六年级数学教案比的化简(实用19篇)

格式:DOC 上传日期:2023-12-09 14:35:12
六年级数学教案比的化简(实用19篇)
时间:2023-12-09 14:35:12     小编:笔砚

教案是教学的重要组成部分,它能够指导教师进行教学设计与实施。教案的编写不仅要考虑教学内容的传授,还要考虑学生的学习动机和兴趣。这些教案能够帮助学生在学习中建立正确的学习方法和学习态度,提高学习成绩。

六年级数学教案比的化简篇一

单元教学目标:

1、经历从具体情境中抽象出比的过程,理解比的意义及其与除法、分数的关系。

2、在实际情境中,体会化简比的必要性,会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

3、能运用比的意义,解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力,感受比在生活中的广泛应用。

单元教材分析:

这部分内容是在学生已经学过分数的意义以及分数与除尘的关系的基础上学习的。本单元学习的主要内容有:生活中的比、比的化简、比的应用。本单元教材编写力图体现以下特点:

1、提供多种情境,使学生经历从具体情境中抽象出比的意义的过程。

2、注重引导学生利用比的意义解决实际问题。

教学课时:12课时。

内容。

课时数。

生活中的比。

比的应用。

练习三。

机动。

六年级数学教案比的化简篇二

【教学内容】教材第3-4页例3。

【教学目标】。

知识与技能:结合具体情境理解一个数乘分数的意义就是“求一个数的几分之几是多少”。

过程与方法:通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

情感、态度与价值观:通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

【重点难点】。

重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

难点:推导算理,总结法则。

【新知探究】。

明确算理,探究算法。

出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)。

(一)探究几分之一乘几分之一的算理算法。

1.求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)。

求一个数的几分之几,我们可以用乘法来计算。

2.等于多少呢?说说你的想法,并把你的想法在纸上写下来。

3.学生进行尝试(可引导学生用画图的方式来解释自己的想法)。

4.进行交流反馈。

重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固:把1个正方形看作1公顷,先平均分成2份,每份表示公顷,再把公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是公顷。

6.猜想计算方法。

六年级数学教案比的化简篇三

苏教版国标本六年级上册p68~70认识比例1、例2以及相应练习。

【教学目标】。

1.使学生在具体的情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

2.使学生经历探索比与除法、分数关系的过程,初步理解比与分数、除法的关系,明白比的后项不能为0的道理,会把比改写成分数的形式。

3.使学生在数学活动中,培养学生分析、综合、抽象、概括等能力,体会数学知识之间的联系,感受数学学习的乐趣。

【教学重难点】。

理解比的意义,比与分数、除法的关系。

【教学过程】。

一、创设情境,引入比。

1.图片激趣,引发讨论,设置悬念。

2.电脑呈现例l主题图。

3.揭题:比较两个数量之间的关系还可以用一种新的方法比。

二、自主探索,认识比。

(一)初步理解比。

1.启发谈话:用比怎样表示2杯果汁和3杯牛奶这两个数量之间的关系呢?刚才有同学会说,谁来试着说一说。

果汁的杯数相当于牛奶的'2/3,我们还可以说成果汁与牛奶杯数的比是2比3。

牛奶的杯数相当于果汁的3/2还可以怎样说成牛奶与果汁杯数的比是3比2。

2.看书自学,汇报交流:

(1)写法。

(2)各部分名称。

(3)比是有序的。

3.完成p68试一试。

(二)深入认识比。

1.认识不同量之间的比。

(1)生读例2,师:读了这条信息,你能提出什么数学问题?

(请学生分别算出它们的速度,填入表格。)。

(2)指出:像路程和时间这两个有着相除关系的量,我们也可以用比来表示。

交流得出:小军走的路程与时间的比是900:15、小伟走的路程与时间的比是900:20。

(3)追问:900:15表示什么?900:20呢?(速度)。

2.丰富对不同类量的两个数量比的认识。

张祥买3本笔记本用了10.5元。

提问:这句话中告诉了我们哪两个量?它们之间有着怎样的关系呢?会用比来表示吗?

3.总结概括比的意义。

(1)观察一下这几组式子,总结相同的特点。

(2)提问:你认为两个数的比表示的是两个数量之间怎样的一种关系?

(3)小结:两个数的比归根结底表示的都是两个数相除。

三、自学课本,内化比。

1.自学课本p69。

2.反馈:通过看书,你还知道了什么?

*求比值。

*分数形式的比。

*理解比、除法、分数之间的关系。

六年级数学教案比的化简篇四

1、进一步理解解比例的意义。

2、掌握解比例的方法,会解比例。

3、强调解比例的书写规范和计算中的灵活性,以提高同学们的审美能力和计算能力。

教学重难点。

掌握解比例的方法,学会解比例。

教学过程。

一、复习旧知。

1、什么叫做比例?什么叫做比例的基本性质?

