教案是教学过程中的一份指南,也是教师与学生之间的桥梁。教案的编写需要注重教学内容的组织和呈现方式的合理性。教案的精选范文中融入了多种教学策略和教学资源的应用。
六年级数学圆柱教案篇一
2.掌握圆柱侧面积和表面积的计算方法。
(二)能力目标。
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点。
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点。
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备。
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学过程:
生:我想对老师们说,我们一定会好好表现的,不会让你们失望。
生:我们的课堂将比赛场更精彩……。
师:我坚信你们一定不会让老师失望的。
一、引入新课:
生:圆柱是由平面和曲面围成的立体图形。
生:我还知道圆柱各部分的名称……。
生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
课件演示这一过程。
师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)。
师:你还想知道什么呢?
生:还想知道怎么求它的表面积......
二、探究新知。
指名学生摸其表面积,并追问:怎样求它的表面积?
学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)。
师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)。
小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。
师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。
课件展示其变化过程。
师生小结:(教师板书)侧面积=底面周长×高。
(评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)。
师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)。
投影呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。
(1)学生独立解答。
(2)投影呈现学生的解答,并让其讲清自己的解题思路。
师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?
生:底面周长和高。
师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。
师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)。
教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)。
指名学生说解题思路,
师:这说明要计算圆柱的表面积需要抓出哪两个量?
生:底面积和侧面积。
3、反馈练习:(略)。
师:想一想,应该先求什么?再求什么?请大家动手试一试。
4实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)。
三、全课小结:这节课你有什么收获?
你有没有想提醒同学们注意的地方?
生:要注意单位,还要注意所要求得圆柱有几个底面……。
最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)。
六年级数学圆柱教案篇二
(1)圆锥的高是。圆锥有()条高。
(2)将一个圆锥沿着它的.高平均切成两半,截面是一个()形。
(3)下图圆锥的高是()cm。
(4)圆柱的侧面展开,得到一个()形,把圆锥的侧面展开,得到一个()。
二、填一填。
1.指出圆锥的“底面”和“高”。
2.圆锥的底面形状是(),侧面是()面。
3.从圆锥的顶点到底面圆心的距离是圆锥的()。
六年级数学圆柱教案篇三
教科书第29~31页的内容,练习七第1题。
教学目标。
1.使学生能认识圆柱和圆锥,了解他们的特征及区别。
2.通过观察、想象、操作、思考、讨论等活动,培养学生的观察能力、动手操作能力,发展学生的空间观念。
3.激发学生学习数学的兴趣和自信心,体会数学与现实的联系。
教学重点。
从实际生活中常见的圆柱形物体抽象出圆柱的几何图形,让学生经历圆柱、圆锥特征的探索过程。
教学难点。
使学生弄清圆柱侧面展开得到一个长方形,这个长方形的长和宽与圆柱的关系,建立空间观念。
学生准备几个圆柱形的实物,一张白纸,直尺等。
教学过程。
一、摸猜游戏,引入课题。
(1)(教师用纸箱,装上长方体、正方体、圆柱、球体)教师:老师这个纸箱中有几个长方体、正方体等形状的物体,下面我请一位同学上台来摸一摸,一边摸一边描述自己摸着的几何体的特征,其他同学边听他描述,边猜测是什么形状的物体。
教师:我们今天就来研究一下圆柱的特征。
二、自主探究,学习新知。
1.认识圆柱,并探索特征。
教师出示圆柱。
教师:这就是圆柱。各小组的同学拿出你们(或老师准备)的圆柱,摸一摸,了解一下圆柱由几部分组成。
学生按小组互相交流,感知圆柱的特征。
全班交流小结,教师根据学生的发言进行总结和板书。
板书:两个圆,一个曲面。
学生说说自己想的办法。
教师:大家选择自己认为可行的办法试一试。
学生分小组操作。(可以涂上颜色、墨水在纸上印,可以量圆的周长,可以量直径等)。
交流探索方法和结果,教师引导总结。
板书:相等的(在“两个圆”板书基础上补充)。
2.测量圆柱的高。
学生:高矮不同。
教师:那你能说说什么是圆柱的高?
学生充分发言,教师引导小结:圆柱两个底面之间的距离就是圆柱的高。
观察实物,讨论:圆柱有多少条高?它们之间有什么关系?
通过观察得出:圆柱的高有无数条,它们都相等。
教师指导学生测量圆柱的高。学生拿出各种圆柱进行测量。
学生汇报测量结果。
3.探究圆柱侧面的特征。
学生动手操作,教师巡视指导。
全班交流:沿高剪开后展开得到一个长方形;也可能得到一个正方形;斜着剪得到一个平行四边形。
请学生观察、思考并讨论:展开后的长方形(或正方形、平行四边形)与圆柱有什么关系?
学生动手操作:把展开后的长方形还原成圆柱的侧面,发现:长方形的长等于底面圆的周长,宽就是圆柱的高。(板书)。
4.课堂小结。
教师:今天我们探究了圆柱的特征,大家说说,圆柱有些什么特征?
三、课堂练习。
1.判断下面那些是圆柱,并说明理由。
教科书第32页练习七第1题。
2.说说生活中哪些物体是圆柱。
六年级数学圆柱教案篇四
1、使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。
2.使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。
3.使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
单元教学重点:圆柱体积计算公式的推导和应用。
单元教学难点:灵活运用知识,解决实际问题。
(一)圆柱的认识。
教学内容:教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。
1.使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。
2.使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。
教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。
:认识圆柱的特征,掌握圆柱侧面积的计算方法。
认识圆柱的侧面。
一、复习旧知。
1.提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?
2.引入新课。
出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)。
二、教学新课。
1.认识圆柱的特征。
2.认识圆柱各部分名称。
(1)认识底面。
出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:——底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)。
(2)认识侧面。
请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?(接前第二行板书:侧面是一个曲面)。
(3)认识圆柱图形。
请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。
说明:圆柱是由两个底面和侧面围成的。底面是完全相同的'两个圆,侧面是一个曲面。
在说明的基础上画出下面的立体图形:
(4)认识高。
长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)。
3.巩固特征的认识。
(1)提问:你见过哪些物体是圆柱形的?
