六年级数学圆柱教案(专业14篇)

格式:DOC 上传日期:2023-12-09 14:23:07
六年级数学圆柱教案(专业14篇)
时间:2023-12-09 14:23:07     小编:书香墨

教案的编写需要考虑学生的实际情况和教学资源的利用。编写教案时要注重教学评价的设计,以促进学生的综合素质发展。以下教案范文的特点和亮点值得我们仔细研究和借鉴。

六年级数学圆柱教案篇一

圆柱的认识是全日制聋校实验教材第十五册第二单元的内容。圆柱是一种比较常见的几何立体图形,这部分内容包括圆柱的特征,圆柱各部分的名称和圆柱侧面展开图。教学这部分内容,有利于发展学生的空间观念,为进一步学习圆柱的侧面积,表面积,体积和解决实际问题打好基础。

由于聋校八年级学生已经初步具备了一定的自学能力,能够根据具体情况,在已有认知的基础上进行相互探讨,所以我在本课采用让学生动手操作、自主学习、合作探究等方法来获取新知识。并利用多媒体课件来突破本课的重、难点,同时针对聋生听力受损,语言发展相对滞后的特点,在课堂上注重了聋生语言的培养,采用双语教学,鼓励聋生自主发言,发展聋生的语言。

1、知识与技能目标。

使学生知道圆柱各部分的名称,理解圆柱的侧面展开图,掌握圆柱的特征。

2、过程与方法目标。

通过观察、想象、操作、讨论等活动,培养学生自主探究、动手实践、合作创新的能力;同时渗透转化的思想。

3、情感态度价值观目标。

运用课件提供的教学情境,使学生能直观感受圆柱的侧面展开图,初步渗透事物发展、变化规律的辩证观点。并使学生切实感受到数学与自己的生活息息相关,体验到学习数学的价值。

教学重点:掌握圆柱的特征。

教学难点:理解圆柱侧面展开图的特点。

本课我采用了实践操作法、课件演示法、小组讨论式教学法等相关的教法。教师只是以组织者,引导者与合的身份,引导学生主动参与到整个学习过程中去,在互动的过程中充分地激起学生的探究热情。因此我精心设计了以下几个环节。

(一、)创设情境,激趣导入。

1.打开多媒体课件,出示圆柱的实物模型。同时感知生活中的一些具体实物,让学生明白数学于生活。

(通过以上教学,让学生初步接触圆柱,从生活实际感知圆柱,感受数学同生活息息相关。同时很巧妙自然的引入了课题,为学习新课做好铺垫。)。

(二、)自主探究,了解圆柱。

1.学生自主学习,认识圆柱的各部分名称及特征。

2.生汇报,师订正。通过学生的语言,描述出圆柱各部分的特征,师课件演示加以验证。(课堂实录)。

(针对聋生注意力不集中的特点,我让学生自主探究,自己提供教学材料,这样能迅速激发学生的探索兴趣,为探求新知作好心理上的准备,并运用课件验证了自己的想法。对圆柱的底面、侧面和高进行了演示,让学生清晰的感知各部分的名称和特征,一目了然,更加有效地激发了学生的观察兴趣,同时提高了学生的注意力。)。

(三、)合作交流,深化感知。

1.合作探究,圆柱的侧面展开。

(1)学生分组动手操作:把圆柱模型的侧面剪开,再展开,观察形状。

(2)师:你是怎样剪的?展开后得到了一个什么图形?

(3)学生操作后汇报,教师通过课件验证和补充。(课堂实录)。

(该环节是精心设计的,力求让学生成为学习的主人,通过学生的合作探究,体现学生在数学课堂上的主人意识。同时通过多媒体课件的演示,展示了圆柱侧面不同剪法的演变过程,浅显易懂,让学生很容易就了解了圆柱侧面的特征。)。

2.同伴互助,寻求发现。

(1)让学生在动手操作中得到展开后长方形的长和宽与圆柱的关系。

(2)教师课件演示展开图加以验证,轻松的突破本课的难点。(课堂实录)。

(让学生在合作中发现问题、探讨问题、解决问题,激发学生的求知欲望,同时通过形象的课件演示,轻松的分散了本课的难点,突出了本课的重点;调动了学生学习的积极性。)。

(四、)巩固拓展,延伸应用。

课件出示:

1、下面哪些物体是圆柱?

2、指出下列圆柱的底面、侧面和高。

3、实际测量圆柱的底面周长和高。

(练习的设计,既有对刚刚学过的圆柱认识的运用,也有围绕易混易错之处,让学生用手势判断,使学生在宽松的氛围里,勇于发言、敢于辩论。训练说理能力的同时,学生的思维也得到训练。)。

(五、)自主小结,提升理念。

师:我们初步认识了圆柱,谁能告诉老师,对于圆柱你都知道了什么?