2、根据比例的基本性质,将下列各比例改写成乘法等式。

3∶8=15∶40。

二、探索尝试,解释交流。

这个问题怎么解决?写出你的想法。

师:假设14个玩具汽车可以换x本小人书,你能写出一个比例吗?这个比例中x是多少呢?请在小组内交流一下。

(1)自己动脑写出想法。

(2)小组交流。

2、师:哪个小组展示本小组的想法。

板书:4:10=14:x。

解:4x=140。

x=35。

答:14个玩具汽车可以换35本小人书。

3、总结:

师:在比例里,如果已知任何三项你能求出比例中的另外一个未知项?

对,先写成乘法形式,再求出未知数的值。这种求比例中的未知项,叫做解比例。

三、课堂练习。

1、解比例。

2、根据下面的.条件列出比例,并解比例。

(1)6和8的比等于36和x的比。

(2)比例的两个内项是0.4和0.3,两个外项是6和x。

(3)比例的第一项是4,第二项是8,第三项是x,第四项是10。

四、总结:

谈谈这节课的收获?

六年级数学教案比的化简篇五

1.能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。

2.引导学生通过实际操作、画图、计算等方法探索新知。

3.在解决问题的过程中体会比与现实生活的密切联系。

4.在交流算法的过程中体会解决问题策略的`多样性。

六年级数学教案比的化简篇六

教学目标:

(1)知识目标:使学生理解按比例分配的意义。

(2)能力目标:使学生灵活掌握按比例分配应用题的数量关系和解答方法。

(3)情感目标:在教学中渗透事物是相互联系的辩证唯物主义思想。

教学重点:分析理解按比例分配应用题的数量关系。

教学难点:掌握按比例分配应用题的解答方法。

教具准备:多媒体课件。

教学过程:

一、学前准备。

60÷100=3/5。

40÷100=2/5。

这里的3/5和2/5是什么意思?

2、60:40=3:2。

你发现了什么?

二、探究新知。

1、导入新课。

在日常生活中,我们有时需要把一些数量按照一定的比来分配,你能举出这样的例子吗?

2、教学例题2。

(1)学生独立思考,相互说说:要分配什么?3:2是什么意思?

(2)探究问题解决的方法。

(3)交流。

(4)用分数怎么解答?

总面积平均分成的份数:3+2=5。

播种大豆的面积:100×3/5=60(公顷)。

播种玉米的面积:100×2/5=40(公顷)。

(5)用归一方法怎么解答?

3、归纳小结:按比例分配的应用题有什么特点?怎样解答?

4、学习例题3。

(1)小组尝试解答检验。

(2)全班交流、反馈。

三个班的总人数:47+45+48=140(人)。

一班应栽的棵数:280×=()棵。

二班应栽的棵数:280×()=()棵。

三班应栽的棵数:280×()=()棵。

(3)例题2和例题3有什么相同点和不同点。

三、巩固练习与检测。

2、一个三角形的三个内角的度数比是2:3:7,求这个三角形的各个内角的度数。

3、教材53页的2、3题。

四、小结(略)。

五、作业:练习十三的第一、二、五题。

六年级数学教案比的化简篇七

知识目标:在实际情境中,让学生体会化简比的必要性,进一步体会比的意义。

能力目标:会运用商不变的规律或分数的基本性质化简比,并能解决一些简单的实际问题。

情感目标:在化简比的同时感受数学的应用价值,体会数学知识的内在联系。

教学重难点重点:会运用商不变的性质或分数的基本性质化简比。

难点:运用比的化简解决生活中的一些实际问题。

教学过程。

一、复习铺垫,揭示课题。

1.师:上节课我们学习了生活中的比,谁来说说什么叫比?你能举个例子吗?

2.比与除法、分数有什么关系?

3.这节课我们继续学习关于比的知识(板书课题——比的化简)。

4.看了这个课题,你想知道些什么?

二、创设情境,探究新知。

1.体会化简比的必要性。

师:是的,又不能喝,光凭眼睛看不好判断,那你们需要老师给你提供些什么信息?

根据学生回答,课件出示相应的数据信息:

蜂蜜水。

号杯:3小杯12小杯。

号杯:4小杯16小杯。

师:根据这些信息,现在你有办法解决“哪杯蜂蜜水更甜”这个问题吗?

预设:生1:看看平均一小杯蜂蜜用了几小杯水,再进行比较。

生2:看看平均一小杯水用了多少小杯的蜂蜜,再进行比较。

教师适时引导学生找出蜂蜜与水之间的比,并板书:

1号杯:3:12。

2号杯:4:16。

师:联系前面学过的分数与比的关系,想一想,3:12和4:16这两个比能不能像分数化成最简分数一样,也能化成最简比呢?把你的想法和同桌说一说,并试一试。

师:谁来汇报一下你的方法,并说说这样做的依据。根据学生回答板书:

1号杯:3:12=3/12=1/4=1:4。

2号杯:4:16=4/16=1/4=1:4。

师:现在我们发现,两杯水中蜂蜜和水的比实际上都是1:4,说明这两杯水是?(一样甜)。

2.理解化简比。

师:从刚才的化简过程中,我们知道3:12=4:16,两杯水是一样甜的。笑笑也写了两组相等的比(课件出示)仔细观察,看看有什么发现,请你也试着写一组相等的比,并和同桌交流。

(1)学生独立思考,试着写一写,并同桌交流自己的发现。

(2)结合学生汇报,课件演示每组相等的比中前项、后项是如何变化的,并引导学生发现比的化简与商不变规律以及分数的基本性质之间的联系。

3.归纳比的基本性质。

师:你能根据商不变规律和分数的基本性质概括出比的基本性质吗?