(2)做练习一第1题。
指名学生口答,不是圆柱的要求说明理由。
(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……。
4.教学侧面积计算。
(1)认识侧面的形状。
六年级数学圆柱教案篇五
1.教学内容。
本节课是人教版六年小学数学课本第十二册第三单元第二小节第一课时,内容包括圆柱体的体积计算公式的推导和运用公式计算它的体积。
2.本节课在教材中所处的地位和作用。
《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。
3.教材的重点和难点。
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
4.教学目标。
(1)知道圆柱体积计算公式的推导过程,会应用该公式计算圆柱的体积。
(2)初步建立空间观念和逻辑推理能力。
(3)知道知识间是可以互相转化的。
二、说教法。
从形式已有的知识水平和认识规律出发,为了更好地突出重点,化解难点,扫清学生认知上的思维障碍,在实施教学过程中,主要体现以下几个特点:
1.直观演示,操作发现。
教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
2.巧设疑问,体现两“主”
教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。
3.运用迁移,深化提高。
运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。
三、说学法。
课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。
本节课的教学,使学生掌握一些基本的学习方法。
1.学会通过观察、比较、推理能概括出圆柱体积的推导过程。
2.学会利用旧知转化成新知,解决新问题的能力。
3.学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。
四、说教学过程。
对本节课的教学,我们设计了以下几个环节,
(一)复习旧知识,为引入新知识作准备。
1.求下面各圆的面积(口算),单位为厘米。
(1)半径为1厘米;(2)直径为4厘米;(3)周长为62。8厘米。
2.什么叫做体积?怎样计算长方体的体积?
(二)导入新课,隐射教学目标。
1.观察比较:出示几组圆柱体实物(同底等高、同底不等高、等高不等底),引导学生观察比较,老师提出问题:通过观察,你想知道些什么?了解些什么?引导学生产生疑问后,教师这时交待,我们今天要学习的新知识,就能很好地解决这个问题(揭示课题)。让学生自行设疑,教师向学生交待学习任务,使学生对新知识产生强烈的求知欲望,从而进入最佳的学习状态。
2.展示学习目标,学生认读目标。
教师通过展示目标,学生认读目标,这时学生就能清楚地知道了学习的主要任务和要求,从而把教师的教学目标,转化成了学生的学习目标。使学生带着目标,有目的、有准备地学习下一步的新知识,学生就真正能成为学习的主人,也使教学变得更加明确具体,可操作、可检测。同时也能激发起全体学生的参与达标意识,学生的主体地位就充分地显示出来了。
(三)导入新课,实施教学目标。
1.设疑:要判断圆柱体积的大小,究竟哪个大?哪个小?到底圆柱的体积与什么有关呢?能不能把圆柱转化成我们学过的立体图形来计算它的体积?这里老师引导学生回忆圆的'面积公式的推导过程,教师出示投影,帮助学生思考。
2.演示操作,揭示新知。
引导学生用字母表示出来,最后让学生看书质疑。
这部分教学设计意图:根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。
关于难点的突破,我们主要从以下几个方面着手:
(1)引导学生通过观察比较,明确圆柱体的体积与它的底面积和高有关。
(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。
(3)充分利用直观教具,师生互动,通过演示操作,帮助学生找出两种几何形体转化前后的关系。
(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。
3.运用。
出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:(1)单位要统一(2)求出的是体积要用体积单位。
六年级数学圆柱教案篇六
圆柱是一种比较常见的立体图形。在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。所以在教学《圆柱的认识》时,我注重与学生的生活实际相结合,为发展学生的空间观念和解决实际问题打下了基础。
这节课,以触摸——合作——交流——讨论——形成认知为线索,设计了让学生以小组合作的形式做一个圆柱这一活动。最初的设计意图是想让学生在做的过程中,一方面培养合作的意识和合作能力,另一方面对圆柱的底、侧面的特征和相互关系有初步的认识。活动结束后,再让学生互相交流,得出结论。对于圆柱侧面展开这一重点,在学生试做的过程中得出,有效地突破学习的重点和难点。但事与愿违,几乎每组学生在做圆柱时,都是将纸在圆柱模型上围一圈得到侧面,再用模型的底画两个一样的圆作为圆柱的底,然后组合成圆柱。在做的过程中很少有学生发现长方形纸的长就是圆柱的底面周长,宽就是圆柱的高。
整节课,以活动为中心,不光是为了有效地组织学习,更重要的是想通过这一形式还原数学的本质,让学生感受到数学带给他们的乐趣,让学生体会到数学与生活的紧密联系,让学生在做数学中体验到成功。
圆柱是一种比较常见的立体图形。在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。所以在教学《圆柱的认识》时,我注重与学生的生活实际相结合,为发展学生的空间观念和解决实际问题打下了基础。
在复习导入阶段,首先通过唐老鸭和米老鼠的比赛,引入学生对圆柱的初步感知,然后通过出示生活中的圆柱形物体,导入课题,使学生感受到数学与生活的联系。
认识到长方形与圆柱侧面积之间的关系。把教学重难点化繁为简,化抽象为具体,并把“观察、猜想、操作、发现”的方法贯穿始终,既加深了学生对圆柱各部分名称和特征的认识,又有效的培养了学生的逻辑思维能力。
在练习阶段,我设计了针对性练习和发展性练习,在形式、难度、灵活性上都有体现。判断题有利于检查学生对基础知识的掌握情况,最后的填空题进一步锻炼了学生对知识的灵活应用能力。
在教学方法上,充分利用圆柱形实物,让学生自己去动手观察,认识了圆柱的特征,并利用课件辅助教学,使学生对圆柱的特征有直观的认识,有利于学生对知识的理解和掌握。
同时,在教学中也存在着一些不足:如在认识圆柱上下两个底面完全相同时,学生不能说出验证的方法,也没有时间让学生去动手操作验证;在学习圆柱的侧面展开与长方形各部分的关系时,学生对知识理解比较困难,演示不直观。
