教案应当注重反思和改进,及时调整和完善教学计划。教案的步骤应清晰明了,遵循教学的逻辑顺序。以下是小编为大家收集的教案范例,仅供参考,大家一起来看看吧
小学五年级数学教案找规律篇一
1.使同学借助计算器,探索并掌握“一个因数不变,另一个因数乘几,积也随着乘几”的变化规律,能应用规律解决简单的实际问题。
2.让同学体验“猜测-验证”这一探索数学规律的基本过程和方法,从而发展同学思维,培养科学的探究素质。
3.使同学在探究过程中获得胜利的喜悦,增强学习数学的兴趣和自信。
一、导入因数。
12。
12。
12。
12。
120。
120。
120。
因数。
2
4
20。
400。
2
40。
200。
积
指名口答,并说说怎么想的。
二、猜测。
同学猜测。师引导说出需举例验证。
三、验证。
1.师引导运用表格来举例验证。
因数。
因数。
积
积的变化。
36。
30。
1080。
指名举例,师板书,在此过程中指导填表:积怎样算,积的变化是什么,又怎么表示。
师:观察整张表格,你发现了什么?符合猜测吗?
小结:在36×30=1080中,一个因数不变,另一个因数乘一个数,积也会乘这个数。
2.在其他乘法算式中是否也存在这样一个结论呢?再次猜测、验证。
同学任意举例填表。
因数。
因数。
积
积的变化。
展示作业纸,你发现了什么?符合猜测吗?
四、应用。
1.用规律解释:
(1)口算:24×30=?你是怎么算的?你能用刚才的规律解释吗?
(2)笔算:250×15=?(简便算法)。
2.用规律计算:“想想做做”1、2。
3.数学日记。
4.自然界的计算专家。
五、总结。
师:你能总结一下今天学习的内容或学习的感受,为这节课定个题目吗?
六、拓展(导入中的口算题)。
因数。
12。
12。
12。
12。
120。
120。
120。
因数。
2
4
20。
400。
2
40。
200。
积
24。
48。
240。
4800。
2400。
4800。
24000。
你还看到了什么?你想说点什么?
大家的表示让我想起这样一句话“仅仅拥有知识的人从石头里只能看到石头,拥有智慧的人就能从石头里看到风景,从沙子里看到灵魂”。
小学五年级数学教案找规律篇二
教学内容:
北师大版小学数学五年级上册。(教科书第82、83页。)。
课标分析:
本节课的主要内容是使学生能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系,发展学生的归纳与概括的能力,渗透数学建模的思想,从中感受数学文化的魅力。
教材分析:
本课的内容是独立成篇的,这节课与本单元的其它知识之间没有必然的前后联系,是一节相对独立的数学活动课。教材提供的学习内容对于五年级的学生来说比较容易。但本课知识虽然简单,却是帮助学生建立数学模型的好题材,即是让学生能在观察活动中,发现点阵中隐含的规律,又是让学生体会到图形与数的联系,发展学生归纳与概括能力,渗透数学建模思想。
学生分析:
1、学生的知识基础。
五年级学生在数的方面,已经认识了自然数和整数,倍数因数,奇数偶数,质数合数,小数、分数等。在形的方面,对长方形、正方形、平行四边形,三角形,梯形的特征也有了深刻的认识。但是学生对利用图形研究数,寻找数和图形之间的联系,还有困难。学生对线围成的基本图形有深刻的认识,但是点阵中的几何图形,只有点,没有线,学生要利用自己的想象加以补充和延伸,这对学生来说会感觉比较陌生。
2、学生的能力基础。
学生在一年级学过找规律填数,二年级学过按规律接着画,四年级学过探索图形的规律。因此五年级学生具备一定的观察能力、抽象概括能力、逻辑推理能力等。然而小学生的思维特点是从具体形象思维逐步向抽象思维过渡,这种抽象逻辑思维在很大程度上仍然依靠感性经验的支持。而这节课完全是数学思想、数学方法的教学,极为抽象,因此对部分学生来说还是会感觉有点困难。
教学目标:
1.能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系。
2、培养学生推理、观察、归纳和概括能力。
3、感受“数形结合”的神奇之美,并获得“我能发现”之成功体验。
教学重点:
教学难点:
总结概括规律。
教学准备:
课件,五子棋,磁扣等。
教法学法:
教学过程:
一、展示图片,引出课题。
1、展示图片,(投影)今天老师给大家带来了几幅图片,请同学们欣赏。
师:这些图片有什么特点?
生:好像都是由点组成的。
师:是呀,不要小看了这样一个小小的点,点是几何图形中最基本的图形,许许多多的点按照一定的规律排列起来就构成了点阵。
早在20xx多年前,古希腊的数学家们就是从这样一个小小的点开始研究,并且发现了有许多个这样的点组成的点阵中许多有趣的规律。这节课,我们也来尝试研究点阵的规律。(板书课题――点阵中的规律)。
二、细心观察,探求规律。
1、出示正方形点阵,探索正方形点阵的规律。
a、第一个规律。
师:(出示点阵),这就是他们当时研究过的一组点阵,请大家用数学的眼光仔细观察,思考这样两个问题:(出示思考题)(指名读)。
(1)每个点阵可以看成什么图形?
(2)每个点阵中分别有多少个点?你是怎样观察出来的?
小组讨论,指名回答。
师:每个点阵可以看成什么图形?(正方形),同意吗?
生1:我认为第一个点阵不能看成一个正方形,是一个圆形。
师:其他同学也同意他的观点吗?
师:其实第一个点阵虽然只是一个点,但是我们可以把它看成边长是1的小正方形。是吗?
师:每个点阵中分别有多少个点?
生2:第一个点阵有1个点,第二个点阵有4个点,第三个点阵有9个点,第四个点阵有16个点。
师:你能说一说你是怎么得到每个点阵中点的个数的吗?你是怎样观察出来的?
生:我是通过数出每个点阵中点的个数得到的。
师:谁还有不同的方法?有没有更快一些的方法?
生:我是通过计算得到的。
师:能具体说一说是怎样通过计算得到的吗?
生:第一个点阵有1个点;第二个点阵横着看,每行有2个点,有2行,共有2×2=4个点;第三个点阵每行有3个点,有3行,共有3×3=9个点;第4个点阵每行有4个点,有4行,共有4×4=16个点。
生:我们分析了前面几个点阵图的特点,认为在这个点阵图中,点的个数的规律是:1×1,2×2,3×3,4×4,也就是n×n师:这种数法真是又快又方便!照这样下去,能不能根据你们的发现画出第5个点阵呢?(学生画,指名说,教师投影显示)。
师:第6个呢、第7个第100个点阵的点的个数都能瞬间求出来。也就是说:“是第几个点阵,就用几乘几”(板书)。
师:如果一个点阵它有81个点,它应该是第几个点阵?每行有几个点?每列有几个点?