(这既是课堂小结,也是对学生的人文培养重要体现。让学生在自主发挥的同时,培养了学生的表达能力。)。

信息技术作为一种教育手段,越来越多的被运用到课堂教学中,不但能创设一定的情境,而且能调动学生的积极性,更加的凸显教学效果。而flash课件更是以其演示功能强大,动画效果明显等特点被广大教师经常所应用。本课我运用了flash课件对相关的知识进行了动画演示,课件贯穿了整个课堂。上课伊始,我对圆柱的底面、侧面和高进行了课件演示,让学生清晰的感知各部分的名称和特征。让学生在开课的时候,就对本课产生一种兴趣。课中展示了圆柱侧面不同剪法的演变过程,浅显易懂,让学生很容易就了解了圆柱侧面的特征,轻松的突破了难点,同时,在此基础上展示圆柱侧面展开后与展开前的关系,让学生一目了然,总之,在课堂教学中运用信息技术,能更好的完成教学目标,达到更好的教学效果。

课程标准中指出:既要关注学生的学习结果,又要关注学生的学习过程,更要关注他们在活动过程中所表现出来的情感与态度。本课以学生已有的生活经验为基础,让学生通过想象、描述、合作交流,从实物观察、到动手操作等多种方式来认识圆柱,并运用多媒体课件,及时有效的分散了难点,突破了重点,让学生在轻松愉悦的气氛中,扎实的掌握了所学的知识,突出“做数学”这个数学理念。也使学生在合作中共同进步,体验成功。

六年级数学圆柱教案篇二

2.掌握圆柱侧面积和表面积的计算方法。

(二)能力目标。

能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

教学重点。

理解求表面积、侧面积的计算方法,并能正确进行计算。

教学难点。

能灵活运用表面积、侧面积的有关知识解决实际问题。

教具学具准备。

1.教师、学生每人用硬纸做一个圆柱体模型。

2.投影片。

教学过程:

生:我想对老师们说,我们一定会好好表现的,不会让你们失望。

生:我们的课堂将比赛场更精彩……。

师:我坚信你们一定不会让老师失望的。

一、引入新课:

生:圆柱是由平面和曲面围成的立体图形。

生:我还知道圆柱各部分的名称……。

生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。

课件演示这一过程。

师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)。

师:你还想知道什么呢?

生:还想知道怎么求它的表面积......

二、探究新知。

指名学生摸其表面积,并追问:怎样求它的表面积?

学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)。

师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)。

小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。

师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。

课件展示其变化过程。

师生小结:(教师板书)侧面积=底面周长×高。

(评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)。

师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)。

投影呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。

(1)学生独立解答。

(2)投影呈现学生的解答,并让其讲清自己的解题思路。

师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?

生:底面周长和高。

师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。

师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)。

教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)。

指名学生说解题思路,

师:这说明要计算圆柱的表面积需要抓出哪两个量?

生:底面积和侧面积。

3、反馈练习:(略)。

师:想一想,应该先求什么?再求什么?请大家动手试一试。

4实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)。

三、全课小结:这节课你有什么收获?

你有没有想提醒同学们注意的地方?

生:要注意单位,还要注意所要求得圆柱有几个底面……。

最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)。

六年级数学圆柱教案篇三

一、填空:

1,把一根圆柱形木料截成3段,表面积增加了45.12平方厘米,这根木料的底面积是()平方厘米。

2,一个圆锥体的底面半径是6厘米,高是1分米,体积是()立方厘米。

3,等底等高的圆柱体和圆锥体的体积比是(),圆柱的体积比圆锥的体积多()%,圆锥的体积比圆柱的体积少()。

4,把一个圆柱体钢坯削成一个最大的圆锥体,要削去1.8立方厘米,未削前圆柱的体积是()立方厘米。

5,一个圆柱体的侧面展开后,正好得到一个边长25.12厘米的正方形,圆柱体的高是()厘米。

6,用一个底面积为94.2平方厘米,高为30厘米的圆锥形容器盛满水,然后把水倒入底面积为31.4平方厘米的圆柱形容器内,水的高为()。

7,等底等高的一个圆柱和一个圆锥,体积的和是72立方分米,圆柱的体积是(),圆锥的体积是()。

8,底面直径和高都是10厘米的圆柱,侧面展开后得到一个()面积是()平方厘米,体积是()立方厘米。

9,把一根长是2米,底面直径是4分米的圆柱形木料锯成4段后,表面积增加了()。

10,底面半径2分米,高9分米的圆锥形容器,容积是()毫升。

11,已知圆柱的底面半径为r,高为h,圆柱的体积的计算公式是()。

12,容器的容积和它的体积比较,容积()体积。

二、判断:

1,圆柱体的体积与圆锥体的体积比是3∶1。()。

2,圆柱体的高扩大2倍,体积就扩大2倍。()。

3,等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积大2倍.()。

4,圆柱体的侧面积等于底面积乘以高。()。

5,圆柱体的底面直径是3厘米,高是9.42厘米,它的侧面展开后是一个正方形。()。

三、选择:(填序号)。

1,圆柱体的底面半径扩大3倍,高不变,体积扩大()。

a、3倍b、9倍c、6倍。

2,把一个棱长4分米的正方体木块削成一个最大的圆柱体,体积是()立方分米。

a、50.24b、100.48c、64。

3,求长方体,正方体,圆柱体的体积共同的`公式是()。

a、v=abhb、v=a3c、v=sh。

a、16b、50.24c、100.48。

5,把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将()。

a、扩大3倍b、缩小3倍c、扩大6倍d、缩小6倍。

四、应用题:

1,一个圆锥体的体积是15.7立方分米,底面积是3.14平方分米,它的高有多少分米。

3,圆柱形无盖铁皮水桶的高与底面直径的比是3∶2,底面直径是4分米。做这样的2只水桶要用铁皮多少平方分米?(得数保留整十平方分米)。

六年级数学圆柱教案篇四

目标。

1、知道圆柱侧面积和表面积的含义。

2、通过操作推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

重点。

圆柱侧面积和表面积的计算方法。

难点。

运用所学的知识解决简单的实际问题。

学     习     过     程。

师生笔记。

知识链接:

1、用公式表示出圆的半径、直径、周长、面积之间的关系。

2、圆柱的上下两个底面都是(      ),它们的面积(       )。

3、长方形的面积=        。

长方体的表面积=                。

正方体的表面积=         。

知识超市:

操作:(一)试一试,怎样可以得到圆柱形的侧面展开图?

把圆柱的侧面沿高剪开,展开图是(       ),圆柱的底面周长就是它的(    ),圆柱的高就是它的(     )。

计算圆柱的侧面积实际就是计算(              )。

(1)一个圆柱,底面周长是1.6m,高是0.7m,求它的侧面积。

(2)一个圆柱,底面直径是5cm,高是10cm,求它的侧面积。

操作(二)有两底的圆柱展开后呈什么形状?

圆柱是由(         )和(         )三部分组成的。

圆柱的表面积包括(            )和(           )。

(3)一个圆柱的高是15厘米,底面半径是5厘米,求它的表面积。

我会用:一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)。

想:求做这样一顶厨师帽需用多少面料,实际上就是求这顶圆柱形厨师帽的(        ),厨师帽由_________和__________组成。

列式计算:。

达标检测:

六年级数学圆柱教案篇五

1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。

3会解决简单的实际问题。

4.初步培养学生抽象的逻辑思维能力。

教学重点。

理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。

教学难点。

能充分运用圆柱表面积的相关知识灵活的解决实际问题。

教学过程。

一复习旧知。

(1)底面周长2.5米,高0.6米。

(2)底面直径4厘米,高10厘米。

(3)底面半径1.5分米,高8分米。

(1)长方体的长为4厘米,宽为7厘米,高为9厘米。

(2)正方体的棱长为6分米。

3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。

学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。

学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。

二新课导入。

1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的.计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)。

2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?

(1)学生分组讨论。

(2)学生汇报讨论结果。

3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)。

4教师进行圆柱模型表面展开演示。

(1)学生说说展开的侧面是什么图形。

学生:圆柱展开的侧面是一个长方形。

(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?

学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。

(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)。

(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。

5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?

学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。

教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。

三新课教学。

1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)。

2学生尝试练习,教师巡回检查、指导。

3反馈评价:

(1)侧面积:2×2×3.14=56.52(平方分米)。

(2)底面积:3.14×2×2=12.56(平方分米)。

(3)表面积:56.52+12.56=81.64(平方分米)。

答:它的表面积是81.64平方分米。

4学生质疑。

5教师强调答题过程的清楚完整和计算的正确。

6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?

四反馈练习:试一试。

1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)。

2学生交流练习结果(注意计算结果的要求)。

3教师评议。

教师:在实际运用中四舍五入法和进一法有什么不同?

学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。

五拓展练习。

1教师发给学生教具,学生分组进行数据测量。

2学生自行计算所需的材料。

3计算结果汇报。

教师:同学们的答案为什么会有不同?哪里出现偏差了?

学生甲:可能是数据的测量不准确。

学生乙:可能是计算出现错误。

教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。

六巩固练习。

1计算下面图形的表面积(单位:厘米)(略)。

(1)底面周长是21.52厘米,高2.5分米。

(2)底面半径0.6米,高2米。

(3)底面直径10分米,高80厘米。

3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?