在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。圆柱是学生在学习了长方体和立方体的基础上进行教学的,它是一种比较常见的立体图形。本课的重点是圆柱的特征和圆柱侧面积的计算。所以在教学《圆柱的认识》时,我通过学生的动手操作和探索研究,自我发现和掌握圆的柱的基本特征,并能联系生活实际,结合自己的生活经验,有步骤地展开研究和探索,同时让每个学生都树立能够学好数学的信心和学习数学的兴趣。
在导入时,让学生感受到数学与生活的联系。因此,今天老师和大家一起来认识一种新的立体图形——圆柱(出示圆柱),我直接揭示课题,同学们,你们看到过这样的物体吗?你能举一些生活中像这样的物体吗?学生一一展示自己课前收集好的圆柱形物体。在我们的生活中,只要你们细心的去观察,圆柱形的物体还是到处可见的。
学生对新知识是好奇的。在教学。
在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。圆柱是学生在学习了长方体和立方体的基础上进行教学的,它是一种比较常见的立体图形。本课的重点是圆柱的特征和圆柱侧面积的计算。所以在教学《圆柱的认识》时,我通过学生的动手操作和探索研究,自我发现和掌握圆的柱的基本特征,并能联系生活实际,结合自己的生活经验,有步骤地展开研究和探索,同时让每个学生都树立能够学好数学的信心和学习数学的兴趣。
在导入时,让学生感受到数学与生活的联系。因此,今天老师和大家一起来认识一种新的立体图形——圆柱(出示圆柱),我直接揭示课题,同学们,你们看到过这样的物体吗?你能举一些生活中像这样的物体吗?学生一一展示自己课前收集好的圆柱形物体。在我们的生活中,只要你们细心的去观察,圆柱形的物体还是到处可见的。
学生对新知识是好奇的。在教学圆柱的特征时,我让学生亲自动手去摸一摸、比一比,采用小组合作、讨论、交流等形式,让学生多角度、多形式地表达自己的思维过程,整体地感知圆柱的特征。在学生知道了圆柱的侧面积是指哪部分后,我设置悬念,先让学生猜一猜:“这个圆柱的侧面展开可能会是一个什么图形呢?”通过猜测再进行验证,学生动手操作、小组合作学习、互相交流。认识到了圆柱的底面周长相当于长方形的长,高相当于长方形的宽。接着又问,要想知道老师手里圆柱的侧面积,你会算吗?学生自然而然的想到了圆柱的侧面积=底面周长×高。把教学重难点化繁为简,化抽象为具体,并把“观察、猜想、操作、发现”的方法贯穿始终,既加深了学生对圆柱各部分名称和特征的认识,又有效的培养了学生的逻辑思维能力。
我认为最突出的地方是教师始终围绕学生的思维和操作探索研究在转,而不是学生围绕教师在转,学生被教师牵着走。学生学的轻松、掌握的灵活,为学生构建优越的知识认知结构奠定了基础。
时,我让学生亲自动手去摸一摸、比一比,采用小组合作、讨论、交流等形式,让学生多角度、多形式地表达自己的思维过程,整体地感知圆柱的特征。在学生知道了圆柱的侧面积是指哪部分后,我设置悬念,先让学生猜一猜:“这个圆柱的侧面展开可能会是一个什么图形呢?”通过猜测再进行验证,学生动手操作、小组合作学习、互相交流。认识到了圆柱的底面周长相当于长方形的长,高相当于长方形的宽。接着又问,要想知道老师手里圆柱的侧面积,你会算吗?学生自然而然的想到了圆柱的侧面积=底面周长×高。把教学重难点化繁为简,化抽象为具体,并把“观察、猜想、操作、发现”的方法贯穿始终,既加深了学生对圆柱各部分名称和特征的认识,又有效的培养了学生的逻辑思维能力。
我认为最突出的地方是教师始终围绕学生的思维和操作探索研究在转,而不是学生围绕教师在转,学生被教师牵着走。学生学的轻松、掌握的灵活,为学生构建优越的知识认知结构奠定了基础。
所以在教学《圆柱的认识》时,我通过学生的动手操作和探索研究,自我发现和掌握圆的柱的基本特征,并能联系生活实际,结合自己的生活经验,有步骤地展开研究和探索,同时让每个学生都树立能够学好数学的信心和学习数学的兴趣。
在导入时,让学生感受到数学与生活的联系。因此,今天老师和大家一起来认识一种新的立体图形——圆柱(出示圆柱),我直接揭示课题,同学们,你们看到过这样的物体吗?你能举一些生活中像这样的物体吗?学生一一展示自己课前收集好的圆柱形物体。在我们的生活中,只要你们细心的去观察,圆柱形的物体还是到处可见的。
学生对新知识是好奇的。在教学圆柱的特征时,我让学生亲自动手去摸一摸、比一比,采用小组合作、讨论、交流等形式,让学生多角度、多形式地表达自己的思维过程,整体地感知圆柱的特征。在学生知道了圆柱的侧面积是指哪部分后,我设置悬念,先让学生猜一猜:“这个圆柱的侧面展开可能会是一个什么图形呢?”通过猜测再进行验证,学生动手操作、小组合作学习、互相交流。认识到了圆柱的底面周长相当于长方形的长,高相当于长方形的宽。接着又问,要想知道老师手里圆柱的侧面积,你会算吗?学生自然而然的想到了圆柱的侧面积=底面周长×高。把教学重难点化繁为简,化抽象为具体,并把“观察、猜想、操作、发现”的方法贯穿始终,既加深了学生对圆柱各部分名称和特征的认识,又有效的培养了学生的逻辑思维能力。
我认为最突出的地方是教师始终围绕学生的思维和操作探索研究在转,而不是学生围绕教师在转,学生被教师牵着走。学生学的轻松、掌握的灵活,为学生构建优越的知识认知结构奠定了基础。
所以在教学《圆柱的认识》时,我通过学生的动手操作和探索研究,自我发现和掌握圆的柱的基本特征,并能联系生活实际,结合自己的生活经验,有步骤地展开研究和探索,同时让每个学生都树立能够学好数学的信心和学习数学的兴趣。
在导入时,让学生感受到数学与生活的联系。因此,今天老师和大家一起来认识一种新的立体图形——圆柱(出示圆柱),我直接揭示课题,同学们,你们看到过这样的物体吗?你能举一些生活中像这样的物体吗?学生一一展示自己课前收集好的圆柱形物体。在我们的生活中,只要你们细心的去观察,圆柱形的物体还是到处可见的。
学生对新知识是好奇的。在教学圆柱的特征时,我让学生亲自动手去摸一摸、比一比,采用小组合作、讨论、交流等形式,让学生多角度、多形式地表达自己的思维过程,整体地感知圆柱的特征。在学生知道了圆柱的侧面积是指哪部分后,我设置悬念,先让学生猜一猜:“这个圆柱的侧面展开可能会是一个什么图形呢?”通过猜测再进行验证,学生动手操作、小组合作学习、互相交流。认识到了圆柱的底面周长相当于长方形的长,高相当于长方形的宽。接着又问,要想知道老师手里圆柱的侧面积,你会算吗?学生自然而然的想到了圆柱的侧面积=底面周长×高。把教学重难点化繁为简,化抽象为具体,并把“观察、猜想、操作、发现”的方法贯穿始终,既加深了学生对圆柱各部分名称和特征的认识,又有效的培养了学生的逻辑思维能力。
我认为最突出的地方是教师始终围绕学生的思维和操作探索研究在转,而不是学生围绕教师在转,学生被教师牵着走。学生学的轻松、掌握的灵活,为学生构建优越的知识认知结构奠定了基础。
六年级数学圆柱教案篇七
生1:圆柱有两个底面。
生2:圆柱的底面是圆形。
〔学生举手的人不多,有点冷场〕。
师:看来大家对圆柱有了一些了解,下面我们来进一步探索圆柱的特征。
(接着,教师出示小组学习要求,让学生通过观察圆柱实物,围绕3个问题,探索圆柱的特征)。
师:通过观察你有什么发现?