比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。(强调“0除外”)。

4.揭示“最简整数比”。

师:分数约分要注意什么?比的化简又要注意什么?

分数约分要约到最简分数,化简比也要化到前项和后项只有公因数1为止,这样的比就叫最简整数比。

5.化简比的方法。

师:分数可以约分,比也可以化简,你能化简下面的比吗?(课件出示)。

化简下面的比:

24:42120:60。

1)独立尝试。(指明两人板演)。

交流:说说你的思路。(方法、根据)。

2)小组活动:(课件出示)。

化简下面的比:

0.7:0.82/5:1/4。

思考:这两组比与前面的最大区别是什么?

小组讨论:如何把这两组比化简?并试一试。

全班展示、交流:让我们一起来分享同学的智慧。(充分展示学生的不同方法。)。

3)归纳:怎样化简比?

小组讨论、全班交流。

4)师小结:看来,化简比的方法不唯一,不过都有一个共同目标:最后都要化简成最简整数比。

三、巩固应用,解决问题。

1.化简比:(带的为选做)。

(要求:学习有些吃力的学生可只化简前三组比,程度一般的学生至少化简四组比,程度好的学生要求全做。)。

21:240.3:1.54/5:5/7。

1:4/50.12:60.4:1/4。

2.教材第73页“练一练”第1、2题。学生独立完成,集体交流、订正。

3.教材第73页“练一练”第4题。

(1)学生独立完成(1)、(2)两题,集体订正。

(2)小组讨论完成第(3)题,集体交流,明确:判断谁投球命中率的高低就是看比值的大小。

四、全课总结。

师:回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?

六年级数学教案比的化简篇八

教学目标:

2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;

3、通过实例使学生感受到数学来源于生活,生活离不开数学。

教学重点:

1、正确理解按比例分配的意义。

2、掌握按比例分配应用题的特征和解题方法。

教学难点:能正确、熟练地解答按比例分配的实际问题。

教学过程:

一、课前组织复习旧知。

同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(课件出示题目)。

学生自由发言,预设推断如下:

1、全班人数是9份,男生占其中的5份,女生占其中的4份。

2、以全班为单位“1”,男生是全班的,女生是全班的。

3、以男生为单位“1”,女生是男生的,全班是男生的。

4、以女生为单位“1”,男生是女生的,全班是女生的。

5、女生比男生少(或20%)。

6、男生比女生多(或25%)。

追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)。

二、探索方法,建立模型。

1.理解题意。

(1)什么是稀释液?怎样配置的?

(2)什么是按比例分配?

2.自主探究,合作学习。

自学数学书p49例题2,思考:

(1)你从例题2中得哪些信息?

(2)1:4表示什么?你从中得到哪些信息?

(3)你能用画图的方法给同位讲解吗?

(4)方法一先求什么?再求什么?方法二先求什么?再求什么的?

3.小组展讲。

小结:方法一把各部分数的比看作份数关系,先求每一份,然后再求各部分的.量;方法二把各部分的比转化成分别占总数的几分之几,根据分数乘法的意义,直接求总数的几分之几是多少。

三、巩固练习。

2.填空。

3.一个长方形的周长是28cm,长与宽的比是5:2,长与宽各是多少cm?

4.一个班,男生比女生人数多10人,男生与女生人数的比是3:2,全班有多少人?

六年级数学教案比的化简篇九

教学要求:

1、使学生进一步认识整除里的一些概念,理解和认识这些概念之间的联系与区别,能应用概念进行分析,判断,进一步发展思维能力。

2、使学生正确掌握分解质因数和求两个数的公约数,求两个或三个数最小公倍数的方法,并能按照方法分解质因数和求出两个数的公约数,两个或三个数的最小公倍数。

教学过程:

一、揭示课题。

1、口算(指名口算课本第64页第11题)。

2、引入新课。

我们已经复习了整小数的意义,今天复习数的整除(板书课题),通过复习,加深对整数特性的认识,掌握好数的整除的意义及其中的一些概念,认识概念之间的联系和区别,能熟练地用短除法分解质因数和求公约数最小公倍数。

二、复习约数和倍数。

1、提问:什么是整除(板书整除)如果a能被b整除,必须具备哪些条件?

当a能被b整除,也就是b整除a时,还可以怎样说?板书:

约数。

倍数。

2、做“练一练”第1题。

学生做在课本上,说明倍数和约数的依存关系。

3、学生练习。

(1)从小到大写出9的五个倍数。

复习约数倍数相关知识(略)。

(2)写出18的所有约数。

三、复习质数合数。

1、提问按照一个数约数的个数分类,除0以外的自然数可以分为几类:

板书:1。

质数。

合数。

怎样的数是质数?怎样的数是合数?1为什么既不是质数,也不是合数。

2、口答:

(1)说出比10小的质数和合数。

(2)最小的质数和最小的合数各是几?

