学内容:用字母代表未知数,列出符合题中条件的等式,解方程(例3,课本第159―160页,练习二十四)。
教学目的:通过复习使学生能教熟练地用字母代表未知数,列出符合题中条件的等式;列方程解应用题。从而培养学生抽象思维的能力和分析问题、解决问题的能力。
解应用题的教案设计篇五
一﹑扎实抓好应用题基础训练的教学,提高学生解答应用题的能力。
应用题基础训练是学习应用题的基础,只有认真扎实抓好应用题的基础训练的教学,才能培养学生良好的解答应用题的能力。王老师的这节课就非常注重这方面的教学,从复习题的“求一个数的几分之几的数是多少”的训练,再到例2让学生动手画线段图,说数量关系式,列式解答,再到巩固练习时第一题找标准题,比较量,并说出求比较题的数量关系式,第二题的看图列式题,都是应用题的基础训练,教师整一节课都在围绕着应用题的基础训练进行。从这节课的教学效果可以看到,只有像王老师那样,扎实抓好应用题基础训练的教学,才能提高学生解答应用题的能力。
二、强化学生对应用题说的能力的训练,促其内化,收到良好的效果。
多种形式训练学生说解题思路,使学生充分内化为自己的思想,达到以说促学的良好效果。从这节课学生说解题思路说得非常好,我们也可以看出王老师平时的课堂教学非常注重学生口头表达能力的培养。如果王老师能把数量关系用文字的形式写出来就最好了。
解应用题的教案设计篇六
方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。下面是列方程解应用题大全,请参考!
类型一(简单的一步方程)。
4、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。其中六二班收集了60个,六二班共有4个小组,平均每个小组收集多少个?(用除法)。
类型二(几倍多多少/少多少):
1、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
2、吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?
类型三(买东西和卖东西):
1、小明有面值2角和5角的共9元,其中2角的有10张,5角的有多少张?
类型四(和倍问题/差倍问题):
1、粮店运来大米和面粉480包,大米的包数是面粉的3倍,运来大米和面粉各多少包?
2、小强妈妈的年龄是小强的4倍,小强比妈妈小27岁,他们两人的年龄各是多少?
类型五(相遇问题、追及问题、鸡兔同笼)。
类型六(和差问题):
1、甲乙两人年龄的和为29岁,已知甲比乙小3岁,甲、乙两人各多少岁?
2、两个相邻自然数的和是97,这两个自然分别是多少?
3、两个连续自然数的和是153,这两个数分别是多少?
解应用题的教案设计篇七
_四年级数学教研组集体备课教学案例。
知识目标:
2、应用加法的运算定律,使一些小数计算简便.。
能力目标:
培养学生的抽象概括能力、迁移类推的能力.。
情感目标:
使学生感悟到数学源于生活,与生活的紧密联系。
教材分析:
教法:知识的迁移、对比法、尝试法等。
教学案例设计:
《小数的加法和减法》。
教学目标:
1.理解小数加减法的'意义,并掌握计算法则.。
2.运用法则和运算定律使学生能够比较熟练地笔算小数加、减法.。
3.培养学生的抽象概括能力,迁移类推能力.。
教学重点:
小数加、减法的意义和计算法则.。
教学难点:
理解“小数点对齐”的道理.。
教学步骤:
一、引子:
笔算:少先队员采集中草药,第一小队采集了3735克,第二小队来集了4075克.两个小队一共采集了多少克?(投影片1)。
读题,用竖式解答.(一人板演,其他人在本上做)。
说一说:整数加、减法的意义和计算法则.。
二、探究新知。
教学例1:(演示课件“小数的加、减法”)下载。
(一)小数加法的意义。
(1)教师提问:怎样列式?
(2)小组讨论:例1与复习题比较有什么相同的地方?有什么不同的地方?