(这个画点阵的过程虽然简单,但体现了由数――形的转换。培养了学生主动进行数形转换的意识。)。
b、第2个规律。
师:刚才我们是怎样观察的?(横着数和竖着数)。
正方形点阵还有没有其它的观察方法呢?能不能换个角度观察?
“斜着看又可以得到什么新的与序号有关的算式呢?请同学们独立思考,写出算式,然后汇报。”(投影)。
观察并思考。
(1)分别用算式表示每个点阵点的个数。
(2)你发现了什么规律?
学生汇报,教师板书。
第1个:1=1。
第2个:1+2+1=4。
第3个:1+2+3+2+1=9。
第4个:1+2+3+4+3+2+1=16。
第n个:1+2+3+n++3+2+1。
师:“谁发现什么规律呢?”
生:“如第2个点阵就从1加到2再加回来,第3个点阵就从1加到3再加回来,第4个点阵就从1加到4再加回来”。
师小结:“第几个点阵就从1连续加到几,再反过来加回到1”这个规律。
刚才是横竖数,“第几个点阵就是几乘几”。
c、第3个规律。
师:我们把第1个折现内的点看成第一个点阵,该用什么算式表示?其他呢?小组讨论,列出算式,全班汇报。
小组代表汇报。
生:(总结)每用折线画一次后,点阵中的个数是。
1=11+3=41+3+5=91+3+5+7=16。
师:(总结)这样划分后,点阵中的规律是:1,1+3,1+3+5,1+3+5+7,
师:第1个点阵是1,第2个点阵是在第1个的基础上多3个,第3个点阵呢?有的学生可能说:“这次都是奇数相加。”
教师问:“从奇数几加起?加几个?是随意的几个奇数相加吗?”
通过这样的提问,引导学生说出“第几个点阵就从1开始加几个连续奇数”。
师:真了不起。这种划分方法,我们可以叫做“折线划分法”。
第几个点阵,就是从1开始加几个连续奇数。
通过研究点阵,我们发现这组正方形点阵中有很多规律。这3种规律是从不同的角度观察出来的,无论你从什么角度去观察,得到的结论都与它的序号有关系,所以我们以后再研究点阵的时候,都要想一想跟它的序号有什么关系,这样才能更简单。
(在这里,教师不是让学生发现规律就结束了,而是让学生活学活用这些规律。让学生体会到我们刚才发现的正方形点阵中的规律,其实就是一个完全平方数的规律,它可以应用到所有的完全平方数。)。
(在刚才的新课教学的环节中,学生经历了观察、思考、合作、交流、表达等过程,培养了观察能力、想象能力、概括能力。并深刻体验到数与形,数与式,式与式之间的联系,培养学生利用数形结合的思想来解决问题的意识和能力。)。
三、牛刀小试。
生:竖排×横排:1×2,2×3,3×4,4×5师:与它们的序号有什么关系?都是序号和它后面相邻的两个自然数的乘积。在点子图上画出第5个点阵。
小组交流,研究:上面的点阵还有其他的规律吗?
生:(1)两个两个数:1×2,3×2,6×2,10×2,15×2(2)斜着一层一层数:1+1,1+2+2+1,1+2+3+3+2+1,1+2+3+4+4+3+2+12.师:同学们真善于发现和创造规律。除了正方形和长方形点阵外,还有很多其它形状的点阵,我们研究他们,同样会有很大的收获。看看,这是一组什么形状的点阵?(课件出示试一试第2题三角形点阵图)你能用一层一层数的方法,表示你发现的规律吗?展示,根据你发现的规律画出第五个点阵。
生;1,1+2,1+2+3,1+2+3+4。
师:其他同学看明白了吗?有什么规律?(第几个点阵,就从1加到几。)。
上面的点阵还有其他的规律吗?学生思考,指名说。(投影显示)。
四、兴趣优在:(课件出示教材第83页练一练)。
第2题:按规律画出下一个图形。
师:这道题就象梅花桩,指第一个,走了几个梅花桩?
生:3个。
师:指第二个,共走了几个梅花,增加几个桩?
生:7个,增加了4个。
师:指第三个,共走了几个梅花桩,又增加了几个桩?
生:13个,又增加了6个。
师:如果再往下走,你们想想会再多走几个桩,你能写出算式吗?写完算式,学生自己独立画出点阵。小组合作,讨论点阵中蕴涵的规律,然后汇报交流。
生:交流,探索总结规律。
(这一题与前几个题区别很大,前几题的点阵可以看作规则的几何图形,这一题点阵图不规则,要画出下一个图形,既要抓住数量的变化,又要抓住形状的变化。进一步体会到数形结合的重要。)。
五、知识拓展。
欣赏生活中的点阵图片。思考:生活中有哪些地方运用点阵的知识?(座位、站排做操、楼房的窗子等。
师:点阵不只是点,很多有规律的排列,都可以看成点阵。
投影跳棋、围棋、十字绣、花坛里的鲜花、水晶灯等图片。
六、课堂小结。
师:同学们今天学习了这么多的点阵,有没有收获,哪些收获?
七、课后操作。
自创新的点阵图,并说出点阵规律。
小学五年级数学教案找规律篇三
课件、投影仪。
教学环节
设计意图
教学预设
一、复习准备
通过两个题的复习,为这节课的学习做铺垫,这节课会用到这些解题的方法。
1.读出下面各小数,并说出它们的意义。
0.3,0.25,0.14,1.34,4.06,0.08,1.042,0.315。
2.求下面各题的商。(小数、分数。)
3÷4 15÷45 1÷8
5÷10 9÷10 6÷15
在我们的日常生活和进一步的学习中,常会遇到一些比较分数和小数大小的实际问题,今天我们就来学习怎么比较分数和小数的大小。(板书课题)
二、探索发现
通过两种动物的赛跑比赛,沟通分数与小数的联系,让学生在自主的学习中发现小数与分数互化的方法。
先让学生自己来做,教师巡视,看学生的计算情况,同桌之间可以互相交流,然后找学生回答自己的作法。
生1:根据小数的意义,把0.9写成分数,0.9=,这时只要比较和这两个分数的大小即可。
生:在比较和的大小时,需要先把这两个数通分,它们的公分母是10,所以,,由此可得0.9,所以羚羊比鸵鸟跑的快。
师:这种方法很好,是先把小数化成了分数,然后再比较分数的大小。谁还有不同的方法?