(3)下面哪些是质数?哪些是合数?

785123579190。

3、提问:你能把90写成质数相科乘的形式吗(板书)这里的因数叫做90的什么数?(板书:质因数,分解质因数)。

4、做“练一练”第3题。

练后指名口答,集体订正。

四、复习公约数和公倍数。

1、学生练习。

(1)写出18和24所有的公约数,指出公约数。

(2)从小到大写出4和6的五个公倍数,指出其中最小的公倍数。

学生口答,老师板书。

提问:什么叫做公约数和公约数?什么叫做公倍数和最小公倍数?

(板书——公约数、公约数——公倍数——最小公倍数)。

2、“练一练”第4题。

集体练习,指名口答,说一说方法怎样归纳三种关系?

追问:用短除法求公约数和最小公倍数有什么相同和不同?

五、复习。

能被2、5、3整除各有什么特征。

1、提问:能被2、5、3整除各有什么特征。

(板书:——能被2、5、3整除的数)。

2、“练一练”第5题。

提问:这里能被2整除的数都是什么数?不能被整数的数都是什么数,

板书:偶数。

奇数。

想一想,自然数可以分为哪几类?

六、课堂小结。

根据板书内容,说说相互之间有什么联系。

七、课堂练习。

1、练习十一和12题。

2、课堂作业。

(练习十一第15、16题、17题中(3)(4)。

八、课外作业:练习十一第18题。

将本文的word文档下载到电脑,方便收藏和打印。

六年级数学教案比的化简篇十

已学了比、求比值、化简比按比例分配等知识。

学习目标。

1、巩固比的意义、求比值与化简比的方法。2、能运用比的意义解决一些实际问题。

导学策略。

练习。

教学准备。

习题。

教师活动。

学生活动。

一、复习概念。

什么叫做比?

怎样求比值与化简比?

求比值与化简比有什么联系与区别?

二、独立练习。

第1题练习后说一说自己的'方法。

第2题巩固化简比的方法。

第3、4题先弄懂题意,再鼓励学生独立完成,全班交流。

第5、6、7、8、题是运用比的意义解决一实际问题,先鼓励学生独立完成,然后在小组中或全班交流不同的方法。

三、你知道吗?

学生自学,然后教师介绍黄金分割。

口答并结合练习加以说明。

列表分析。

教学反思。

还可以。

六年级数学教案比的化简篇十一

义务教育课程标准实验教科书(北师大版)六年级上册第72——73页。

《比的化简》一课是在学生初步了解了比的意义、比与分数、除法各部分之间的关系的基础上进行学习的。教材设计了三个学习活动,先是让学生在实际情境中初步体会化简比,加深对比的意义的理解;然后在学生对商不变的规律和分数的基本性质掌握的基础上去发现体会比的基本性质;继而通过化简不同形式的比来再次加深对比的意义、比的基本性质、比与分数除法的关系的理解,并总结出化简比的基本方法。学生在从具体到抽象的数学活动中发现、思考、总结,以实现本节课的学习目标。

学生已经了解了商不变的规律和分数的基本性质,在上一节课中对比的意义有了初步的理解,了解了比与分数、除法之间的关系。在课前了解中发现学生对商不变的规律和分数的基本性质的相关内容有一定的遗忘,会应用,但说不清自己的'思考过程。在本节课的学习中要注重学生的体会、发现和总结,既要理解化简比每一步是如何得到的,能正确化简,还要能解决相关的实际问题,加深对比的意义的理解。

1、在实际情境中,体会化简比的必要性,进一步体会比的意义。

2、能写出相等的比,并用自己的话总结出比的基本性质。

3、会运用商不变的规律、分数基本性质和比的基本性质化简比,理解化简的过程并能归纳总结出化简比的方法。

4、应用化简比解决相应的简单实际问题。

1、重点:加深对比的意义的理解,理解并掌握化简比的方法。

2、难点:体会化简比的必要性,并能解决相关的简单实际问题。

一、创设情境,乐学启智。

1、请两名学生品尝调制好的水。你们觉得哪杯水更甜?需要我提供哪些信息?

出示相关信息:

(1)调制这杯蜂蜜水用了3小杯蜂蜜,12小杯水。

(2)这杯蜂蜜水用了4小杯蜂蜜,16小杯水。

【设计意图:引导学生从数学的角度来分析判断,同时培养学生选择有用信息的能力。】。

2、根据这些信息,你知道哪杯水更甜吗?说说你是怎么想的。

(1)请学生把自己的判断方法写一写。

(2)同桌简单交流后,把自己的想法和同学们说一说。

3:12=3/12=1/4=1:4。

4:16=4/16=1/4=1:4。

(12:3=4:1;16:4=4:1)。

小结:看来我们把这两杯水蜂蜜与水的杯数比进行简化之后,发现都是平均1小杯蜂蜜用了4小杯的水,所以它们一样甜,这样非常便于我们进行比较。

二、发现总结,乐究寻智。

(1)你能从上面的式子中找到相等的比吗?