(3)引导学生比较后说出:要把两个小队采集的千克数合并起来,所以要用加法计算.列式为3.735+4.075(板书)。
教师提示:小数加法的意义与整数加法的意义相同,也是把两个数合并成一个数的运算.(板书:小数加法的意义)。
(二)探究小数的计算法则。
小数加法又该怎样计算呢?(板书:计算)。
例1、3.735+4.075。
(1)结合整数的计算法则,先试述自己的思路,大家讨论。
(2)通过列式的过程理解小数加法的意义和证书加法的意义一样。
(3)学生试算3.735+4.075(一人板演,其他人在本上做)。
(4)教师提问:得数7.810末尾的“0”怎样处理?
引导学生说一说,用坚式计算3.735+4.075时,先做什么,再做什么,最后做什么?(有没有什么小技巧――小数点对齐,就是数位对齐)。
例2、计算12、03+0、875。
(1)大家商讨。
(2)试算,二个人在黑板上板书,老师也板书12、03。
+0、875。
(3)大家发表意见,总结小数的计算法则及计算技巧(小数点对齐、小数点对齐有什么意义?)。
(由整数加法类推学习小数加法,由直观到抽象,学生易理解、易掌握.再由迁移法对小数减法进行推导)。
2.教学例2:
出示例3(继续演示课件“小数的加、减法”)下载,
(1)引导学生观察比较:例2的条件和问题与例1比较有什么变化?
(2)通过列式,引导学生理解小数减法的意义和整数减法的意义一样。
(3)直接引导学生进行试算,二人板书,教师板书(错误的)。
(2)观察、总结小数减法的意义和计算法则,强调出小数点对齐的重要。
(3)延伸思考:教师提问:咱们把千克数改写成克数。
大家讨论,发表意见。
学生尝试:(一人板演,其他人在本上做),教师巡视指导.。
三、课堂练习:
1、个人班级aa制比赛(书写漂亮、计算正确)。
反馈练习:7.81-4.0750.4-0.375(一人板演,其他人在本上做.)。
练习:教材第113页上面的“做一做”的题目。
计算下面两题,并且验算.。
12.16+5.3470.4-0.125。
2、小组合作探究――教学例3。
2、出示例36.08+12.3+9.72=。
小组讨论:应该怎样计算?
3、每个小组推出一名学生板书。
4、集体订正。
3、计算器速算赛。
先发表如何使用计算器进行小数的加减计算。
速算赛:每人手拿计算器,老师和学生一起计算,老师一边说数,一边和学生一起输入计算,老师说答案,对的学生马上起立,再算再起立,如此反复。
四、全课小结。
这节课我们学了什么?谁能说到点子上?这节课你要嘱咐大家要注意什么?
五、布置作业(探究活动)。
《小管家》。
活动目的。
1.通过让学生小组活动,培养学生的交流、合作意识.
2.通过让学生记录家里一周的开支,使学生进一步熟悉用小数表示钱数的方法,巩固小数加减法计算.
3.通过让学生记录家里一周的开支,使学生进一步体会数学与现实生活的密切联系,了解数学在日常家庭生活中的应用,并从小养成勤俭节约的习惯.
活动准备。
结合自己家里,设计一个家庭一周开支记录.。
××家庭一周开支记录。
×年×月-----×月×日。
周一。
周二。
周三。
周四。
周五。
周六。
周日。
总计。
项目。
金额。
项目。
金额。
项目。
金额。
项目。
金额。
项目。
金额。
项目。
金额。
项目。
金额。
-----。
-----。
-----。
-----。
-----。
-----。
-----。
-----。
-----。
小计。
小计。
小计。
小计。
小计。
小计。
解应用题的教案设计篇八
执教人:上海市兴陇中学李炯。
教学目标:利用代数与几何图形相结合的思想列方程解应用题;并创设情景解决生活中的数学问题。
重点难点:知识的综合灵活应用。
情感目标:激发学生创新思维,培养学生解决问题的能力。
教学过程:
(一)复习:
(二)正课:
本节课我们将研究一下如何用列方程的思想方法解决与几何知识有关的应用题。
将本文的word文档下载到电脑,方便收藏和打印。
解应用题的教案设计篇九
行1小时的路程即是问题。
师:讲得太好了,请大家用图表示题意,想想还有其他解法吗?(给学生思考、讨论的时间)。
生:69*2+75*(2+1)。
师:你是怎么想的?