生一齐:也可以把分数化成小数,然后比较两个小数的大小。
师:对,谁是用这种方法做的,来说一说。
生:把化成小数是:=4÷5=0.8,0.8
师:通过上面的分析过程,我们可以看出,在比较分数和小数的大小时,既可以把分数化成小数,也可以把小数化成分数。
[议一议]:怎样把分数化成小数?怎么把小数化成分数?
我们再来看下面的几个例题,通过例题我们来总结规律。(教师演示课件“分数与小数的互化”)
三、课堂练习
通过练习熟练这节课所学知识。
课本p86“试一试”:
1.把下面的分数化成小数。(除不尽的保留两位小数)
2.把下面的小数化成分数。(能约分的要约分)
0.4 1.5 0.12 2.8
四、课堂小结
这节课你有哪些收获,同桌之间相互交流一下。
五、课后作业
课本p86“练一练”1、2、3题。
板书设计:
课题:分数、小数互化
1.复习
2.1分钟赛跑
3.例题
4.课堂练习
小学五年级数学教案找规律篇四
“量一量、找规律”是小学五年级“实践与综合应用”领域中的一节主题性学习内容。“实践与综合应用”领域是《课标》的一个特色,向学生提供了进行一种实践性、探索性和研究性学习的课程渠道。这一领域沟通了生活中数学与课堂上的数学的联系,使得几何、代数、统计和概率的内容有可能以交织在一起的形式出现,使发展学生综合应用知识的能力成为必须的学习内容,这对于改变学生的学习方式,让学生在学习过程中接触到一些有研究和探索价值的题材和方法,帮助学生全面认识数学、了解数学,使学生在未来的职业和生活中发挥作用等方面具有重要意义。就本人教学《量一量、找规律》这节课的课堂实况,我认为这节数学活动课,教师要在课堂上创设让学生自主探索、亲身实践、合作交流的氛围,让学生在活动中思考,在合作中探索,从而掌握知识、发展技能、获得愉快的心理体验。
一、在活动中掌握知识与技能。
在这节课中,调动了每一位学生的学习积极性,让他们“量”得有效,“想”得有价值,整节课落实“动”、注重“趣”、渗透“用”。“动”是实现目标的基础,只有让学生亲自动手“量一量”,使学生在活动过程中亲身体验,学生才能发现、概括和运用规律,而通过自己动手操作发现了规律,不论在学习情感上,还是在学习兴趣上都比教师直接给出要强烈的.多;“趣”是学生课堂的“调味品”,用有趣的数学活动吸引学生参与,有了它,学生才愿学、乐学、爱学;“用”是活动的目的,发现规律的目的在于灵活应用规律,“用”也是手段,让学生在应用中不断巩固提高知识技能。
二、教学目标明确化。
活动课的教学往往容易形式化,只顾着让学生体验过程,而忽视知识目标在课堂教学中的最终实现。这节课在教学时就摆脱了这个不利的问题,“双管齐下”,既有过程性的目标,也把握住了知识、技能目标,从而较好地体现了《课标》对数学教学所作的要求。课堂上充分利用了实验记录表及关系图,为学生提出明确的活动目的和要求,使实验的过程有步骤、有计划地进行,增强了学生科学实验的意识。填写实验记录表、绘制关系图的过程,使自主学习更加落实,也使执笔者和参与探索者增强了责任感。
三、在小组合作中共同提高。
合作学习、生生互动是学生获得提高的有效途径,是教学获得成功的不可缺少的重要因素。在课堂上以小组为单位,每三位学生一组,并按学习能力上的不同进行合理组合,以求在课堂上“人人有事做”,从而让各类学生得到应有的发展。学生在这样的小组中进行合作学习,成员之间能互相交流、互相尊重,既洋溢着温情友爱,又充满竞赛气息。在小组中,同学之间通过提供帮助而满足自己、影响别人的需要,每个人有机会发表自己的观点,也乐于倾听别人的意见,学生们一起合作融洽,学习因此变得更加愉快,从而激发了学习数学的兴趣,提高了学习效益。
当然,本节课的教学也存在着诸多的不足,如对知识、技能的拓展不够深入、课堂上的引导过于零散,造成总结性不强等等,对此会引以为重,以便在今后的课堂教学中寻求完善。
小学五年级数学教案找规律篇五
本节课是在学生已经学学会用计算器进行计算的基础上,通过用计算器计算来探索与发现算式背后的规律。教材例题3,先让学生用计算器计算前面三题,然后进行观察比较、分析思考,找出算式中蕴含的规律,再根据规律直接填出后面四道算式的得数。本节课的重点是鼓励学生对算式及其得数的特点进行比较,从中发现一些数学规律。教学时,充分利用学生已有的经验,放手让学生通过自主探索、合作交流等方式,比较算式的特点,从而发现一些数学规律。
苏教版2013义务教育教科书四年级数学下册第42页例3和“练一练”,完成第43页练习七第5-8题。(第四单元第2课时)。
1.使学生探索一些特殊算式计算的规律,能根据发现的规律写出同类算式或同类算式的得数,能用计算器验证一些算式计算得数的规律。
2.使学生经历用计算器计算、观察、比较和抽象、概括计算规律的活动,体会数学规律的发现过程,积累探索规律的经验,培养观察、比较和抽象、概括等思维能力,提升归纳推理能力。
3.使学生在发现一些特算式计算规律的观察中,感受数学的奇妙,产生对数学的好奇心,激发学生学习数学的兴趣和积极性。
发现、归纳算式的特点和蕴含的规律。
1.师:上节课,我们认识了计算器,学会了用计算器进行计算。
出示题目:用计算器计算下面各题。
学生独立完成。完成后,指名学生回答,并说说计算时的注意点。
【设计意图】通过用计算器进行四则运算的计算,为课堂中用计算器探索规律作准备。
2.游戏激趣。
同学们,你们喜欢做游戏吗?我们用计算器玩“猜数字”游戏。
从“1—9”这9个数字中选一个你喜欢的数字记在心里,不能说出。接着,在你的计算器上连续输入9次,然后用它除以“12345679”,把得数告诉老师,老师就能知道你最喜欢的数字是几。同学们,相信吗?请你试一试。
【设计意图】利用游戏导入,激发学生的学习兴趣和求知欲。同时,也为新知设疑,为本节课的学习埋下伏笔。
3.导入新课。
今天我们要用计算器来寻找算式中的蕴含的规律,探索其中的奥秘。(板书课题:用计算器探索规律)。
1.教学例3。
出示第42页例3。
26640÷111=。
26640÷222=。
26640÷333=。
学生读题,并要求用计算器独立计算。
交流汇报得数,教师板书。
26640÷111=(240)。
26640÷222=(120)。
26640÷333=(80)。
2.观察比较,发现规律。
师:观察这三道题之间有什么关系,有没有什么规律呢?