3:12=1:44:16=1:41:4=4:16(12:3=16:4)。

观察这些相等的比,你有什么发现?

(结合商不变的规律和分数的基本性质,叙述两个比前项和后项的变化情况。)。

(2)请你说一说这组相等的比是怎样得到的?

1:2=10:204:12=1:3。

(3)你能也写出几组相等的比吗?并和同桌说一说你是怎么想的。

观察这些相等的比,你有什么发现?

学生总结:比的前项和后项同时乘或除以一个相同的数(0除外),比值的大小不变。

小结:利用比的基本性质,既可以帮助我们得到一组相等的比,也可判断一组比是否相等,其实它还有一项非常重要的作用——比的化简。(板书课题)。

三、探讨归纳,乐享汇智。

分数可以约分,比也可以化简,其实我们在比较哪杯水甜的时候就已经用到了比的化简。3:12和4:16不便于比较,用比的前项除以比的后项,经过计算得到了1:4,很容易判断出两杯水是一样甜的。我们知道分数可以约分成最简分数,比也可以化简成最简整数比。(比的前项和后项除了1以外没有其他公因数,这样的比就是最简整数比。)。

【设计意图:结合情境体会比的化简的必要性,了解比的化简的基本方法。】。

24:422/5:1/40.7:0.8。

2、先独立完成,再和同伴说说每一步是如何得到的。

结合刚才的化简过程,想一想我们在化简比的时候用了哪些方法?

学生总结:方法一:把两个数的比转化为这两个数相除,用分数表示他们的商,再把这个商化成最简分数,这个最简分数的分子就是比的前项,分母就是比的后项。方法二:直接用比的基本性质进行化简,把不是整数比的化成整数比,把不是最简整数比的化为最简整数比。

四、解决应用,乐凝升智。

1、这里有4杯糖水,你能用今天所学判断出这里有一样甜的吗?

【设计意图:鼓励学生再次经历解决问题的过程,提高应用所学解决实际问题的能力。】。

2、

五、课堂总结。

通过今天的学习相信同学们又加深了对比的认识,谁来说说你今天的收获。

总结:比在我们的生活中应用广泛,通过对比的化简能帮助我们更方便进行比较和判断,希望同学们不断加深对比的认识,正确的化简比,更好的应用比。

六、作业设计:

化简比和求比值一样吗?可以举例说明。

六年级数学教案比的化简篇十二

教学内容:人教版小学数学教材六年级上册第54页例2及相关练习。

教学目标:

1.能在实例的分析中理解按比分配的实际意义。

2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。

3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。

教学重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。

教学难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。

教学准备:课件。

教学过程:

一、情境导入。

课件出示:女生与男生的人数比是5:7。

师:“女生和男生的人数比是5:7”,从这句话中,你得到了哪些信息?

【设计意图】一条简单的现实生活信息,不但使学生体会到数学与生活的联系,激发了学生的学习兴趣,而且培养了学生分析问题、解决问题的能力。

二、实例探究。

(一)自主探索。

1.出示:六(2)班一共有48人,女生与男生的人数比是5:7。

师:根据这两条信息,你能求出什么?男生、女生各有多少人呢?你会算吗?

2.学生独立尝试。

3.同桌交流。

师:与同桌交流一下你的想法和做法,有不同的方法都可以写下来。(教师巡视指导)。

4.汇报:

请不同做法的学生上台板演,交流汇报。

预设(1):48÷(5+7)=4(人);。

女生:4×5=20(人);。

男生:4×7=28(人)。

师:还有不同的解决方法吗?

预设(2):女生:(人);。

男生:(人)。

师:这种方法中,是什么意思?呢?

5.小结:刚才同学们用不同的方法解决了同一个问题,我们再一起来看看(配合课件演示)。

【设计意图】在引导学生探究时,没有直接用书本上的例题,而是用了班级男生、女生人数比这一实际情况。因为是学生非常熟悉的事例,所以学生很乐意去探索、交流、实践。这样的'设计不仅降低了学习的难度,而且激发了学生的学习兴趣。

(二)揭示课题。

师:像上题这样,把数量按一定的比来进行分配的方法叫做按比分配。今天我们就一起学习按比分配。(板书课题:按比分配)。

(三)实践尝试。

出示例2:这是某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。

1.阅读与理解。

浓缩液和稀释液指的是什么?(浓缩液是纯清洁剂,稀释液是加水之后的清洁剂。)。

师:你能用刚才的方法解决这一问题吗?(学生独立解题,交流汇报。)。

2.分析与解答。

预设(1):每份是500÷5=100(ml),浓缩液有100×1=100(ml),水有100×4=400(ml)。

师:这里的5表示什么?(把总体积平均分成5份。)。

预设(2):浓缩液有(ml),水有(ml)。

师:表示什么?(浓缩液占总体积的;)。

呢?(水占总体积的。)。

3.回顾与反思。

师:可以用怎样的方法对结果进行验证?