生:我是根据问题想的。这段铁路只有甲乙两车行驶,分别求出甲乙两车行驶。
的路程合起来就是这段铁路的长度。(学生边讲边用手指着图说明自己的思路)。
学生的回答让我大吃一惊,原来学生竟有这样清晰的思路和如此活跃的思维。课后我反思整个教学过程,我认为这节课教学的成功之处有以下两方面:
1、学生思维活跃,解题方法“多样化”:《数学课程标准》的教学建议中指出:
“教师应鼓励学生对同一个问题积极寻求多种不同的思路,而不是以教科书上的或教师事先欲设的答案作为评价的依据”。《数学课程标准》中,将“在解决问题的过程中发展探索与创新精神,体验解决问题策略的多样性”列为发展性目标。我采用了如下的方法实现这一目标,这节课学生一共提出了3种解题方法,我从学生的需要出发及时调整了教案,让每一个想发言的学生都能表达自己的想法,尽管他们有些数学语言的运用还不太准确,但我还是给与了肯定与鼓励。在这种宽松的氛围下,学生有了运用知识解决简单问题的成功体验,增强了学好数学的信心,并产生进一步学好数学的愿望。师生关系也变得和谐、融洽了,课堂气氛活跃了。
2.师生角色的转变:数学教学改革,决不仅仅是教材教法的改革,同时也包括师生关系的变革。在课堂教学当中,要努力改变单纯的教师讲、学生听的“注入式”教学模式,教师应成为学生学习数学的引导者、组织者和合作者,学生成为学习的主人。纵观整个教学过程,我所说的话并不多,除了“你是怎么想的?”“还有其他的方法吗?”“说说看”等激励和引导以外,我没有任何过多的讲解,有学生讲不清楚,我也是用商量的口吻说:“谁愿意帮他讲清楚?”当一次讲不明白,需要再讲一遍时,我也只是用手势指导学生看图,引导学生在自己观察与思考的基础上明白了算理。学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于我在课堂上为学生提供了施展才华的舞台,因此学生积极思考、大胆发言、极力展示自己的发现,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。在整个教学过程中,学生的学习能力、创新能力和探究能力都得到了发展。
解应用题的教案设计篇十
1.巩固分数连除应用题的分析方法,掌握此类题的结构及数量关系。
2.进一步提高学生的分析概括能力及解题能力。
教学重点。
找准单位“1”,巩固分数除法应用题的解答方法。
教学难点。
掌握分数连除应用题的结构及数量关系。
教学过程。
(一)复习。
(投影)。
1.找准单位“1”,并列式解答。
2.出示准备题。
(1)读题,请学生找出已知条件和未知条件。
(3)老师指导学生画图。老师先画一条线段表示美术组人数后提问:谁和美术组比?怎么画?(生物组和美术组比,可以画在美术组上面。)谁和生物组比?(航模组和生物组比,应画在最上面。)。
提问:美术组,生物组,航模组三个数量之间有什么关系。
(4)请一名同学列式解答,然后订正。
(二)讲授新课。
老师把准备题进行改编。
指名读题,找出已知条件和未知条件。
1.指导学生画图。
提问:这道题中有哪几个量?需用几条线段来表示?(有三个量,用三条线段表示。)。
提问:和准备题比,已知条件和未知条件发生了什么变化?(给了航模组人数,求美术组人数。)。
老师按学生的回答,把准备题的图示进行修改。
2.找出含有分率的句子,进行分析。
(3)这道题中有几个单位“1”?美术组、生物组、航模组三量之间有什么关系?
(4)根据三量之间的关系,列出等量关系式。
(5)这个式子的等号两边相等吗?为什么?
人。)。
学生回答,老师板书:
3.根据等量关系列方程解答。
提问:根据上面的分析,应设谁为x?(设美术组人数为x。)。
老师板书:
解设美术组有x人。
答:美术组有30人。
看方程提问:
(3)为什么要设美术组人数为x?