生1:我发现圆柱的两个底面是圆形。
生2:我觉得圆柱的两个底面面积相等。
师:你们有办法证明圆柱的两个底面相等吗?
生3:〔该生是学困生,但在公开课中回答问题一向很积极〕如果圆柱的两个底面不相等,那么圆柱就会一头大,一头小。
师:恩(停顿),你能再说说吗?〔这时我听得不太清楚〕。
生3:两个底面不相等,一头大,一头小,会东倒西歪。
师:(没有做出评价)还有别的方法吗?
生4:我是通过把上面的盖子取下和底面相比,得出两个底面大小相等的。
师:说得太好了。(露出满意的神情)。
(之后,老师拿出一个有盖的茶叶罐,按生4的方面演示了一遍)。
板书:面积相等的两个圆。
师:圆柱的面还有什么特征?
生5:我发现圆柱的表面摸起来很光滑,永远也“摸不到头”。
师:为什么“摸不到头”?你觉得圆柱的这个面和底面有什么不同?
生6:底面是个平面,而这个面不是平面。
师:我们就说这个面是曲面。(板书:曲面)。
〔反思〕。
一、学生不是一张白纸。
“学生不是空着脑袋走进课堂的”,他们的数学学习不仅仅在数学课堂上,在生活中他们也在不断地积累数学的知识和经验。因此“要从学生已有的生活经验出发”,把“数学教学活动建立在学生的认知发展水平和已有的知识经验的基础之上”。圆柱形的物体在生活中可谓太常见了,对于六年级的学生来说,他们一定在生活中或多或少积累了一些有关圆柱的知识和经验。基于“尊重学生的已知,引导学生的未知,促进学生的发展”的思想,我提出了“你对圆柱有哪些了解?”的问题,试图通过这个问题,找到学生学习新知的生长点和联结点,达到“立足旧知,激起学生灵动思维”的目标。从学生的回答不难看出,学生对于圆柱的整体把握显然不感兴趣,他们更多的关心是某个局部,如两个底面,底面的形状等。不过令人遗憾的是,对于我的这个安排学生并没有领情,举手回答的学生不多,我所想要看到的“各抒己见”、“百花齐放”的情景并没有出现。是什么原因,造成了学生的冷场?除了学生进入高年级,由于生理、心理的诸多问题导致不爱回答问题,羞于表达,或懒于表现的原因以外,其中很重要的一个原因是我们平时的课堂上,为了追求所谓的“教学质量”,所谓的“高效”,牺牲了给学生说话的机会。渐渐的,学生也就习惯沉默了。
二、给学生发现的机会。
弗赖登塔尔说:学习数学的最好方法,就是学生亲自把知识发现出来。在本环节的教学中,老师并没有把圆柱的特征“教”给学生,而是引导学生通过观察、触摸圆柱体实物,用他们自己的眼睛和双手去发现,去感悟圆柱的特征。特别是在有一位学生发现了圆柱的两个底面大小相等后我并没有就此作罢,而是让全体学生想办法证明这个发现。通过汇报我们不然看出,由于老师给了学生这个机会,其结果是“横看成岭侧成峰,远近高低各不同”,学生从各自的视角出发,证明了圆柱的两个底面相等,展示了学生有个性的学习方式。
三、生成需要互动。
证明“圆柱的两个底面大小相等”这个环节,在备课时预想学生可能会有以下几种证明方法:1、将圆柱形容器的盖子取下与底面相比较;2、用圆柱形实物的底面在纸上画一个圆,然后将另一底面和画好的圆作比较;3、用尺子量出两个底面的直径或半径作比较。然而在课堂教学中,有许许多多的意想不到,生3的说法就没有在我的预设之中。如何应对突如其来的想法?如何把握生成?是对教师把握课堂水平的一次考验。在这个过程中,令自己感到惋惜的是在生3回答之后,我竟然没有做出任何评价。我用沉默这盆冷水,浇灭了该生创新的火花;我的无动于衷,击退了该生答题的热情。这样一来,创设一个敢于质疑,乐于表达的课堂学习气氛的想法也就成了一句空话。在后来的评课中,教研组长陈老师评价说:“生3的回答,从反面论证了圆柱的底面积相等,应该得到鼓励和表扬。”学困生这样一次精彩的回答,独辟溪径的思路,我却视而不见,至今我还后悔不已。究其原因,一方面是我当时没有听懂该生的意思,没有马上反应过来;另一方面,暴露出在我的思想深处,关注课堂的进程比关注学生多一些。因为学生的回答在我的预设之外,便敷衍了事,心里更想听到的是预设中的答案。后来这位学生的回答,我之所以满意,我想也是这种心理在作怪吧。以学生为主体,具体落实到课堂上,教师应该关注每一位学生表现,重视教师评价对学生所起到的激励作用。课堂因生成而精彩,而生成离不开师生之间的互动,只有互动才能更好的促进学生的生成,课堂才能焕发出生命的活力。
六年级数学圆柱教案篇八
教学要求:
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
教学难点:圆柱体侧面积计算方法的推导。
教具:圆柱体教具、多媒体课件。
学具:圆柱形纸筒、笔筒等。
教学过程:
师:(拿着圆柱模型)昨天我们认识了圆柱,谁来说说圆柱有哪些特征?(学生回答略)。
师:拿出圆柱形状的罐头,辨析:外面的商标纸的面积就是圆柱的什么?学生(圆柱的侧面积)。好,今天我们首先来探讨圆柱的侧面积。(板书:圆柱的侧面积)。
师:想一想如何计算包在外面的商标纸的面积?