请将下面两题和第一题比较,看被除数、除数和商是怎样变化的,你有什么发现?完成表格。小组讨论,交流发现。
交流:你发现什么规律吗?
学生1:第二道题和第一道题相比,被除数不变,除数乘2,商等于原来的商除以2。
学生2:第三道题和第一道题相比,被除数不变,除数乘3,商等于原来的商除以3。
学生得出:被除数不变,除数乘几,得到的商就等于原来的商除以几。(板书)。
3.运用规律并验证。
引导:如果除数继续变化,商会怎样呢?这个规律适用于其他算式吗?(出示后四道题)。
26640÷444=26640÷555=。
26640÷666=26640÷888=。
根据发现的规律,你能直接填出下面各题的得数吗?
学生直接填写得数。
提问:填写这几道算式的得数时,你是怎么想的?
填写的得数对不对呢?请你用计算器验算,看做对了没有。
4.归纳小结。
通过计算器计算,我们发现在除法算式里,被除数不变,除数乘几,得到的商等于原来的商除以几。反过来,被除数不变,除数除以几,得到的商等于原来的商乘几。
【设计意图】引导学生经历“计算器计算—发现规律—应用规律—计算器检验”的探索过程,初步体验除法算式中商的变化规律,体会计算器强大的计算功能,积累一些探索和发现简单规律的经验,感受数学的形式美和结构美,激发用计算器计算的兴趣。同时,帮助学生进一步加深对除法运算的理解,又有利于学生体验探索规律的过程,积累归纳、类比等数学活动经验,感受学习成功的喜悦。
1.完成“练一练”
出示第42页“练一练”。
111111÷37037=。
222222÷37037=。
333333÷37037=。
444444÷37037=。
666666÷37037=。
999999÷37037=。
(1)先让学生用计算器算出前三题的得数,交流并呈现得数。
教师板书:111111÷37037=(3)。
222222÷37037=(6)。
333333÷37037=(9)。
(2)观察、比较算式中各数的变化。
(3)提问:比较这几道算式,你发现了什么规律?
学生发现:除数不变,被除数乘几,得到的商就等于原来的商乘几。(板书)。
(4)应用规律完成后三题,并说说你是怎样想的。完成后,再用计算器验证。
【设计意图】让学生再次经历探索和发现规律的过程,并在这一过程中进一步体验由特殊到一般、由此及彼的认识过程,积累探索简单数学规律的经验,感受计算器的学习与应用价值,增强探索意识和创新意识。
2.完成“练习七”第5题。
出示第5题。
34×357-9018÷48。
学生用计算器完成。输入过程中,输入要准确。
“开火车”的形式,指名学生回答。看谁回答得又快又好。
【设计意图】本题呈现的是一组由四则运算构成的计算流程图,学生按要求用计算器进行运算,有利于学生进一步巩固用计算器计算的步骤,形成必要的操作技能。
3.完成“练习七”第6题。
(1)出示题目。
要求学生结合方格中的数,观察每组算式的特点。
交流:你发现每组算式的特点了吗?各有什么特点?举例说一说。
引导说出:这里的每道算式里的数都是按表里各数排列位置的相应顺序列出的。每组里两道算式的数字和符号顺序正好相反,把其中一道算式的数字和符号的顺序倒过来,就是另一道算式。
(2)计算比较,发现规律。
让学生计算每道算式的得数并填写。
提问:比较各道算式的得数,你发现了什么现象?
引导:你能再写出一组这样的算式吗?自己再列出一组两道连加算式,算出得数,或者一组三位数连加的算式计算。
交流:你列的什么算式,得数是多少?
提问:这里的算式和得数符合你发现的规律吗?你对上面这些算式和计算有什么感受?
(3)分析表格,延伸思考。
大家感觉这里的计算非常有趣,
提问:你发现什么了吗?方格中横行、竖行和斜行的三个数的`和是多少?
三个数的和都是15,三个两位数的和是165,三个三位数的和是1665。它们之间有什么规律呢?感兴趣的学生课后可以讨论。
【设计意图】本题取材于我国古代神话传说中的“洛书”,它是世界上最古老的幻方,是我国古代劳动人民智慧的结晶。本题重在发展学生观察、比较、分析、类比、归纳的能力,感受数学的神奇和美妙,激发对数学学习的兴趣。
5.完成“练习七”第7题。
1×8+1=91234×8+4=。
12×8+2=9812345×8+5=。
123×8+3=987123456×8+6=。
先出示左边三题的算式,让学生观察算式有什么特点。
根据规律,直接写出右边算式的得数,再用计算器验证。
提醒:乘加算式要注意运算顺序。
【设计意图】通过练习,在巩固计算器的使用方法的同时,让学生进一步感受计算器的作用,并培养学生观察、分析、推理的能力。
6.完成“练习七”第8题。
出示第8题,
1×9+2=。
12×9+3=。
123×9+4=。
1234×9+5=。
×+=。
×+=。
让学生先用计算器算出前四题的得数,再直接填写后两题横线上的数。
【设计意图】让学生通过计算,观察,总结出算式各部分的关系,进一步巩固用计算器进行四则混合运算的步骤和方法,积累一些类比与归纳推理的经验,发展初步的合情推理能力。
7.科学探索。
学生选择一个三位数进行计算,发现有没有什么奇妙的现象。如果还没有发现,再继续这样算。
提问:你发现了什么奇妙的现象?
引导:任何不同的数都会这样吗?再任意找一个三位数这样试一试,看看结果这样。
【设计意图】这是一道开放性的题目,意在巩固学习的新知和培养学生对知识拓展延伸的应用能力。学生任意写的数字可能计算两次或三次就可以找出规律,或者更多次才能找出规律。因此,在计算的过程中,要充分鼓励学生,树立能够解决问题的信心。
8.游戏揭秘。
师:同学们还记得老师在课的开始和大家做的“猜数字”游戏吗?
完成本题后,你就知道其中的奥秘了。
出示题目。111111111÷12345679=。
222222222÷12345679=。
333333333÷12345679=。
444444444÷12345679=。
555555555÷12345679=。
学生用计算器计算。你发现了什么规律,和同学说一说。
运用规律,你还能再说出一些算式吗?