(因为只有知道美术组的人数,才能求出生物组的人数。航模组又和生物组比,所以设美术组为x人。)。
师小结:对于含有两个“已知一个数的几分之几是多少,求这个数”这样条件的复合应用题,首先要找准单位“1”,在两个单位“1”都是未知的情况下,根据题中条件,准确设定其中一个单位1的量为x。
(三)巩固练习。
(投影)。
先讨论以下问题,再动笔做:找出单位“1”,画图并分析数量关系。
2.看图,找出数量间相等的关系,并列方程解答:
(1)说出这个图所反映的等量关系式。
(2)师小结:这道题出现了“小汽车是大汽车的4倍”,而不是几分之几,但它们的数量关系不变,解题思路也一样。
师:这道题和前两题比,前两题是不同数量相比较,这一道题是同一数量相比较,我们可以画单线图分析数量关系。(老师指导画图。)。
三好生4人。
学生动笔做,老师带领学生订正。
的高是多少厘米?
根据题意填空:
是()厘米。设()为x。
果树有多棵?
(四)课堂总结。
今天我们学习的应用题有什么特点?(今天学习的是由过去学过的两道分数除法应用题组成的复合题。)。
这类题分析解答时应注意什么?(弄清有哪三个量,它们之间什么关系?找出等量关系,确定设哪个量为x,再列方程解答。)。
(五)布置作业。
(略)。
课堂教学设计说明。
本节课讲的是分数连除应用题,是连续求一个数的几分之几是多少的逆解题,所以本课由分数连乘应用题引入,通过改变已知条件和未知条件,使之转变成一道分数连除应用题,为帮助学生理清数量关系,抓住新旧知识的共同因素,列方程解应用题打下了基础。本教案还重视分析思路的训练,通过设计提问和画线段图分析数量关系,为学生自己解题奠定了基础。在练习的设计中,采用不同形式,由扶到放,不但一步步强化了学生的分析思路,也进一步培养了学生逻辑思维能力。
解应用题的教案设计篇十一
[分析]出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇。
解:30÷(6+4)。
=30÷10。
=3(小时)。
答:3小时后两人相遇。
〔分析〕甲的速度为乙的2倍,因此,乙走了4小时的路,甲只要2小时就可以了,这样就可以求出甲的速度。
解:甲的速度为:100÷(4-1+4÷2)。
=100÷5=20(千米/小时)。
乙的速度为:20÷2=10(千米/小时)。
答:甲的速度为20千米/小时,乙的速度为10千米/小时。
延伸阅读:
基本数量关系应用题:
【练习巩固】。
针对练习:
提高题:
解应用题的教案设计篇十二
教学目标:使学生进一步认识乘加、乘减两步应用题的结构,学会列式解答乘加、乘减应用题。
教学过程设计:
一、
1.根据问题选择算式并连线。
妈妈买了29个果冻,第一天吃了7个,第二天吃了15个。
(1)两天吃了多少个果冻?(1)29—7—15。
(2)还剩多少个果冻?(2)15—7。
(3)第一天比第二天少吃多少个?(3)7+15。
2.根据算式补问题。
学校买来38个排球,分给二年级5个班,每班分7个。
7x5=35(个)________________________。
二、练习。
1.教科书第10页的第2题。
想一想题目的已知条件和问题是什么?要求还剩多少个萝卜,我们必须知道什么条件?(一共种了多少个萝卜和送了多少个给兔奶奶)那我们第一步先求什么?(一共种了多少个萝卜?)接着再求什么?(还剩多少个萝卜)。
列式:9x5-15。
提问:9x5表示什么?再减15又表示什么?
2.教科书第1l页的第3题.
分四人一小组进行讨论,然后由小组长汇报本小组讨论的结果。
3.教科书第11页的第4题。
教师:球队的得分分主场分和客场分两种。本题可让学生分小组合作讨论,然后再汇报讨论结果。
队的主场得分是卡塔尔队主场得分的4倍,卡塔尔主场得分是3分,所以队主场得分是3x4=12。队的客场得分是7分。队的总分是19分。
阿联酋队的主场得分是3分,客场得分是8分。阿联酋队的总分是11分。
乌兹别克斯坦队的主场得分是阿联酋队主场得分的3倍,阿联酋队的主场得分是3分,所以乌兹别克斯坦队的主场得分是3x3=9,客场得分是1分。乌兹别克斯坦队的总分是10分。
卡塔尔队主场得分是3分,是本队客场得分的2倍,客场得分是3x2=6。卡塔尔队的总分是9分。
阿曼队主场得分是5分,客场得分与乌兹别克斯坦队的客场得分相同。阿曼队的总分是6分。
3.妈妈买来26个桔子,吃了几个,剩下的每5个放一盘,放了4盘。问吃了几个桔子?