预设:看浓缩液与水的比是不是等于1:4。

小结:体现在问题解决的过程中,要看清楚1:4到底是哪两个量之间的比。

【设计意图】把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。

三、实践应用。

(一)基本练习。

1.师:打开教材第55页,看第一题。

(1)师:用自己喜欢的方法独立算一算,看谁算得又快又对。

(2)交流:说说你的方法。

2.出示:李伯伯家里的菜地共800平方米,他准备种黄瓜和茄子。

师:请你来设计一下,可以怎么分配?

预设一:1:1。

师:如果按1:1分配,那么种黄瓜和茄子的面积分别是多少平方米?(学生自主计算)。

师:通过计算,发现按1:1分配其实就是我们以前学过的“平均分”。是的,平均分就是按1:1分配,是按比分配中的特例。

对于其余各种分配方法,都让学生快速算一算再交流。

(二)发展提高。

1.师:增加点难度行不行?我把这一题变一下。

(1)比较:这一题和前几题相比,有什么不同?

(3)学生尝试。

(4)交流算法。

师:你是怎么算的?(展示学生作业)还有同学用其他方法做吗?介绍一下你们的方法。

师:这几位同学的方法有什么共同点?有什么不同点?

(1)比较分析:

师:这一题又有什么不一样?没有直接给出“比”,不能直接按比分配了,那怎么办?

师:我们可以先求出比,再按比进行分配。

(2)学生独立尝试,交流算法。

(三)小结。

师:通过上面两个问题的解答,你觉得在解答按比分配的问题时应注意什么?

师:说得对,在解答这类问题时,我们要认真审题,看清楚是对哪个数量进行分配,是按什么比分配的;如果题目没有直接给出比,我们要先根据题目信息求出比,再按比分配。

【设计意图】创设问题情境,从基本练习到综合性较强的问题,再到没有直接给出比的题目,层层深入,让学生在解决实际问题的过程中感受学习的乐趣和价值,不仅培养了学生独立解题的能力,而且还可以让学生在实践的探索中验证、品尝自己的学习成果,再次感受成功带来的乐趣。

四、课堂总结。

1.师:学到这里,谁能告诉我们,今天这节课我们主要研究了什么?说说你的收获和感受。(指名回答)。

2.课外延伸。

师:比在生活中应用非常广泛,请你课后搜集生活中的实例,编一道按比分配的题目,在下一节课中进行交流学习。

【设计意图】让学生自己抓住“收获”、“感受”来进行课堂总结,可以再次让学生对所学知识进行梳理,培养评价、反思的能力,让学生更加深切地感受到数学的魅力。

六年级数学教案比的化简篇十三

本节课在谈话中引出问题复习旧知,为新授做铺垫,同时也让学生切身实地的感受到数学就在我们身边,从而很自然地引出课题。

整节课紧紧围绕三个问题展开,共分两大部分:一、分一分:创设情境,鼓励学生通过操作,在交流不同分法的过程中体会1:1分配的不合理性,产生按比分配的必要性,同时体会按比分配在生活中的实际应用;二、算一算:再有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解决问题的策略解决实际问题。

由于按比分配在生活中的运用很广泛,所以在练习的设计上,主要通过有层次、有坡度的一组问题,让学生用今天所学的知识来解决这些生活上的问题。

存在问题:由于学生个体差异较大,教学在短暂的课堂要面对全体学生,还有个别学生不能顺利准确的解决问题,造成教学效果的不足。为了提高教学效果,加强学生全面发展,在课余时间进行个别辅导,做到有的放矢,因材施教,在课堂上关注学困生,培养学习兴趣从而提高教学效果。

六年级数学教案比的化简篇十四

掌握各部分量占总数量的几分之几,能熟练地按已知一个数求它的几分之几是多少,用乘法求各部分量的新方法。

能根据实际情况,判断各部分量之间应该按怎样的比例来分配。

掌握按比例分配应用题的特征及解题方法.教学难点:按比例分配应用题的实际应用。

2、培养学生应用所学数学知识解决实际问题的能力;

3、通过实例使学生感受到数学来源于生活,生活离不开数学。

引导学生将比转化成分数、份数,指导学生试算。

学生课前作调查;

一、导入。

1、看题目:“比的应用”,你想知道什么?

2、小小调查员:前几天,我已经请同学们去作了课外调查,看看在我们日常生活中,哪些地方用到了比的知识。下面,请汇报一下你调查到的信息。

二、新课。

1、配置奶茶。

星期天的上午,小明家来了一位客人。刚巧爸爸妈妈有事出去了。于是小明就做起了小主人,亲自招待这位王叔叔。

师:请客人坐下后,一般要干什么?(泡茶)对,这是待客的基本礼仪。小明打算亲手配制一杯又香又浓的奶茶,招待王叔叔。

(1)奶茶中,奶和茶的比是2:9。看了这句话,你知道了些什么?