【设计意图】此环节与本课的游戏激趣相呼应,揭秘题中的奥妙。联系算式之间的规律,学生豁然开朗。鼓励学生说出更多的算式,培养学生的应用能力。
这节课你有哪些收获?与同学们分享。
小学五年级数学教案找规律篇六
教学目标:
1、在用小正方形拼长方形的活动中,体会找一个数的因数的方法,培养有条理思考的习惯。
2、在1~100的自然数中,能找出某个自然数的所有因数。
教学重点:会找一个数的因数。
教学难点:提高有序思考的能力。
教学过程:
一、创设情境,激情导入。
师:同学们喜欢做拼图的游戏吗?
也可以使用自己喜欢的方式拼摆或涂画的方式独立操作,边摆边做好记录.然后,把你拼摆的过程和你的伙伴说说。
二、合作交流,探索新知。
1、学生:用12个小正方形自由拼(画)长方形。
(教师巡视,指导个别有问题的学生,搜集学生中出现的问题.)。
师:你是怎样拼的,说说好吗?
学生代表一边汇报,一边将所拼的图在黑板上进行演示。
注意让学生指图说明。
师:我发现同学们真的很聪明,谁愿意把你的想法说给大家听?
(每个小组由一名代表在全班汇报思考的过程,再次体会“想乘法算式”找一个数的因数的方法。)。
同学们用12个小正方形摆出了各种各样的长方形,你能用算式表示出你一。
共摆了多少个吗?
学生回答,老师同时板演:
(3种,算式一样的可选择其中的一种说出来。)。
及时板书:1×12=122×6=123×4=12。
或:12=1×12=2×6=3×4。
师:由黑板上整理出的算式可见,12的因数有哪些呢?
(1、12、2、6、3、4)。
引导思考:找一个数的因数怎样做到即不重复又不遗漏呢?
(通过以上的拼、画、小组交流,学生已经有所发现。)。
学生的答案:
(1)我发现积是12的乘法算式中,它们的因数都是12的因数。
(2)我发现可以利用乘法口诀一对对的找12的因数。
师:谁能按顺序说出来?
(1、2、3、4、6、12)。
3、小结:找一个数的因数,可以用乘法依次一对一对的找。这样有顺序的给一个倍数找因数,好处就是不重复、不漏找。
三、巩固练习。
1、独立完成第38页“练一练”第1题,注意关注学生是否注意有序思考。
2、师:同学们已经掌握了找因数的方法,现在看看谁找得快,请同学们做课本第38页的练一练的第2题。
四、总结与评价。
师:这节课你学会了什么呢?用学到的方法我们都可以做些什么?
教学反思:
这节课上下来以后我感想很多,感触也很深。回顾整堂课的教学过程,我认为需要改进的地方还有很多,我只有不断地进行反思,才能不断地完善教学思路,才能更好达到教学目标。下面我就说说我对本课在教学设计上的一些想法和反思。
本课的教学重点是找一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样找一个数的因数,难度并不算大,因此教学例题“找出12的因数”时,我先让学生自己动手拼长方形,让学生们直接感知两个自然数的积等于12的几种情况,使他们在独立思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数(列出积是12的乘法算式或列出被除数是12的除法算式)。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教育活动的终极目标。特别是用除法找因数的学生,正是因为他们意识到了因数与倍数之间的整除关系的本质,才会想到用除法来解决问题。
新课标实施的过程是一个不断学习、探究、研究和提高的过程,在这个过程中,需要我们认真反思、独立思考、交流探讨,学习研究,与学生平等对话,在实践和探索中不断前进。
小学五年级数学教案找规律篇七
本单元先教学积的变化规律:一个因数不变,另一个因数乘一个数,得到的积等于原来的积乘同一个数。再教学商不变的规律:被除数和除数同时乘或除以同一个数(0除外),商不变。显然积的变化规律研究范围比较窄(只研究因数乘几的情况,不研究因数除以几的情况),商不变的规律研究范围比较宽(既研究被除数和除数乘同一个数,也研究除以同一个数)。这样安排有两个原因:一是在积的变化规律的教学中,学生不仅要理解规律的内容,还要学习探索规律的方法,并运用这些学习活动经验继续研究商不变的规律。把积的变化规律的研究范围缩小一些,有利于实现教学目的。二是应用这两条规律学习小数和分数知识,积的变化规律一般只需要因数乘几这种情况,商不变的规律则需要被除数、除数乘或除以同一个数两种情况。
这些变化规律在前面的教学里有过渗透,现在作为一个数学问题进行研究,寻找其中的规律并应用于计算和解决实际问题。由于研究的是关于运算的规律,势必涉及较大数的计算,为了不把大量教学资源消耗在计算上,所以用计算器作为工具。
1提供研究的内容和任务,提示研究的方法和步骤,让学生通过计算在若干个实例中归纳运算规律。
积的变化规律是什么?商不变的规律又指什么?都要学生经过探索自己得出。教材编写充分体现新课程的思想:教材是学生从事数学学习的基本素材,为学生的数学学习活动提供基本线索、基本内容和主要的数学活动机会。对学生而言,教材是从事数学学习活动的“出发点”,而不是“终极目标”。
(1)第83页例题只研究一个因数不变,另一个因数乘一个数,积的变化情况。研究活动先在教材提供的36×30=1080这个实例上进行,并把因数和积的变化记录在表格里。然后由学生自己找一些例子,进行类似的实验。通过不完全归纳,得出积的变化规律。