4.游乐场有7辆小赛车,每车能坐4人,还有21人在排队等候,现在一共有多少人?
5.快餐店运来56个汉堡包,卖出37个,又运进21个,现在快餐店有汉堡包多少个?
6.4个工人叔叔每人要做7个卡通玩具,已经做了19个,还要做多少个?
7.商店里有30个书包,上午卖出13个,下午又卖8个,还剩下多少个?
解应用题的教案设计篇十三
2.学会用一个数乘分数的意义解答两步分数乘法应用题.。
教学重点。
1.掌握两步分数应用题的解题思路和方法.。
教学难点。
分析两次单位“1”的不同之处.。
教学过程。
一、复习、质疑、引新。
(一)指出下面分率句中的单位“1”.。
1.乙是甲的。
2.小红的身高是小明的。
3.参加合唱队的同学占全班同学的。
4.乙的相当于甲。
5.1个篮球的价钱是一个排球价钱的倍。
(二)口头分析并列式解答。
1.小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?
2.小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?
二、探索、悟理。
(一)出示组编的例题。
1.思考讨论。
(1)小华储蓄的钱是小亮的,是什么意思?谁是单位“1”?
(2)小新储蓄的是小华的,又是什么意思?谁是单位“1”?
2.汇报思路讲方法。
由此基础上试列综合算式:
(二)巩固练习。
小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?
1.分析数量关系,独立画图并列式解答.。
2.学生板演.。
(张)。
(张)。
答:小明有40张.。
3.综合算式。
三、归纳、明理。
用连乘解答的题有什么特点?”“解题思路是什么?”
1.认真读题弄清条件和问题。
2.确定单位“1”找准数量关系。
根据分数乘法的意义,找准“量”、“率”对应关系,即谁是谁的几分之几.。
3.列式解答。
板书:抓住分率句,找准单位“1”,
画图来分析,列式不用急.。
四、训练、深化。
(一)联想练习根据下面的每句话,你能想到什么?
1.苹果的个数是梨的.(如,梨是单位“1”;苹果少,梨多;苹果比梨少等)。
2.修了全长的。
3.现在的售价比原来降低了。
(二)先口头分析数量关系,再列式解答.。
1.鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?
(三)提高题.。
五、课后作业。
六、板书设计。
解应用题的教案设计篇十四
教学目标:
使学生进一步明确列方程解应用题的关键。
沟通与算术方法解的联系与区别,排除知识间的干拢,进一步提高学生解决简单实际问题的能力。
教学过程:
想一想:列方程解应用题的关键是什么?(找准题中的等量关系,或者说找出数量间相等的关系。)。
根据例子找出数量间相等的关系。
例:“篮球比足球多5个”。数量是相等的关系是:足球的个数+5=篮球的个数。
练习:
基本练习..
学生独立解答例3。然后说主自己的分析解题思路,最后理清下面问题。
从题目的本身和解答方法进行比较看,两道题基本数量关系是什么?
客车和货车每时共行的距离×时间=甲乙两站间铁路长。
在什么情况下用算术方法解答较简便?在什么情况下列方程解比较简便?
总结:第(1)题是已知两车速度与时间,求路程,直接改用算术方法(乘法)解答很方便。第(2)题是已知两车速度与路程,求时间,可根据第(1)题中的等量关系列出方程式--60x+55x=460或者(60+55)x=460较为方便。如果用算术方法解则需逆向思考。第3题也说明了这个道理。
小段练习:
说说下面各题用什么方法解答较简便?为什么?