生:圆柱的侧面是一个曲面,所以商标纸包在外面也是曲面,必须要把它拿下来。
师:说的对呀,那么怎么把商标纸拿下来,拿下来后和圆柱有什么关系?请同学们小组合作,拿出你们带来的圆柱形物体,动手操作去探究,去发现。
汇报交流:
生1:我们是沿着圆柱的高剪开的,剪开后就是一个长方形,-----。
(还没有等他说完,另一个学生就抢着说)。
生2:我们是斜着剪的,剪开后得到一个平行四边形;
我再问:还有不同的剪法吗?
生3:我没有剪,就是沿着罐头的接头撕开的,展开后也是一个长方形。
生4:我这个圆柱的商标纸有点紧,我撕得有点破,不太像长方形。
生5:简单,用我们上学期学的转化法就行了。接着他说了方法:就是再把那两种沿着高对折,剪开重新拼成长方形。
我照着他说的做演示,并且大声表扬他说:“同学们,这并不简单,转化方法是一种非常重要的数学思想方法,学会用它,就会化难为易,化复杂为简单啦!”
师:那么,我们可以总结一下,把圆柱的侧面沿着高剪开可以得到一个什么形?
师:这时,长方形的长和宽与圆柱有什么关系呢?(引导学生观察、发现)。
生:长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,得到圆柱的侧面积=底面周长×高。
生:老师,平行四边形也能推导出来,不需要变成长方形!让他来说说看,平行四边形的底就是圆柱的底面周长,平行四边形的高就是圆柱的高,也能推出来。我们给他以热烈的掌声,为他的精彩发言而喝彩!
生6:老师,刚才我没有用剪刀剪开,也没有撕,我也能推导出圆柱侧面积的计算方法。接着他边做边说:我这个商标纸有点松,我直接拖下来压平,这时也是一个长方形,长方形的长就是圆柱的底面周长的一半,长方形的宽就是圆柱的高,长方形的面积×2就是圆柱的侧面积,也就是底面周长的一半×高×2,所以圆柱的侧面积=底面周长×高。
师:今天同学们表现真不错,通过自己的探究活动,有自己的亲身体验,有自己的独特发现,同时我们从不同的途径得到了一个共同的结论,真棒!下面如果用s表示侧面积,c表示底面周长,h表示高。你能写出圆柱体侧面积的公式吗?(板书:s=ch)。
基本练习(求侧面积)。
1、底面周长是1.6米,高是0.7米。
2、底面半径是3.2分米,高是5分米。
3、底面直径是10厘米,高是25厘米。
师小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
师:我们掌握了圆柱的侧面积的计算方法,那么表面积怎样计算呢?
请大家把上节课自己制作的圆柱模型展开,观察一下,援助的表面由那几个部分组成?
生:圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
板书:圆柱的表面积=圆柱侧面积+两个底面的面积。
5.教学例4。
课件出示例4的题目。
1教师:这道题已知什么?求什么?
3教师:要求圆柱的表面积,应该先求什么?·后求什么?
使学生明白:要先求圆柱侧面积和底面积,后求表面积。
4介绍进一法。
四、学以致用,灵活运用。
师:从例4可以看出来数学来源于生活,下面我们就来解决几道生活中常出现的问题。
提高练习:
师:我们在解决实际问题时,一定要分析好求的是哪一部分的面积?在选择解答方法。
设计制作一个笔筒需要解决哪些问题呢?怎样确定笔筒的大小?
五、师小结:下课铃响起,老师希望在座的各位同学能够应用本节课所学知识制作出的笔筒送给你最喜爱的人。
六、板书设计:
圆柱的侧面积=底面周长×高。
s = ch。
圆柱的表面积=圆柱的侧面积+底面积×2。
步的几何知识概念,空间想象力的基础上进行教学的。本节课的教学目标是通过教学培养学生的合作意识和从生活实践中探求知识的学习品质;使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱体侧面积和表面积;培养学生观察、操作、概括的能力。教学的重、难点是圆柱体侧面积计算方法的推导。
教学设计意图:对于《圆柱的表面积》的教学,以往我都是在第一课时《圆柱的认识》的教学中推导出圆柱侧面积的公式,然后在第二课时《圆柱的表面积》教学时,要求学生在教师的指令下进行操作,将圆柱的侧面展开得到一个长方形,再比较两者之间的关系,从而推导出侧面积公式,然后通过一系列的练习来加深巩固,课堂的教学设计以练笔的形式进行教学,但这样的教学学生的学习效果不明显,容易把求表面积中所应用到的公式混淆在一起,而且这种教学手段学生是在老师的牵引下被动学习,不利于学生创造性思维的发展,局限了学生应用已有知识去解决问题的能力。今天我再教学《圆柱的表面积》,如何让学生充分运用已有的知识经验和基本技能,用自己的思维方式去尝试解决新问题,构建新的知识,这是本节课教学设计的灵魂。
教学反思:
我首先解决的是“商标纸的面积就是圆柱的侧面积”,再进而启发学生想到“如何把商标纸拿下来”,学生自然就想到“用剪或其他方法”,探究的方向准确后,我则放手让学生去发挥,去操作,留给学生大量的思维空间。学生在活动中,会随着操作的不同而有不同的发现,个性化的精彩随之绽放!中国有句古话就是:给你点颜色,你就开染坊!我觉得确实是的,我们的学生就是这样:你给他一个探究的空间,他就会回馈你一个意想不到的惊喜,还你以一幅精彩的画面!“天高任鸟飞,海阔凭鱼跃”,只有为学生的思维提供足够的时间和空间,才能让学生“如鱼得水”,让学生的精彩得以释放,让学生的潜能得以发挥,让学生的智慧充分展示,让我们的课堂永远充满生命和活力!