“想想做做”让学生继续体会积的变化规律并初步应用。第1题有两条解题思路:一条是先算出变化了的那个因数是多少,再求积;另一条是根据一个因数乘了几,把原来的积20也乘几。两种方法得到相同的结果,能再次体会积的变化规律是客观存在的普遍规律。第3题让学生在购买计算器的实际问题中,联系生活经验和数量关系,通过变化购买的数量,计算相应的总价,感受积的变化规律的合理性。
(2)第84页例题教学商不变的规律,把被除数和除数同时乘一个数与同时除以一个数放在一道例题里教学,这是考虑到学生有探索积的变化规律的经验,继续探索商不变的规律时可以增加问题的容量,提高学习的效率。例题选择8400÷40=210这个算式为研究载体,是因为它的被除数和除数同时乘几、同时除以几可选的数比较多,有利于学生获得丰富的感性材料,加强对商不变的体验。
例题的被除数和除数同时乘或除以的那一个数,要让学生自主选择。这样,可以交流和呈现商不变的多种实例。
被除数和除数同时乘或除以的那个数不能是0,这是因为除数不能是0。在8400÷40这个除式中,被除数和除数都除以0,显然是不可以的。被除数和除数都乘0,除数就变成为0,也是不可以的。所以,例题及其结论中都指出“0除外”。教学时要让学生注意到这一点。但不要花费过多时间,更不要用这方面的试题去考学生。
(3)商不变的规律可以应用于除法计算。有些除法有余数,如果被除数和除数同时乘或除以一个数,虽然商不变,但余数变了。第85页例题就教学这些内容。
教学被除数、除数末尾都有0,且没有余数的除法计算,让学生看着竖式,联系商不变的规律思考“被除数的末尾为什么只划去一个0”。理解这个问题要分三步:先是为什么被除数和除数末尾都划去0,然后是为什么被除数末尾只划去一个0,最后是这样做有什么好处。从而掌握运用商不变的规律使竖式计算简便的方法要领。
教学被除数、除数末尾都有0,且有余数的除法计算,重点在被除数和除数都除以10,商虽然不变,但余数变了。这也是教学的难点。教材把这个数学知识置于900元钱买单价40元的篮球的实际问题里教学,有利于化解难点。通过还剩20元这个现实答案,理解余数是20而不是2。另外,不应用商不变规律直接计算得到的余数是20;商22乘除数4,只有加20才能得到900等都能帮助学生理解新知识。
2通过练习发展知识。
练习七第1、4题分别应用积的变化规律或商不变的规律进行计算,帮助学生巩固本单元教学的基础知识。其他的题,在知识内容或知识应用上都有扩展。
第5题里的除法,过去只能依*笔算,现在可以应用商不变的规律把这些题转化成比较容易的除法题,通过口算得到结果。而且各题的被除数和除数同时乘或除以的那一个数不是习惯的10、100,要根据题中数的特点灵活选择。如210÷35可以转化成420÷70(被除数和除数都乘2),也可以转化成30÷5(被除数和除数都除以7),还可以转化成42÷7(被除数和除数都除以5)。
第2题继续探索积的变化规律,从一个因数不变,另一个因数乘几,发展到两个因数各乘一个数,如80×4→(80×10)×(4×10)、80×4→(80×20)×(4×10)。这样的扩展利于学生以后研究小数乘法的计算方法。教学难点是两个因数各乘10,得到的积等于原来的积乘100(10×10=100)。要通过实例,让学生体会积是怎样变化的。
第3题探索一个因数乘几,另一个因数除以同一个数(0除外),积是否发生变化。第6题的数量关系里含有被除数乘几,除数不变,得到的商等于原来的商乘几的变化规律。安排这两题并不是教学更多的有关积、商的变化规律的基础知识,而是增加学生探索规律的题材,激发研究规律的兴趣,培养数学活动的能力。教学时要注意两点:一是重过程,不要突出结论。学生参与探索活动,经历发现规律的过程是教材的意图。发现的规律不要强化、不求记忆、不必应用,不能作为基本教学要求考查。二是不必在积、商的变化规律方面继续扩展,不要增加新的探索题材,不能削弱了本单元着重教学的两条规律。
小学五年级数学教案找规律篇八
教师:要把题中的数据填入统计表中相应的栏目里,再用条形统计图表示出各种车辆数的多少.从题目的条件中可以看出,要统计的有几种数量?(几种车,每种多少辆.)
教师:制成的统计表有几栏,每栏多少格?
教师提问:看一看条形统计图中,每格表示多少?
(一)用画“正”字的方法收集数据.
教师:收集数据时,根据具体条件不同,可以用不同的方法来收集.今天就来一种收集和整理数据的常用方法(板书课题:数据的收集和整理)
教师:请同学们作好准备,你们收集过路口的各种机动车数量.
学生汇报收集的数据
教师提问:为什么你们收集的数据不统一;有什么方法可以改进?
学生汇报后教师板书:
摩托车:正
小汽车:正正正正正正一
大客车:正正
载重车:正正正正
1、教师:上面收集的数据,为了清楚地表示出来,要把这些数据整理,制成统计表.
机动车种类
辆数
合 计
摩 托 车
小 汽 车
大 客 车
载 重 车
教师提问:请看条形统计图,每格表示多少?这个数能不能改变?
教师说明:条形统计图中,每一格代表多少数量,要根据统计的数据大小而定.
2、学生练习.
把课本第2页的条形统计图和统计表补填完整.
教师:统计表要分几栏?为什么?要分几格?为什么?
年份
1992
1993
1994
1995
1996
增加人口数(万)
我们收集数据的常用方法是什么?
收集本班同学家庭人口的数据,并进行整理填入下表.
六、.