巩固练习。
完成教材109页第1题。
学校图书室有文艺书2280本。比科技书本数的3倍还多48本,科技书有多少本?设科技书有x本,选择下面正确的方程。
3x-48=2280。
3x+48=2280。
2280+3x=48。
完成教材109页2题、3题。
全课总结(略)。
解应用题的教案设计篇十五
(2010至2011上学期)。
六年级数学学科教师:高春枝。
学习。
内容分数乘法一步应用题。
学习。
目
标1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。
重难。
点及。
突破。
措施教学重点:理解题中的单位“1”和问题的关系。
教学难点:抓住知识关键,正确、灵活判断单位“1”。
课前。
准备。
导学案设计个性化设计。
预
习
学
案1、先说下列各算式表示的意义,再口算出得数。
12××。
2、列式计算。
(1)20的是多少?(2)6的是多少?
3、由以上练习,你能得出什么结论?
自
主
乐
学
合
作
交
流1、小组合作学习例1。
(1)抓住关键句“我国人均耕地面积仅占世界人均耕地面积的”,结合线段图理解题意,找到解题思路。
(2)在小组内讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的是多少)。
(3)在分析题意的基础上,独立列式、计算。
2500×=1000(平方米)。
2、结合计算结果,说说自己的想法,培养学生分析数据的能力,进行国情教育。
3、(1)巩固练习:“做一做”,独立画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。
(2)练习四第2题:先找出单位“1”--全世界的丹顶鹤数只。
(3)练习四第3题:先找到单位“1”,再独立列式解答。
4、讨论小结:解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?
检
测
反
馈
课
外
拓
展作业:练习四第4、7、8、9题。
教
学
反
思
审核人:
解应用题的教案设计篇十六
一、看图填算式。
(1)上图有组和()组。
可列乘加算式:()×()+()=()。
(2)上图有()组再填上()个就可。
以凑成再加上原来的()组后,
凑成()组。由于开始我们凑上了一个。
所以最后还要减去一个。
可列乘减算式:()×()-()=()。
二、改写算式。
()×()+()=()。
4+4+4+2=()。
()×()-()=()。
()×()+()=()。
5+5+5+3=()。
()×()-()=()。
三、有多少个球?你能分别列一道乘加、乘减算式吗?
()×()+()=()。
()×()-()=()。
解应用题的教案设计篇十七
内容:
课本p102页3t,练习二十四10t,11t,12t.
目标:
2.培养学生的问题意识,提高学生分析问题和解决问题能力。
重点:。
掌握解题思路。
难点:
认真审题,细心解答的习惯。
教法:
讲解法,归纳法。
学法:。
自主探究法,练习法。
教具:
课件。
过程:
一.揭示课题,板书课题。
二.出示目标,师生共同理解。
三.自主探究。
内容:
课本p102页。
时间:
5分钟。
方法:
独立思考。
要求:
1.这张情境图给我们提供了哪些信息?
2.根据搜集的信息和问题引导学生把下面的应用题补充完整,并解答。
(1).——————————,—————————,小东摘了多少个?
(2).——————————,—————————,小丽摘了多少个?
汇报交流:
条件:1.小明摘了5个西红柿。
2.小丽摘得是小明的'3倍。
3.小东摘的比小明多8个。
问题:1.小东摘了多少个?
2.小丽摘了多少个?
指名回答:根据学生的回答,教师把应用题补充完整。
1.小明摘了5个西红柿,小东摘得比小明多8个,小东摘了多少个?
5+8=13(个)。
答:小东摘了13个。
2小明摘了5个西红柿,小丽摘的是小明的3倍,小丽摘了多少个?
5ⅹ3=15(个)。
答:小丽摘了15个。
拓展应用:
根据刚才的计算结果,你还能提出什么问题,如何解答?
思考交流,指名回答:
1.小东摘的比小李多多少个?
2.小丽摘的比小东少多少个?
3.小东和小丽一共摘多少个?
四.全课归纳。
这节课我们学习了根据问题补充条件并解答,又学习了根据条件提问题并解答,及拓展为根据算式编应用题。
五.当堂检测。
课本p107页,10t,11t,12t.