六年级数学圆柱教案篇九
1.使学生认识圆柱的底面、侧面和高,掌握圆柱的基本特征,发展学生的空间观念。
2.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析和概括的能力。
3.通过学生自主研究,使学生掌握研究立体几何的一般方法,丰富其学习数学的积极体验。
【教学重点】。
使学生掌握圆柱的基本特征。
【教学难点】。
圆柱的侧面与它的展开图之间的关系。
【教具、学具准备】。
圆柱体、硬纸、剪刀、胶带、圆规、直尺、课件、
【教学过程】。
师:(出示长方体的模型),我们在认识长方体时主要认识了它的哪些方面?
生:长方体的组成,就是长方体有6个面,12条棱和8个顶点。相对的面的面积相等,相对的棱的长度相等。
师:正向大家所说,我们在认识一种几何图形时,通常研究它的两个方面:即它的组成和组成部分之间的关系。今天这节课我们就用这种方式研究一种新的立体图形。
【评析】用长正方体的学习方法来研究圆柱体,体现了研究方法的一致性,有利于学生学习能力的提高。
1.课件引出研究问题。
师:屏幕上的这些物体都是什么形状的?(课件出示:比萨斜塔、客家围屋、立柱、蜡烛、水杯等)。
(课件抽出圆柱的几何模型)今天我们一起研究圆柱的认识。(板书课题)。
2.结合实物,初步探索圆柱的组成。
师:研究圆柱,我们先要研究圆柱的组成,每个人都有一个圆柱形的物体,请大家用手摸一摸,看一看,援助是有哪几部分组成的?(学生独立观察、操作)。
生1:圆柱有三部分组成,两个圆和一个周围的面。
生2:两个圆的面积相等,
生3:圆柱有无数条高。
师:你能给大家指一指圆柱的高在哪里吗?(学生指)。
师:大家的观察很仔细,确实圆柱是由三部分组成的,两个圆和一个曲面,并且两个圆的面积相等,在圆柱中,两个圆叫圆柱的底面,曲面叫做圆柱的侧面,圆柱有无数条高。(板书)。
3.设置问题障碍,深化特征的研究。
师:通过刚才的研究,我们知道:圆柱是有两个完全一样的圆和一个侧面组成的,是不是任意两个完全相等的圆和一个侧面就一定能组成圆柱呢?(不是)我这里有两个大小完全相同的圆和一个侧面,他们能不能组成一个圆柱呢?(不能)。
圆柱的底面和侧面之间又有什么样的关系呢?请大家以小组为单位,结合手中的学具进行研究。
汇报1:
生1:圆的大小和侧面的粗细一样。
师:大家的感觉没错。可是老师总感觉底面圆和侧面之间的关还不够具体,谁有办法能让大家很容易的看到它们之间的关系?再次进行小组合作。
汇报2:
组1:我们可以把圆柱的侧面剪开,把它展开后就变成了一个长方形。这样它们就都成了平面图形,就容易进行比较了。
在以前的学习中,还有哪些知识也用到了这一方法?
生2:学习圆的周长时我们也是用到了这一思想。
生3:学习圆的面积时我们也是用到了这一思想,把原转化成了近似的长方形。
师:大家的想法很有创造力,那展开后的长方形和底面圆之间有什么关系?
组2:现在长方形的长等于圆柱的底面周长。
师:大家把剪开的圆柱体再围起来,验证一下这位同学的结果。(学生操作)。
还有其他发现吗?
生4:长方形的宽等于圆柱的高。
师:现在谁能完整地说一说展开后的长方形和圆柱的关系?
生5:圆柱的侧面展开后是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高。
板书:
师:请同位两个用本子作学具互相说一说。
4.课件演示,建构圆柱的特征。
【评析】具有挑战性的问题情境,引导学生的思维层层推进,使学生的操作经验内化到原有的认知结构中,丰富了对圆柱特征的理解。在比较圆柱的侧面和底面圆的关系时,教师适时地启发学生联想圆的周长和面积的公式推导中所用的`思想、方法,潜移默化中教会了学生解决问题的策略。
师:刚才通过大家的努力,我们发现了圆柱的基本特征。现在每个小组都有一张长方形纸(长62.8厘米、宽31.4厘米),你能利用刚刚学到的知识做一个以这张长方形纸为侧面的圆柱吗?请大家先讨论应该怎样去做,有了想法后动手操作。(小组合作)。
(交流汇报)。
组1:我们组是利用长62.8厘米求出了底面圆的周长也是62.8厘米,62.8÷3.14÷2=10厘米,所以底面圆的半径是10厘米。用圆规画出了两个圆。粘起来就做成了一个圆柱。
组2:我们是把31.4厘米作为圆柱的底面周长,求出底面半径是5厘米,用圆规画出了两个圆做成了圆柱。
师:请大家把做成的圆柱举起来互相欣赏一下。虽然两个小组做成的圆柱形状不同,但他们都用到了今天所学的圆柱的基本特征:圆柱由两个完全相等的圆和一个侧面围成的,圆柱的侧面展开后是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高。大家解决问题的能力有了很大的发展,老师真为你们感到高兴。
【评析】圆柱体的制作,引导学生能用所学的知识和方法寻求解决问题的策略,既培养和发展了学生的应用意识和能力,又发展了学生的空间观念。
1.下面的图形哪些是圆柱?请标注来。
2.折一折,想一想,能得到什么图形,写到括号中。
【评析】有效的练习,既巩固了本节课所学习的知识,又发展了学生的空间观念。
六年级数学圆柱教案篇十
1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
教学重点。
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点。
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程。
一复习旧知。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的.计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)。
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)。
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)。
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)。
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)。
(2)底面积:3.14×2×2=12.56(平方分米)。
(3)表面积:56.52+12.56=81.64(平方分米)。
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)。
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习。
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)。
六年级数学圆柱教案篇十一
1、通过对圆柱和圆锥知识的复习,进一步熟练解答基本的数学问题。
2、通过猜想、估算、验证等数学活动,应用圆柱圆锥之间的内在联系解决生活中的问题,同时培养学生的估算能力。
教学重、难点:灵活计算圆柱体的表面积,圆柱体和圆锥的体积,解决实际问题。
师:还记得哪些与圆柱圆锥有联系的计算公式?