省略
小学五年级数学教案找规律篇九
(一)教学内容。
教科书第142页活动3:数数看,找规律。
(二)在教材中的地位。
本节内容在由平面图形到立体图形的转化中起桥梁作用。教材在前面介绍了常见的基本几何体和一些简单的平面图形的知识后,安排了这节数学活动课。一方面是丰富学生对图形世界的认识,二是从直观上感知几何体是由面围成的,三是初步培养学生把空间问题转化为平面图形来研究的思维方式。所以这节活动课具有承上启下的作用,即是由平面图形向几何空间转化的桥梁。
(三)教学目标。
1.知识目标。
通过对正多面体的展开与折叠以及模型制作的活动,发展学生的空间观念,积累数学活动的经验,在看一看、做一做、想一想、数一数的过程中,归纳出正多面体的顶点数、面数、棱数之间的规律,进而会利用经验自制模型,检验规律。
2.能力目标。
通过折叠,经历做数学和学数学的过程,培养学生动手能力,提高动脑能力,在活动中获得空间想象能力及合作交流意识。
3.情感目标。
活动过程是老师与学生及学生与学生的交往、互动、共同发展的过程,在参与、观察过程中,培养学生学习数学的兴趣,同时通过展示学生成功折叠的'正多面体模型,增强学生的自信心与审美情趣。
另外,引用数学史料,使学生更好地了解问题的背景,学习科学家勤于动手,善于动脑的治学精神,树立勇于攀登科学巅峰的远大理想。
4.教学重点难点。
(1)教学重点。
利用折叠出的五个正多面体,数出它们的顶点数、面数和棱数,找出规律。
(2)教学难点。
如何折叠出正八面体和正十二面体;如何正确地数出正十二面体的顶点数和棱数。
二、说教法。
在教学中,倡导学生主动参与、乐于研究和勤于动手,培养学生获得新知识、分析问题和解决问题以及交流与合作的能力,为此主要采用分组合作、师生互动、操作演示、多媒体辅助教学等方法,充分体现出学生是学习的主体,教师是教学的组织者、引导者、合作者。具体程序是:
情境导人一观察与思考一动手折叠一探究规律一知识引伸与拓展。
三、说学法。
指导学生转变学习方式,既要主动地富有个性地学习,又提倡通过合作与交流来共同探索和研究的学习方式,即自主探究式,促进学生创新意识的形成与实践能力的培养。
四、说教学过程。
课前准备:学生自备剪刀、胶条及画有下列五种图形的硬纸片。
教学过程:
(一)问题情境引入。
面对一座座宏伟壮丽的建筑,一尊尊形神兼备的雕塑,一件件精巧典雅的物品,我们常常惊叹于它的美妙。我们深人观察就会发现,千姿百态的图形构成了丰富多彩的世界,形态各异的立体图形几乎无处不在,而许多立体图形就是由一些平面图形围成的。让我们一起进人立体图形的世界,共同探究它的奥妙与规律吧!这节课通过动手,对几种正多面体进行展开和折叠,寻找它们的顶点数、面数和棱数三者之间的规律。
(二)观察思考。
请看这五个正多面体,向学生提出问题:你认识他们吗?让学生在欣赏的同时感知正多面体、顶点以及面和棱。
(三)折叠。
演示正六面体的展开与还原(即折叠还原),由学生分组完成折叠出正四面体、正八面体、正十二面体、正二十面体。
1.难点。
在折叠正八面体、正十二面体时容易出错。
2.解决方法。
让学生仔细观察模型,看老师演示,充分利用对称性折叠,还要同组人大胆试探,相互合作;老师巡视指导,发现成功组及时鼓励,并由一人介绍(讲解)成功的方法,同时利用cai辅助。
1.难点。
面数可由名称得到,也可由展开图上数出,但顶点数和棱数不容易数准确。
2.解决方法。
(1)放在桌面上不转动;。
(2)对称地找;。
(3)在起始地方作标记。
(五)背景引入。
历史上曾有一些著名的科学家研究过正多面体,著名数学家欧拉惊奇地发现了v,f、e之间存在这样一个奇妙的相等关系。图形世界尽管形态各异,只要我们像科学家一样多动手,多动脑,一定能找出其中的奥妙。
(六)做一做想一想。
五、教学评价。
(一)通过折叠正多面体的模型,培养学生的动手能力与合作能力;。
(二)从填表找规律上,提高学生接受新知识的能力与动脑能力;。
(三)从知识的引伸与拓展的设计上,培养学生的动手、动脑与合作的综合能力。
小学五年级数学教案找规律篇十
1、加强动手操作训练,促进学生的思维。
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。本设计积极引导学生理解天平平衡的原理,加强对用天平称物和画图的动手操作训练。使学生经历称物、分轻重的过程,了解和思考称物的不同情况,逐步把思维条理化、逻辑化,并想办法用图示表示出来,从而促进学生逻辑思维的发展。
2、自主探索,体会优化思想。
本设计给予学生充分的自主探索的空间,通过试验、汇报不同的解决问题的方法,发现如何分份是优化“找次品”方法的关键,从而总结出最佳的分份方法和最佳的图示方法,渗透优化思想。
教师准备ppt课件天平药瓶。
学生准备天平。
1、你们每天上学通常要走哪条路?为什么要选择这条路?
(生自主回答)。
2、你们真聪明,在平时做事的时候就能选择最简便的方法。在数学学习中,解决问题的方法是多种多样的,但通常都有一种最有效、最简便的方法,我们把它叫最优化的方法。这节课就让我们带着优化的思想走进课堂。(师出示2瓶钙片)。
师:老师这里有2瓶钙片,其中有1瓶少了3片,你们能不能想办法帮我把它找出来呢?(生回答想法)。
师:老师准备了一架天平。如果在天平左右两边的托盘里放上质量相同的物品,天平就会平衡;如果一边重一边轻,那重的一边就会沉下去,轻的一边就会翘起来。今天我们就借助天平来完成本节课的学习内容。
设计意图:引导学生根据次品的特点发现用天平“称”的方法,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡情况对托盘两端的物品进行判断就可以了。
1、提出探究要求。
师:同学们很容易就从2瓶钙片中把这瓶次品找到了,如果是3瓶钙片,你还能从中找到这瓶次品吗?同桌可以用学具摆一摆,试一试。
2、动手操作,汇报方法。
学生动手试验后汇报。(先在天平的两端分别放上1瓶钙片,如果天平平衡,剩下的一瓶就是次品;如果天平不平衡,轻的那端就一定是次品了)。
3、总结归纳记录的方法。
组织学生把用天平称的过程用图表记录下来。
理解题意,动手操作。
(1)先让学生读题,说说“至少”的含义。
(2)小组分工合作:用学具摆一摆,并尝试用图示和表格表示摆的过程,完成下表。
(合作要求:2名同学摆学具,1名同学用图示法作记录,1名同学填表)。
小学五年级数学教案找规律篇十一
1、在用小正方形拼长方形的活动中,体会找一个数的因数的方法,培养有条理思考的习惯。
2、在1~100的自然数中,能找出某个自然数的所有因数。
会找一个数的因数。
:提高有序思考的能力。
一、创设情境,激情导入
师:同学们喜欢做拼图的游戏吗?
也可以使用自己喜欢的方式拼摆或涂画的方式独立操作,边摆边做好记录. 然后,把你拼摆的过程和你的伙伴说说。
二、合作交流,探索新知
1、学生:用12个小正方形自由拼(画)长方形
(教师巡视,指导个别有问题的学生,搜集学生中出现的问题.)
师:你是怎样拼的,说说好吗?
学生代表一边汇报,一边将所拼的图在黑板上进行演示
注意让学生指图说明。
师:我发现同学们真的很聪明,谁愿意把你的想法说给大家听?
(每个小组由一名代表在全班汇报思考的过程,再次体会“想乘法算式”找一个数的因数的方法。)
同学们用12个小正方形摆出了各种各样的长方形,你能用算式表示出你一
共摆了多少个吗?
学生回答,老师同时板演:
(3种,算式一样的可选择其中的一种说出来。)
及时板书:1×12=12 2×6=12 3×4=12
或:12=1×12=2×6= 3×4
师:由黑板上整理出的算式可见,12的因数有哪些呢?
(1、12 、2、6、3、4)
引导思考:找一个数的因数怎样做到即不重复又不遗漏呢?