4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)。

六年级数学圆柱教案篇六

1.教学内容。

本节课是人教版六年小学数学课本第十二册第三单元第二小节第一课时,内容包括圆柱体的体积计算公式的推导和运用公式计算它的体积。

2.本节课在教材中所处的地位和作用。

《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。

3.教材的重点和难点。

由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。

4.教学目标。

(1)知道圆柱体积计算公式的推导过程,会应用该公式计算圆柱的体积。

(2)初步建立空间观念和逻辑推理能力。

(3)知道知识间是可以互相转化的。

二、说教法。

从形式已有的知识水平和认识规律出发,为了更好地突出重点,化解难点,扫清学生认知上的思维障碍,在实施教学过程中,主要体现以下几个特点:

1.直观演示,操作发现。

教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。

2.巧设疑问,体现两“主”

教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。

3.运用迁移,深化提高。

运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。

三、说学法。

课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。

本节课的教学,使学生掌握一些基本的学习方法。

1.学会通过观察、比较、推理能概括出圆柱体积的推导过程。

2.学会利用旧知转化成新知,解决新问题的能力。

3.学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。

四、说教学过程。

对本节课的教学,我们设计了以下几个环节,

(一)复习旧知识,为引入新知识作准备。

1.求下面各圆的面积(口算),单位为厘米。

(1)半径为1厘米;(2)直径为4厘米;(3)周长为62。8厘米。

2.什么叫做体积?怎样计算长方体的体积?

(二)导入新课,隐射教学目标。

1.观察比较:出示几组圆柱体实物(同底等高、同底不等高、等高不等底),引导学生观察比较,老师提出问题:通过观察,你想知道些什么?了解些什么?引导学生产生疑问后,教师这时交待,我们今天要学习的新知识,就能很好地解决这个问题(揭示课题)。让学生自行设疑,教师向学生交待学习任务,使学生对新知识产生强烈的求知欲望,从而进入最佳的学习状态。

2.展示学习目标,学生认读目标。

教师通过展示目标,学生认读目标,这时学生就能清楚地知道了学习的主要任务和要求,从而把教师的教学目标,转化成了学生的学习目标。使学生带着目标,有目的、有准备地学习下一步的新知识,学生就真正能成为学习的主人,也使教学变得更加明确具体,可操作、可检测。同时也能激发起全体学生的参与达标意识,学生的主体地位就充分地显示出来了。

(三)导入新课,实施教学目标。

1.设疑:要判断圆柱体积的大小,究竟哪个大?哪个小?到底圆柱的体积与什么有关呢?能不能把圆柱转化成我们学过的立体图形来计算它的体积?这里老师引导学生回忆圆的'面积公式的推导过程,教师出示投影,帮助学生思考。

2.演示操作,揭示新知。

引导学生用字母表示出来,最后让学生看书质疑。

这部分教学设计意图:根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。

关于难点的突破,我们主要从以下几个方面着手:

(1)引导学生通过观察比较,明确圆柱体的体积与它的底面积和高有关。

(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。

(3)充分利用直观教具,师生互动,通过演示操作,帮助学生找出两种几何形体转化前后的关系。

(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。

3.运用。

出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:(1)单位要统一(2)求出的是体积要用体积单位。

六年级数学圆柱教案篇七

生1:圆柱有两个底面。

生2:圆柱的底面是圆形。

〔学生举手的人不多,有点冷场〕。

师:看来大家对圆柱有了一些了解,下面我们来进一步探索圆柱的特征。

(接着,教师出示小组学习要求,让学生通过观察圆柱实物,围绕3个问题,探索圆柱的特征)。

师:通过观察你有什么发现?

生1:我发现圆柱的两个底面是圆形。

生2:我觉得圆柱的两个底面面积相等。

师:你们有办法证明圆柱的两个底面相等吗?

生3:〔该生是学困生,但在公开课中回答问题一向很积极〕如果圆柱的两个底面不相等,那么圆柱就会一头大,一头小。

师:恩(停顿),你能再说说吗?〔这时我听得不太清楚〕。

生3:两个底面不相等,一头大,一头小,会东倒西歪。

师:(没有做出评价)还有别的方法吗?

生4:我是通过把上面的盖子取下和底面相比,得出两个底面大小相等的。

师:说得太好了。(露出满意的神情)。

(之后,老师拿出一个有盖的茶叶罐,按生4的方面演示了一遍)。

板书:面积相等的两个圆。

师:圆柱的面还有什么特征?

生5:我发现圆柱的表面摸起来很光滑,永远也“摸不到头”。

师:为什么“摸不到头”?你觉得圆柱的这个面和底面有什么不同?

生6:底面是个平面,而这个面不是平面。

师:我们就说这个面是曲面。(板书:曲面)。

〔反思〕。

一、学生不是一张白纸。

“学生不是空着脑袋走进课堂的”,他们的数学学习不仅仅在数学课堂上,在生活中他们也在不断地积累数学的知识和经验。因此“要从学生已有的生活经验出发”,把“数学教学活动建立在学生的认知发展水平和已有的知识经验的基础之上”。圆柱形的物体在生活中可谓太常见了,对于六年级的学生来说,他们一定在生活中或多或少积累了一些有关圆柱的知识和经验。基于“尊重学生的已知,引导学生的未知,促进学生的发展”的思想,我提出了“你对圆柱有哪些了解?”的问题,试图通过这个问题,找到学生学习新知的生长点和联结点,达到“立足旧知,激起学生灵动思维”的目标。从学生的回答不难看出,学生对于圆柱的整体把握显然不感兴趣,他们更多的关心是某个局部,如两个底面,底面的形状等。不过令人遗憾的是,对于我的这个安排学生并没有领情,举手回答的学生不多,我所想要看到的“各抒己见”、“百花齐放”的情景并没有出现。是什么原因,造成了学生的冷场?除了学生进入高年级,由于生理、心理的诸多问题导致不爱回答问题,羞于表达,或懒于表现的原因以外,其中很重要的一个原因是我们平时的课堂上,为了追求所谓的“教学质量”,所谓的“高效”,牺牲了给学生说话的机会。渐渐的,学生也就习惯沉默了。