生:回答相联系的数学公式。
师:到底同学们的掌握情况怎样呢?我们一起来做个抢答练习好吗?
生:回忆基本知识。
1、抢答练习,请说出你的思考过程。
(1)一个圆柱体底面周长12.56米,求它的底面积是多少平方米?
学生抢答,并说出自己的思考过程,教师板书。
2、解决数学问题:
(1) 出示一圆柱图
师:看到这个圆柱体,你能提出哪些有关圆柱、圆锥的数学问题?怎样解答?
竞赛的形式来解决,竞赛要求:
1、时间3分钟。
2、请把问题、列式和结果写下来。比一比看谁的问题最多、列式和结果最正确。
(1) 学生独立完成;
(2) 同桌互查;
(3) 学生汇报;
(半径是多少?周长是多少?圆柱体的侧面积是多少?底面积是多少?圆柱体的体积是多少?等底等高的圆锥的体积是多少?剩余的部分是多少?)
(4)如果出现问题下面改正。
最佳设计方案。
有一张长方形的铁板长9.42米,宽6.28米。请你设计出一种就地围装粮食最多的方案。(接口忽略不计)
学生活动,老师巡视。小组成员汇报方案。
师:如果每立方米可装粮食400千克,能算出最佳方案中大约可装多少粮食吗?
师:刚才同学们都能全身心地投入到猜想、验证、合作、估算中,老师很高兴。哪些同学可以得到仓库保管员的应聘书呢?请来谈一谈你现在的.心情及感受。
课前思考:
潘老师设计的本课时教案在教学组织形式上与以往的复习课有所不同,重在将所学知识以竞赛的形式进行系统复习,估计这样的形式会让学生对复习产生一些兴趣。
因为这一单元涉及到的知识较多,而且相关的一些实际问题也都比较复杂,所以我们在复习时还要结合班级实际情况,有针对性地开展复习。
下面补充这样几题:
市民广场砌了一个圆柱形的喷水池,从里面量水池的底面半径是5米,深1.2米。
1.
(1)这个水池占地多少平方米?
(2)要在这个水池的四周和底面抹上水泥,抹水泥部分的面积是多少?
(3)这个水池装满水,最多能装多少立方米?
(4)在池口围一圈栏杆,栏杆长多少米?
六年级数学圆柱教案篇十二
本单元观察物体,动手操作,掌握圆柱和圆锥的特征及它们的组成;在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,归纳出圆柱的表面积、体积和圆锥的体积计算公式,并能正确计算;培养学生运用所学知识解决简单的实际问题的能力;初步参透数学的“转化”思想;初步养成乐于思考、勇于质疑、实事求是等良好品质。
本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。
本单元包括圆柱与圆锥的特征、圆柱的表面积、圆柱的体积、圆锥的体积等内容。
1、使学生认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。
2、使学生理解求圆柱的侧面积和表面积的计算方法,并会正确计算。
3、使学生理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。
掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。
圆柱、圆锥体积的计算公式的推导。
7课时。
六年级数学圆柱教案篇十三
1、结合具体的情境和实践活动,理解圆柱体体积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养学生初步的空间观念和思维能力;。
理解和掌握圆柱的体积计算公式,会求圆柱的体积。
理解圆柱体积计算公式的推导过程。
圆柱体积演示教具。
一、旧知铺垫。
1、谈话引入。
最近我们认识了圆柱和圆锥,还学会了计算圆柱的表面积。现在请看老师的这个圆柱形杯子和这个圆柱比较,谁大?这里所说的大小实际是指它们的什么?(生答)。
2、提出问题:什么叫体积?我们学过那些图形的体积?怎么算的?(生答师随之板书)。
二、自主探究,解决问题。
(一)认识圆柱体积的意义。
圆柱的体积到底是指什么?谁能举例说呢?
(二)圆柱体积的计算公式的推导。
1、我们学过长方体和正方体体积的计算,圆柱体的体积跟什么有关呢?你会有怎样的猜想?(小组内说说)。
2、回忆圆面积的推导过程。
3、教具演示。
(1)取圆柱体模型。
(2)将圆柱体切成两半。
(3)分别将两半均分成若干小块。
(4)动手拼成一个近似的长方体。
(三)归纳公式。
用字母表示:(板书:v=sh)。
三、巩固新知。
1、这个杯子的底面半径为6厘米,高为16厘米,它的体积是多少?
审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。
现在这个杯子装了2/3的水,装了多少水呢?