(通过以上的拼、画、小组交流,学生已经有所发现。)
学生的答案:
(1)我发现积是12的乘法算式中,它们的因数都是12的因数。
(2)我发现可以利用乘法口诀一对对的找12的因数。
师:谁能按顺序说出来?
(1、2、3、4、6、12)
3、小结:找一个数的因数,可以用乘法依次一对一对的找。这样有顺序的给一个倍数找因数,好处就是不重复、不漏找。
三、巩固练习
1、独立完成第38页“练一练”第1题,注意关注学生是否注意有序思考。
2、师:同学们已经掌握了找因数的方法,现在看看谁找得快,请同学们做课本第38页的练一练的第2题。
四、总结与评价
师:这节课你学会了什么呢?用学到的方法我们都可以做些什么?
这节课上下来以后我感想很多,感触也很深。回顾整堂课的教学过程,我认为需要改进的地方还有很多,我只有不断地进行反思,才能不断地完善教学思路,才能更好达到教学目标。下面我就说说我对本课在教学设计上的一些想法和反思。
本课的教学重点是找一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样找一个数的因数,难度并不算大,因此教学例题“找出12的因数”时,我先让学生自己动手拼长方形,让学生们直接感知两个自然数的积等于12的几种情况,使他们在独立思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数(列出积是12的乘法算式或列出被除数是12的除法算式)。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教育活动的终极目标。特别是用除法找因数的学生,正是因为他们意识到了因数与倍数之间的整除关系的本质,才会想到用除法来解决问题。
新课标实施的过程是一个不断学习、探究、研究和提高的过程,在这个过程中,需要我们认真反思、独立思考、交流探讨,学习研究,与学生平等对话,在实践和探索中不断前进。
小学五年级数学教案找规律篇十二
1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
2、知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
学生能够熟练的计算出分数乘以分数的结果。
师生共同归纳和推理。
教学参考书、教科书。
一、复习导入。
教师出示教学板书,请学生计算下列分数乘法运算题。
3/11×39/16×1221×5/14。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(整数乘以分数,整数乘以分子,分母不变。注意两种约分方式。)。
二、讲授新课。
教师让学生思考这个例题,并对学生进行提问。
教师让学生从图中看出是1/4,让学生从1/2×1/2=1/4中思考,分数乘以分数的运算规则,让学生同桌之间相互讨论。
教师提问学生说说分数乘以分数的运算法则。并对学生的说法给以鼓励。
教师和全班学生共同总结出分数乘以分数的运算法则:分数乘以分数,分子乘以分子作为分子,分母乘以分母作为分母。
验证法则:让学生折纸验证3/4×1/4?,并让学生分析为什么?
三、巩固练习。
做课本8页试一试,1/4×2/3;3/5×2/9;7/8×5/14让学生运用分数乘以分数的法则来进行计算。注意能约分的先约分,如:7/8×14/15中的7和14先约分。
四、课堂小结。
同学们,这一节课你学到了哪些知识?(提问学生回答)。
小学五年级数学教案找规律篇十三
1、在自由探索的活动中,理解计算组合图形面积的各种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并正确解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
能根据各种组合图形的条件,有效地选择计算方法,并进行正确的解答。
:如何选择有效的计算方法解决问题。
:图形卡片、题卡。
一、激趣导入。
1、师:老师这里有一个神秘宝盒,你们想知道这里面藏着什么吗?请同学们来摸一摸。
生摸出图形,老师贴在黑板上,指名说说怎样计算这些图形的面积。
2、师:老师也为你们准备了礼物,快拿出来拼一拼,粘在白纸上,看谁拼的图案最漂亮。
生拿基本图形拼。
指名展示所拼图案,说说拼的是什么,是由什么图形拼成的。
3、揭示课题。
这些图形都是由两个或两个以上基本图形拼成的图形,叫做组合图形,这节课我们一起来探索组合图形的面积(板书课题:组合图形的面积)。
二、探究新知。
1、出示例题。
老师最近正在装修房子,可是遇到了困难,你愿意帮忙吗?
你老师打算在客厅铺上地板,地面的平面图如图,请同学们帮老师做一下预算,估计至少要买多大面积的地板,再实际算一算,并与同学们交流。
生先说估计值,并说出依据,教师在黑板右上角板书。
2、小组探索。
生:我们可以把它转化成我们学过的图形再求面积。
小组合作探索,组长拿出工作表,小组同学分别说一说自己的想法,并在图中画出来,看看你们小组能想出几种简便易行的方法。
教师巡视指导。
3、全班汇报交流。
小组汇报,在投影上展示自己小组的做法,分别说说为什么这样分割,怎样求面积。其他小组长把和他一样的方法做上标记。
教师强调:为了和原线段区分开,后添加的线段要画虚线,这条虚线是为了辅助完成这道题的,所以叫做辅助线。
生共同探索所说的方法是否能求出面积,不合适的说出为什么。
把以上方法汇总,说说哪种方法最简单,为什么?
师:分割或添补的越简单,计算起来就会越简便。
4、教师贴出学生选出的。
4种简便方法,用卡纸贴在黑板上。
生观察着几种方法,把它们分类。
师相应板书:分割法添补法。
这两种方法在计算时有什么不同吗?
6、选择一种你最喜欢的方法,计算出图形的面积。
指名板演。检查订正,写出答语。
把实际结果与估计结果比较,看看谁估计的比较准。
师:只要选择了简便易行的方法,我们求组合图形的面积才会又快又准确。
三、实际应用。
1、这里有两个鱼缸,请你选择最简便的方法把它们转化成我们学过的图形。
2、学校要粉刷教室,粉刷一面墙每平方米需用。
0.15千克涂料,一共需要用多少千克涂料?
生在题卡上答题,师巡视指导。指名展示自己的方法,生判断哪种方法最简便。
3、学校要油漆。
60扇教室的门的外面,(单位:米)。
(1)需要油漆的面积一共是多少?
(2)如果油漆每平方米需要花费。
5元,那么学校共要花费多少元?
指名读题,说说完成这道题要注意什么?
生独立完成。汇报。
四、全课总结。
你说说这节课你有什么收获。
师:在我们的生活中,数学无处不在,运用我们学过的数学知识来解决身边的难题,那是多么快乐的一件事呀!让我们一起学好数学吧!
五、课外练习。
在你身边找出一到两处组合图形,先估计一下它们的面积,再选择你认为最简便或最适合自己的方法,实际算一算。
【本文地址:http://www.xuefen.com.cn/zuowen/18232405.html】