二、给学生发现的机会。

弗赖登塔尔说:学习数学的最好方法,就是学生亲自把知识发现出来。在本环节的教学中,老师并没有把圆柱的特征“教”给学生,而是引导学生通过观察、触摸圆柱体实物,用他们自己的眼睛和双手去发现,去感悟圆柱的特征。特别是在有一位学生发现了圆柱的两个底面大小相等后我并没有就此作罢,而是让全体学生想办法证明这个发现。通过汇报我们不然看出,由于老师给了学生这个机会,其结果是“横看成岭侧成峰,远近高低各不同”,学生从各自的视角出发,证明了圆柱的两个底面相等,展示了学生有个性的学习方式。

三、生成需要互动。

证明“圆柱的两个底面大小相等”这个环节,在备课时预想学生可能会有以下几种证明方法:1、将圆柱形容器的盖子取下与底面相比较;2、用圆柱形实物的底面在纸上画一个圆,然后将另一底面和画好的圆作比较;3、用尺子量出两个底面的直径或半径作比较。然而在课堂教学中,有许许多多的意想不到,生3的说法就没有在我的预设之中。如何应对突如其来的想法?如何把握生成?是对教师把握课堂水平的一次考验。在这个过程中,令自己感到惋惜的是在生3回答之后,我竟然没有做出任何评价。我用沉默这盆冷水,浇灭了该生创新的火花;我的无动于衷,击退了该生答题的热情。这样一来,创设一个敢于质疑,乐于表达的课堂学习气氛的想法也就成了一句空话。在后来的评课中,教研组长陈老师评价说:“生3的回答,从反面论证了圆柱的底面积相等,应该得到鼓励和表扬。”学困生这样一次精彩的回答,独辟溪径的思路,我却视而不见,至今我还后悔不已。究其原因,一方面是我当时没有听懂该生的意思,没有马上反应过来;另一方面,暴露出在我的思想深处,关注课堂的进程比关注学生多一些。因为学生的回答在我的预设之外,便敷衍了事,心里更想听到的是预设中的答案。后来这位学生的回答,我之所以满意,我想也是这种心理在作怪吧。以学生为主体,具体落实到课堂上,教师应该关注每一位学生表现,重视教师评价对学生所起到的激励作用。课堂因生成而精彩,而生成离不开师生之间的互动,只有互动才能更好的促进学生的生成,课堂才能焕发出生命的活力。

六年级数学圆柱教案篇八

1、通过对圆柱和圆锥知识的复习,进一步熟练解答基本的数学问题。

2、通过猜想、估算、验证等数学活动,应用圆柱圆锥之间的内在联系解决生活中的问题,同时培养学生的估算能力。

教学重、难点:灵活计算圆柱体的表面积,圆柱体和圆锥的体积,解决实际问题。

师:还记得哪些与圆柱圆锥有联系的计算公式?

生:回答相联系的数学公式。

师:到底同学们的掌握情况怎样呢?我们一起来做个抢答练习好吗?

生:回忆基本知识。

1、抢答练习,请说出你的思考过程。

(1)一个圆柱体底面周长12.56米,求它的底面积是多少平方米?

学生抢答,并说出自己的思考过程,教师板书。

2、解决数学问题:

(1) 出示一圆柱图

师:看到这个圆柱体,你能提出哪些有关圆柱、圆锥的数学问题?怎样解答?

竞赛的形式来解决,竞赛要求:

1、时间3分钟。

2、请把问题、列式和结果写下来。比一比看谁的问题最多、列式和结果最正确。

(1) 学生独立完成;

(2) 同桌互查;

(3) 学生汇报;

(半径是多少?周长是多少?圆柱体的侧面积是多少?底面积是多少?圆柱体的体积是多少?等底等高的圆锥的体积是多少?剩余的部分是多少?)

(4)如果出现问题下面改正。

最佳设计方案。

有一张长方形的铁板长9.42米,宽6.28米。请你设计出一种就地围装粮食最多的方案。(接口忽略不计)

学生活动,老师巡视。小组成员汇报方案。

师:如果每立方米可装粮食400千克,能算出最佳方案中大约可装多少粮食吗?