(2)小明想要配制220毫升的奶茶,

(a)先要解决什么问题?(奶和茶各取多少毫升?)。

(b)请你先独立计算一下,奶和茶各取多少毫升?

(4)评价。

(a)请你谈谈你对这些不同解法的看法?你比较喜欢哪一种解法,为什么?

(b)其实,这些方法都很好。不过,第(b)种解法是我们今天所学到的一种新方法。它是“把一个数量按照一定的比例分配”的问题,我们把它叫做“按比例分配”。(显示课题,齐读)。

2、计算电费。

(1)刚才小明就按大家计算的结果给王叔叔配制了一份奶茶。王叔叔在小明家坐了一会儿,刚巧看到桌子上放着一张电费的清单。原来,“小明家和另外两户居民合用一个总电表。九月份共应付电费60元。”(显示)王叔叔想看小明这个小主人合不合格,就问小明:“你们家上个月交了多少元电费?”

(a)你觉得小明家应付多少元电费?你是怎么想的?

(b)你为什么不同意他的想法?(不公平)。

三、课堂小结。

今天这堂课我们学习了“按比例分配”,你有什么收获?

六年级数学教案比的化简篇十五

教学分析:

按比例分配的练习。

学情分析:

已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。

教学目标:

能运用比的意决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。

教学策略:

练习、反思、总结。

教学准备:

小黑板。

教学过程:

一、基本练习。

(一)六1班男生和女生的比是3:2。

1.男生人数是女生人数的()。

2.女生人数是男生人数的(),女生人数和男生人数的比是().

3.男生人数占全班人数的(),男生人数和全班人数的比是().

4.全班人数是男生人数的(),全班人数和男生人数的比是().

5.女生人数占全班人数的(),女生人数和全班人数的比是().

6.全班人数是女生人数的(),全班人数和女生人数的比是().

把250按2比3分配,部分数各是多少。

二、变式练习。

1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?

将本文的word文档下载到电脑,方便收藏和打印。

六年级数学教案比的化简篇十六

本单元的内容主要包括百分数的意义和读写法,百分数和分数、小数的互化以及用百分数解决问题。

百分数在生活中有着广泛的应用,人们常用百分数对事物进行描述、分析、统计、比较。虽然学生在日常生活中已经大量接触了百分数,但是对百分数的意义以及其应用价值的认识还处于模糊阶段。本单元在学生学习了整数、分数、小数相关知识的基础上,正式认识百分数。百分数表示的是一个数是另一个数的百分之几的数,因此,它是一种特殊的分数,有关百分数的计算与应用都可以由分数的相关知识迁移过来。由于百分数与实际生活联系紧密,学习百分数对理解和判断生活中相关数据信息以及运用百分数解决日常生活中的实际问题有着重要的意义。

六年级上册主要教学百分数的意义及一般应用,六年级下册教学百分数的特殊应用(如利率、折扣、成数)。两部分内容的着眼点有所不同,六年级上册的教学重点是利用知识的迁移,认识百分数的意义及一般性应用;而六年级下册的教学重点是了解百分数在生活中一些特殊领域的应用,更强调对其实际意义的理解。

备课目标

知识与技能

过程与方法

情感、态度与价值观

1.理解百分数的意义,会正确读写百分数,会用百分数表述生活中的一些数学现象。

2.掌握小数、分数和百分数的互化方法。

3.在理解、分析数量关系的基础上,正确解决有关百分数的实际问题。

4.经历探究百分数意义的过程,积累探究问题的经验。

5.经历探究小数、分数和百分数互化方法的过程,体会转化、类比、迁移等数学思想方法。

6.经历用百分数解决问题的过程,学习解决问题的策略,提升解决问题的能力。

7.在探究百分数的意义的过程中,体会数学与生活的密切联系。

8.积极参与数学活动,激发好奇心和求知欲。

9.在运用数学知识和方法解决问题的过程中,认识数学的价值。

重点:

1.理解百分数的意义及掌握百分数与小数、分数之间的互化方法。

2.用百分数解决问题。

难点:

1.百分数和分数在意义上的区别。

2求比一个数多(或少)百分之几的数是多少。

六年级数学教案比的化简篇十七

教学目标:

1.知识目标:

使学生进一步掌握分数乘法的计算方法,能正确解决分数连乘的简单实际问题,拓展分数乘法意义的理解。

2.能力目标:

使学生经历解决问题的探索过程,进一步培养观察、比较、分析的能力。

3.情感目标:

感受数学知识和方法的应用价值。

教学重点:

能正确计算分数连乘的计算。

教学难点:

能用分数连乘的方法解决实际问题。

教学准备:

教学光盘。

第五课时

教学过程:

一、复习引入

1.下面每个条件分别是以谁为单位“1”的。

23

a是b的3b是c的5

口答,说说可以列成什么数量关系?

2.今天我们继续学习有关分数乘法新的内容。

板书课题:分数连乘。

二、教学新课

1.教学例6。

(1)理解题意。

83

二班做的朵数和谁有关?