解应用题的教案设计篇十八
教学内容:课本第9页例4,练习三1~5题。
教学目的:使学生掌握分数加、减、乘混合在一起的算法。提高计算的熟练程度。
教学重点:
教学难点:
教学过程:
一、复习。
1.分数乘以整数的意义?
2.一个数乘以分数的意义?
3.分数乘法的计算法则及其计算方法。
5.计算。
5×6+7×315×(34-29)。
二、新授。
问:最后两题的运算顺序怎样。
(第一题先算乘法,再算加法;第二题先算括号,再算乘法)。
说明:如果我们将那两道题的整数改为分数,它们的运算顺序也是不变的。按照同样的方法算一算下面的题目。
出示例6。
问:这两道题的运算顺序是怎样的?(学生回答后独立完成。让两名学生到黑板上做。)。
板书:
三、巩固练习。
1.课本12页做一做。
2.练习三1~5题。
教学反馈:
解应用题的教案设计篇十九
教学内容:教科书例1及“做一做”练习一第1、2题。
一、素质教育目标。
(一)知识教学点。
1.初步掌握括号内含有两步计算式题的运算顺序。
2.能够计算较复杂的三步式题。
(二)能力训练点。
培养学生类推能力及计算能力。
(三)德育渗透点。
教育学生计算和做事要仔细认真。’。
(四)美育渗透点。
使学生感悟到数学知识内在联系的美,提高审美意识。
二、学法引导。
指导学生运用已有经验,合作学习,探索新知。
三、重点、难点。
1.教学重点:理解小括号内含有两级运算的三步运算式题的运算顺序。
2.教学难点:准确计算三步运算式题。
四、教具学具准备。
卡片、课件。
五、教学步骤。
(一)铺垫孕伏。
1.练习:(卡片)。
30+30÷342×380÷16+2。
12×5—60÷28×5×10120÷4×5。
订正并强调:一个算式里,如果有加减法,又有乘除法,要先算乘除,后算加减;含有括号的算式,要先算括号里面的运算。
3,计算:
32+540÷18100—(32+30)。
同桌互说运算顺序,并口算出结果。
(二)探究新知。
1.引入新课:
观察刚才的两道题,能不能把这两道题合并成一道式题呢?(教师边提问边用色笔在30和540÷18下面画上线。)。
学生组题,老师板书:100—(32+540÷18)。
指出这就是我们今天要研究的混合运算的`例题1。
板书课题:混合运算例1。
(抓住新旧知识的联系,运用知识迁移类推,学会知识。)。
2.对照例1与复习题,讨论:例1与以前我们学习过的混合运算题有什么不同?
引导学生通过观察,讨论得出结论:例1的小括号内含有两级运算。
3,学生自己直接试做例题,做完后同桌对照,并互相订正。
4.指名学生汇报自己的计算过程,形成板书:
例1100—(32+540÷18)。
=100—(32+30)。
=100—62。
=38。
5.讨论:括号内含有两级运算的式题,计算时应注意什么?
引导学生讨论汇报,进一步明确:
(学生合作学习,讨论、交流,学会学习方法。)。
6.教师指出:像这样的题目,计算时可以把括号内的两步计算省略一步,直接写出括号内的计算结果即可。教师在“100—(32+30)”外围画上虚框,表示计算时可以省略。
7.反馈练习:第1页“做一做”。
同桌同学每人选一题,先用铅笔在第一步运算的算式下画横线,再与同桌互相说一下每道题先算什么,再算什么,最后算什么,然后计算。集体订正。
(三)巩固发展。
1.完成练习一第2题。(板演订正)。
2.判断。
通过订正,强调:在计算时,除要注意运算顺序外,还要注意计算的准确性。
3.变式练习:
(通过变式练习,使同学们进一步强化三步式题的运算顺序,并体会括号具有改变运算顺序的作用。)。
(四)课堂小结。
引导学生总结本节课学习了什么?注意什么问题?
六、布置作业。
练习一第1题,左右两组中任选一组,课堂内完成。
七、板书设计。
两步计算的应用题(连乘应用题)。
【本文地址:http://www.xuefen.com.cn/zuowen/18602406.html】