师:刚才同学们都能全身心地投入到猜想、验证、合作、估算中,老师很高兴。哪些同学可以得到仓库保管员的应聘书呢?请来谈一谈你现在的.心情及感受。

课前思考:

潘老师设计的本课时教案在教学组织形式上与以往的复习课有所不同,重在将所学知识以竞赛的形式进行系统复习,估计这样的形式会让学生对复习产生一些兴趣。

因为这一单元涉及到的知识较多,而且相关的一些实际问题也都比较复杂,所以我们在复习时还要结合班级实际情况,有针对性地开展复习。

下面补充这样几题:

市民广场砌了一个圆柱形的喷水池,从里面量水池的底面半径是5米,深1.2米。

1.

(1)这个水池占地多少平方米?

(2)要在这个水池的四周和底面抹上水泥,抹水泥部分的面积是多少?

(3)这个水池装满水,最多能装多少立方米?

(4)在池口围一圈栏杆,栏杆长多少米?

六年级数学圆柱教案篇九

本单元观察物体,动手操作,掌握圆柱和圆锥的特征及它们的组成;在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,归纳出圆柱的表面积、体积和圆锥的体积计算公式,并能正确计算;培养学生运用所学知识解决简单的实际问题的能力;初步参透数学的“转化”思想;初步养成乐于思考、勇于质疑、实事求是等良好品质。

本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。

本单元包括圆柱与圆锥的特征、圆柱的表面积、圆柱的体积、圆锥的体积等内容。

1、使学生认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。

2、使学生理解求圆柱的侧面积和表面积的计算方法,并会正确计算。

3、使学生理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。

掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。

圆柱、圆锥体积的计算公式的推导。

7课时。

六年级数学圆柱教案篇十

使学生认识圆柱的底面、侧面和高,掌握圆柱的基本特征。

(二)过程与方法。

1.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析和概括的能力。

2.通过学生自主研究,使学生掌握研究立体几何的一般方法,提高学生学习数学的积极性。

(三)情感态度和价值观。

进一步培养学生主动探索精神,发展学生的空间观念,提高学生的学习兴趣。

二、教学重难点。

教学重点:掌握圆柱的基本特征。

教学难点:高的认识。

三、教学准备。

教师:课件,长方体模型,圆柱模型,卡纸做的长方形(长10cm,宽5cm),小棒(可用筷子代替),备用剪刀若干。

学生:每生自带一个圆柱形物体,草稿纸。

六年级数学圆柱教案篇十一

优点:

我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。这样学生亲身参与操作,有了空间感觉的体验,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。

不足:

再教设想:

在课的.设计上以学生为主、发挥学生的主体作用,要充分展示学生的思维过程,在学生动手实践、交流讨论和思考的时间上教师应合理把握。

将本文的word文档下载到电脑,方便收藏和打印。

六年级数学圆柱教案篇十二

1、结合具体的情境和实践活动,理解圆柱体体积的含义。

2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3、培养学生初步的空间观念和思维能力;。

理解和掌握圆柱的体积计算公式,会求圆柱的体积。

理解圆柱体积计算公式的推导过程。

圆柱体积演示教具。

一、旧知铺垫。

1、谈话引入。

最近我们认识了圆柱和圆锥,还学会了计算圆柱的表面积。现在请看老师的这个圆柱形杯子和这个圆柱比较,谁大?这里所说的大小实际是指它们的什么?(生答)。

2、提出问题:什么叫体积?我们学过那些图形的体积?怎么算的?(生答师随之板书)。

二、自主探究,解决问题。

(一)认识圆柱体积的意义。

圆柱的体积到底是指什么?谁能举例说呢?

(二)圆柱体积的计算公式的推导。

1、我们学过长方体和正方体体积的计算,圆柱体的体积跟什么有关呢?你会有怎样的猜想?(小组内说说)。

2、回忆圆面积的推导过程。

3、教具演示。

(1)取圆柱体模型。

(2)将圆柱体切成两半。

(3)分别将两半均分成若干小块。

(4)动手拼成一个近似的长方体。

(三)归纳公式。

用字母表示:(板书:v=sh)。

三、巩固新知。

1、这个杯子的底面半径为6厘米,高为16厘米,它的体积是多少?

审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。

现在这个杯子装了2/3的水,装了多少水呢?

2、完成“试一试”

3、“跳一跳”:统一直柱体的体积的计算方法。

四、课堂总结、拓展延伸。

五、布置作业。

练一练1-5题。

六年级数学圆柱教案篇十三

圆柱的认识是人教版九年义务教育六年制教材《数学》第十二册的教学内容。圆柱是人们在生产、生活中经常遇到的几何形体,认识圆柱有利于进一步发展学生的空间观念,为进一步学习和解决实际问题打下基础。在学习本节内容之前,学生对于认识立体图形已经有了方法上的基础。基于此,我以实物为探究素材,通过三个层面的活动来组织教学。

一、利用实物初步认识感知圆柱特征。

师:让学生说说生活中哪些物体的形状是圆柱体?