(2)画图分析。

画一条线段表示一班所做绸花的朵数。

可以怎样表示二班做的绸花朵数?

怎样表示三班做的绸花朵数呢?

(3)讨论方法。

要去三班做了多少朵,要先算什么呢?怎样算?

讨论交流,汇报方法。

2.完成练一练。

独立完成计算,展示作业。

说说计算时要注意什么?

三、巩固练习

1.完成练习九第6题。

独立完成,集体核对。

2.完成第7题。

3.完成第8、9题。

理解题意,弄清解决每一个问题时要先算什么,再算什么?

列式解答。

四、课堂小结

今天学习了什么内容?你对自己的表现满意吗?

六年级数学教案比的化简篇十八

教材第110页第3题,练习二十五第8~13题。

1.进一步掌握三角形的特性及其三边、三角之间的关系,并能解决三角形相关问题。

2.进一步掌握轴对称和平移,能画一个图形的轴对称图形,能画平移后的图形,并能运用平移解决问题。

3.进一步掌握从不同的角度观察物体,能辨认、并画出从不同的角度观察到的物体的形状。

重、难点:解决三角形相关问题,画一个图形的轴对称图形。

1.复习三角形的特性。

指名说一说三角形有什么特性,并举例说明三角形特性在。

现实生活中的.应用。

2.复习三角形三边之间的关系。

指名说一说三角形三边有什么关系。

强调:三角形任意两边的和都大于第三边。

3.复习三角形的分类。

三角形可以分为哪几类?你是怎么分的?

4.完成教材第110页的第3题。

二、复习轴对称、平移。

1.举例说明生活中常见的轴对称图形。

2.说说轴对称图形的特点。

3.平移。

三、复习观察物体。

在同一角度观察物体,最多能看到物体的几个面?

四、课堂练习。

完成教材练习二十五第8~13题。

五、课堂小结。

我们这节课复习了什么内容?你有什么收获?

六、同步训练。

教学至此,敬请选用《新领程》相关习题。

六年级数学教案比的化简篇十九

从知识角度分析为什么难。

打折销售与学生的日常生活息息相关,学生并不感到陌生,但在促销活动中选择最佳消费方式,要运用所学的百分数知识解决问题有一定的难度。

从学生角度分析为什么难。

学生在解题的过程中,要懂得“满100元减50元”的促销方式,对于消费者来说不如打五折实惠;如果总价是整百元的,那两种促销的方式优惠的结果是一样的,但要得出这种结论,对于学生来说有一定难度,需要运用所学的百分数知识去分析、交流、比较才能解决。

在教学时,先让学生结合自己的生活经历去理解“满100元减50元”的含义,然后根据实际情况进行表述,再引导学生体会这种促销方式的计算方法,接下来要由学生独立完成两种购买方式所要支付的钱,并通过比较来解决题目中的问题。

一、复习旧知,引入新课。

1、提问“一件物品打九折出售”表示什么意思?

2、生活中,是不是所有的优惠都是以“几折”来表示的呢?

3、购物中优惠的形式有很多种,我们要做一个精明的小买家。今天,我们就来研究购物中的折扣问题。(板书:购物中的折扣问题)。

二、教学新知。

(一)出示例5:某品牌的裙子搞促销活动,在a商场打五折销售,在b商场按“满100元减50元”的方式销售。妈妈要买一条标价230元的这种品牌的裙子。

1、根据这些信息,学生提问题。

教师板书:

(1)在a、b两个商场买,各应付多少钱?

(2)哪个商场省钱?

2、分析问题,理解题意。

(1)结合题目给出的数学信息,哪些是关键的?

(2)怎样理解“满100元减50元”?

(3)不足100元的部分呢?怎么办?

3、独立思考,尝试解决。

师:请同学们独立思考,看能否解决黑板上的这两个问题?

4、交流并汇报方法。

师:谁来说说自己的解决方法?

学生展示自己的算式,并解释。

5、启发思考,辨析原因。

(1)满100元减50元,少了50元,也是打五折啊,怎么优惠的结果却不一样呢?

(2)什么情況下两种优惠是一样的呢?

6、小结:在今天的折扣问题中,我们知道了优惠的形式有很多种,解决这些问题时要注意的是“满100元减50元”和打五折的区别:

(1)“满100减50”,就是够100才能减50,不够则不减。

(2)打五折实际售价都是原价的50%,不满100元的也能按50%计算。

(3)售价刚好是整百元的时候,两种优惠结果才是一样的。

三、练习巩固,提高能力。

1、做一做。

某品牌的旅游鞋搞促销活动,在a商场“每满100元减40元”的方式销售,在b商场打六折销售,妈妈准备给小丽买一双标价120元的这种品牌的旅游鞋。

(1)在a、b两个商场买,各应付多少钱?

(2)选择哪个商场更省钱?

同学们,在今天学习的折扣问题中,我们知道了不同形式的优惠有很多种,在解决这些问题时要注意的是“满100元减50元”和打五折的区别。

【本文地址:http://www.xuefen.com.cn/zuowen/18295224.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档