生1:水管、日光灯。

生2:茶叶罐。

生3:铅笔。

生4:应该是没有削过的铅笔。

……。

请大家拿起圆柱形的物品,先仔细看一看、摸一摸、滚一滚,然后告诉大家,你发现了什么?(学生操作,并把自己发现的在小组里交流。)。

学生回答:1、上、下两个面都是圆形的。

2、它的侧面是一个曲面。

3、从上到下都一样粗。

圆柱在生活中是比较常见的物体,因此学生很容易找到圆柱形的实物,我组织学生通过观察手中的圆柱形状的实物,初步感知圆柱的特征。学生活动的方式主要是观察和触摸,其活动是浅层次的,通过看一看、摸一摸、滚一滚、画一画等方法让学生对圆柱形物品的特征产生感性认识,建立初步的表象,同时也激发了学生的学习兴趣。

二、制作圆柱,深入了解圆柱特征。

为了让学生更深入地了解圆柱的特征,在学生初步感知之后,让学生仿照手中的实物制作圆柱。

师:请同学们仿照所带实物的形状,分小组制作出一个圆柱体。

学生操作,师课间巡视,参与合作。

生展示自己的合作成果,并汇报制作过程。

生1:我们组拿一张长方形硬纸围着茶叶罐绕一圈,像是给它“穿衣服”似的,剪去多余的,粘好做成侧面。再将茶叶罐的底面画下并剪下来,做成圆柱的底面。

生2:我们组是先用一张长方形纸做圆柱的侧面,再将这个卷好的直筒竖在硬纸上,沿着圆曲线画圆,剪下来粘上就可以了。

生3:可以量一量长方形的长,计算出圆柱的底面半径。(该组学生事先预习发现的)。

《数学课程标准》认为:“有效的数学学习活动不能单独地依赖模仿与记忆,应通过学生亲自动手实践,自主探索与合作交流是学习数学的重要方式。在这一步骤中,充分给予学生一定的空间,让学生主动探索。由于学生向来喜欢手工制作,因而这一环节大家都兴趣盎然,在组长的带领下分工合作,体验到操作的乐趣。并且在活动中积极动脑思考,找寻合适的方法。

生1:圆柱的上下两个底面大小一样。

生2:圆柱的底面是完全相同的两个圆。

生3:圆柱的侧面展开后是长方形。

生4:长方形的长就是圆的的周长。

生5:长方形的宽就是圆柱的高。

师:圆柱的侧面展开后除了可以是长方形之外,还可以是什么图形?

生:还可以是平行四边形,不信你斜着剪试试。

生:还可以是正方形。

教师鼓励学生自己试着剪。

这些较难解决的重点和难点在学生自己探索的过程中迎刃而解了,“我看见了,但可能忘掉;我听到了,就可能记住了;我做过了,便真正理解了。”让学生亲自动手做圆柱体,议一议,说一说,让他们用自己的眼睛去观察,用自己的耳朵去倾听,用自己的双手去操作,用自己的头脑去思考,实现知识的“再创造”。在本环节中以“活动”为基础,组织学生“经历”了一个探索圆柱特征的过程,是在一个让学生“经历”、让学生“体验”、让学生“探索”的思想指导下完成的。从整个学习过程来看,使学生对圆柱的特征从不完整、表面的认识向较深层次的理解、整体上的把握发展,达到了事半功倍的教学效果。

三、解决实例巩固应用圆柱特征。

让学生运用己有知识去解决“水桶、水杯、油桶”为什么要制成圆柱形?

生1:我明白了,油桶是圆柱形,移动时不会破裂。

生2:水杯如果不是圆柱,喝水时它的棱角会弄伤口腔,而且水还会往两边流。

生3:油桶制成圆柱体,是因为圆柱的侧面是曲面利于滚动,底面盖子是圆的,易于拧紧。

师:有一张长方形的硬纸,长6.28分米宽3.14分米,将它做成一个圆柱的侧面,这个圆柱的底面半径可能是多少?请你帮忙算一算。

生1:可以将长作为底面周长,6.28÷3.14÷2=1(分米)。

生2:可以将宽作为底面周长,3.14÷3.14÷2=0.5(分米)。

这一环节体现了数学只有回归生活,才会显示其实用价值的原则,通过具体实例让学生把学到的知识灵活运用于实践之中。

本节课中课堂始终以“做数学”作为师生互动的基础和纽带。数学学习应成为学生经历一个真正的“再发现”和“再创造”的过程,体验“做数学”。在这节课认识圆柱特征安排三个层次:第一层次是认识生活中常见的圆柱体实物,通过观察、触摸得出圆柱的初步特征及了解圆柱的几个面。第二层次在初步认识圆柱的特征之后,自己尝试制作圆柱。因为学生对制作非常感兴趣,这一过程深受学生喜爱,在初尝成果的同时不知不觉地掌握了圆柱的特征。这比单纯地直接由教师讲解示范,学生的体验深刻得多。第三层次是让学生利用刚刚所学知识解决实际问题。在教学中先让学生动手尝试,学生有了成功制作圆柱的情感体验,使课堂变得富有生机和充满活力,使得接下来的学习充满了挑战性。学生在亲自参与的思维和操作活动中,经历了一个实践和创新的过程,枯燥的学习变得生动有趣。

以活动为学习主线,以操作为本节课主要形式,以学生亲身体会知识,自主实践获得经验是本堂课的特点,教师努力营造了一个让学生自己发现问题、分析问题、解决问题的良好氛围,学生始终成了学习的主人,而教师真正把学习的时间、空间还给学生,让学生拥有自己探索的机会。

六年级数学圆柱教案篇十四

《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。根据本节课的性质特点和六年级学生以形象思维为主、空间观念还比较薄弱的特点,我确定本节课的教学目标为:

1、知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。

2、过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3、情感、态度、价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。

教学的重点和难点:

由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。

(一)学情分析。

六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。

(二)、选择教法,实践课题。

《新课程标准》指出:数学教学应联系现实生活,使学生从中获得数学学习的积极情感体验,感受数学的力量。同时我紧密结合自己的课题“培养学生自主合作学习能力与学生数学素养的策略研究”、“在数学课上如何激发学生的学习兴趣”。通过教学实践,使学生学会自主学习和小组合作,培养学生的创新精神和小组合作及应用数学意识。因此,在本节课中,我认为运用活动教学形态,多媒体演示形态,采取“引导-合作-自主—探究”的教学方法,使每个学生都能参与到学习中,感受到学习的乐趣,从而突破本课的难点。

现代教育心理学认为:小学生思维的发展是从具体形象思维向抽象思维过渡的。因此,按小学认知规律从“具体感知-形成表象-进行抽象”的过程,我打算主要采用观察发现法、实验法,以及分组讨论、合作学习等形式,并运用多媒体课件辅助教学,让学生在观察、感知各种实物的基础上,动手操作,分组讨论、合作学习,教师恰当点拨,适时引导等方法及手段,激发学生的学习兴趣,调动学生的学习积极性,让学生通过动手操作、观察、实验得出结论,体现了以学生为主体、教师为主导的教学原则。

教师活动:创设情境协作指导拓展延伸。

学生活动:操作感悟自主探究实践应用。

具体为三个环节进行教学:

1.直观演示,操作发现。

让学生充分利用直观教具观察、比较、动手操作、讨论交流,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。

2.巧设疑问,体现两“主”

教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。

3.运用迁移,深化提高。

运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。

现代课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。

本节课的教学,使学生掌握一些基本的学习方法。

1.学会通过观察、比较、推理能概括出圆柱体积的推导过程。

2.学会利用旧知转化成新知,解决新问题的能力。

3.学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。

具体教学程序:

(2)你能想办法计算出这些水的体积吗?

(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。

2、创设问题情景。

如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(板书课题:圆柱的体积)通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成“任务驱动”的探究氛围。

(二)、新课教学:

设疑揭题:同学们想一想,我们当初是如何推导出圆的面积计算公式的呢?课件演示推导圆的面积公式的转化过程。我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?引导学生小组合作交流、观察、既而动手操作。沿着圆柱底面把圆柱切开,可以得到大小相等的16块或更多块,启发学生说出转化成我们熟悉的长方体。同时引导学生观察转化前后两种几何形体之间的内在联系,圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?学生交流、进行验证、自己推导出圆柱体体积计算的公式。教师再用多媒体课件演示验证整个的具体操作过程,最后让学生说一说圆柱体计算公式的整个推导过程。引导学生用字母表示出来。

根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,亲自完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。

关于难点的突破,我主要从以下几个方面着手:

(1)引导学生自己动手通过观察比较,明确圆柱体的体积与它的底面积和高有关。

(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。

(3)充分利用直观教具,师生互动,小组合作,通过演示操作,帮助学生找出两种几何形体转化前后的关系。

(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。

3.运用。出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:(1)单位要统一(2)求出的是体积要用体积单位。在掌握了圆柱体积计算的方法之后,安排例1进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。

(三)巩固练习,检验目标。

1.练一练1题:计算各圆柱的体积,目的是让学生进一步理解巩固圆柱的体积公式。

2.完成练习第2题。通过练习,巩固新知识,加深对新知识的理解,把所学知识进一步转化为能力,在练习中发展智力,培养优良的思维品质和学习习惯。

3.变式练习:已知圆柱的体积、底面积,求圆柱的高。

这道题的安排是对所学内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定式。

4.动手实践:让学生测量自带的圆柱体。

这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。

(四)总结全课,深化教学目标。

结合板书,引导学生说出本课所学的内容,我是这样设计的:这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?然后教师归纳,通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来丰富自己的头脑,思考问题。

本节课我采用的是图示式板书,这样能让学生清楚地看出圆柱体积公式的推导过程,以及两个形体间的密切联系,同时便于学生对于公式的记忆和理解。

【本文地址:http://www.xuefen.com.cn/zuowen/18292433.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档