2、完成“试一试”
3、“跳一跳”:统一直柱体的体积的计算方法。
四、课堂总结、拓展延伸。
五、布置作业。
练一练1-5题。
六年级数学圆柱教案篇十四
一、填空。
1、圆柱的上、下两个面叫做________,它们是________的两个面;圆柱有一个曲面,叫做________;圆柱两个底面之间的距离叫做________。
2、把圆柱的侧面展开,得到一个长方形。这个长方形的长等于________;宽等于________。
3、填写下图各部分的名称。
4、(1)已知圆柱的半径和高,侧面积公式________;表面积公式________;体积公式________。
(2)已知圆柱的直径和高,侧面积公式________;表面积公式________;体积公式________。
(3)已知圆柱的周长和高,侧面积公式________;表面积公式________;体积公式________。
二、应用题。
1.求下面各圆柱的侧面积。
(1)底面周长1.6米,高0.7米。(2)底面半径3.2分米,高是5分米。
4、(1)两个底面积相等的圆柱,高和体积成()比例。
5、求下列图形的表面积和体积。(图中单位:厘米。)。
六年级数学圆柱教案篇十五
单元总目标:
1、认识圆柱、圆锥的各部分的名称,掌握圆柱、圆锥的特征。
2、理解圆柱的表面积、侧面积、体积的意义。会推导表面积、侧面积、体积的公式,认识进一法取近似值,能灵活解决实际问题。
3、掌握圆锥体积公式的推导过程,能灵活解决实际问题。
4、培养学生观察、比较、归纳的能力,以及空间观念。
5、培养学生逻辑思考能力,有条理性的解决问题的能力。
单元重点:圆柱体体积的计算。
单元难点:
(1)圆柱体体积公式的推导过。
(2)圆柱体侧面积、表面积的计算。
(2)利用圆柱体、圆锥体等底等高条件下的关系解有关复杂应用题。
突出重点、突破难点的关键:充分运用直观教具,进行割拼演示、实验,有目的、有步骤地引导学生观察、思考,推导出计算公式和有关概念。
单元难点的剖析:
(1)表现为:学生难于想到把一圆柱体的立体图形转化成什么图形来研究。怎样把它转化。
原因:圆柱体和长方体在表面看来并没有什么联系。并且学生还很难由圆与圆柱的联系,而想到圆能转化成长方形来研究,圆柱就可以转化成长方体来研究。
解决策略:首先回忆研究圆的面积计算时把圆转化成什么图形?如何剪拼成了这个学过的图形?借助多媒体课件把一个个完全一样的圆形堆成一个圆柱体,通过这个过程发展学生的空间想象力进行猜想:圆柱体能剪拼成什么图形,请学生试试看。
(2)表现为:对圆柱体的侧面积公式容易获得,但学生对已知r或d求侧面积的问题,学生转不过,容易用底面积乘高来计算。而对表面积的计算,由于表面积公式中涉及的公式较多,学生往往不小心就弄混公式。
(3)表现为:在具体的问题情境中会用错公式,如:求侧面积的求成了表面积,求体积的求成了表面积等。
原因:学生可能对概念、公式记忆较熟,但在具体的问题环境下用错公式。主要还是学生对概念的感知不够。
解决策略:
(1)为新课教学做好准备,充分复习好圆的周长的计算方法、面积公式的推导过程。
(2)借助实物多让学生感知概念的意义,不能死记硬背,要能用自己话说清楚。特别对中下生应多结合实物或图形指出问题要求的部分。
(3)公式一定让学生动手操作参与到推导过程中,不能把公式直接交给学生。
(4)学生自备圆柱体形状的物体,每节课的新课铺垫、例题教学、或是练习讲评都借助于具体的实物,让学生一边口述、一边指着实物来说,加强感知。
单元策略:基于本单元是研究几何图形的有关知识,教学中主要采用学生动手操作、观察、实验等直观手段辅助教学。多让学生参与获得公式或经验。如:圆柱体展开图的特征、侧面积、表面积、体积及圆锥体的体积计算。
错例的估计和采集:概念辨析题:(1)一只铁皮水桶能装水多少升是求水桶的。(2)做一只圆柱体的油桶,至少用多少铁皮,是求油桶的()(3)做一节铁皮水管,要多少铁皮是求水管的()(4)给个圆柱体的花瓶包装在盒子里,需用多大的盒子是求花瓶的()。
分析及策略:这些属于概念不清的问题,因为这些知识点本身有联系又有区别,所以易混,因此教学中重点在新授中注意让学生多体验、多感受。还要在综合练习中加强对比,沟通它们的联系和区别。
分析及策略:此类型的错误主要是公式用错,原因还是对概念不清,解题思路不明,因此,教学中在保证理解概念的前提下多让学生讲思路、强调解答步骤的书写要有条理。
有关圆柱体和圆锥体的混合题:(1)等底等高的圆柱体和圆锥体,圆锥体的体积是圆柱体的体积的(),圆柱体体积比圆锥体体积多(),圆锥体积比圆柱体少()。
(2)一个圆柱体积是96立方厘米,与它等底等底高的圆锥体积是()立方厘米,圆锥体积比圆柱体积少()立方厘米。
(3)一个圆锥和一个圆柱等底等高,它们体积之和是36立方分米,圆柱体积比圆锥大()立方分米。
分析及策略:此类型题的错因主要是对圆锥体积公式的推导过程还只是一个圆锥体积公式的获得过程,是停在表面上的认识,并没有真正通过实验过程对两者在一定条件下的关系弄清楚。因此这个推导过程中应让学生把两种几何体的体积关系,能反说、正说、比多少等都能说清。
练习题的分析:重点讲解的题目:39页第10题(重点说明生活中常说的圆柱体的长也就是数学意义上的圆柱体的高)。40页的13题(体积公式与比例知识的综合运用,即利用底面积一定时体积和高成正比例的关系来确定两个圆柱体体积的比,求出第二个圆柱体的体积,最后求出它们的'差。)45页的第6题(关键是培养学生的实践能力,了解测量圆锥的高的方法。)、第8题(训练学生的解题思路,先算什么,再算什么。)、第11题(由圆锥的体积:等底等高的圆柱的体积=1:3,那么现在它们的比是1:6,底是相等的那说明圆柱的高是圆锥高的2倍,于是圆柱的高是9.6。实际上是圆锥与圆柱体积关系的灵活应用。)。
课时安排:1、圆柱的认识31页至33页及例1。
3、圆柱的体积公式的推导36页例4及补充一道已知r求v的例题。
5、圆柱有关公式的对比练习39页8、9(增加不同位置类型的圆柱体)39页7、10。
6、圆锥的认识41页。
7、圆锥的体积公式的推导42页至43页例1。
8、圆锥体积的应用43页例2。
六年级数学圆柱教案篇十六
1、重视先猜想、再验证的思路来引入教学。
新课伊始,课件出示三个几何体的底面和高,引导学生来观察这三个几何体,发现它们的底面积都相等,高也都相等。进一步引导思考:想一想,长方体和正方体的体积相等吗?为什么?猜一猜,圆柱的体积与长方体和正方体的体积相等吗?学生认同,并提出等于底面积乘高。教师再次抛出问题:这仅仅是猜想,那用什么办法验证呢?今天这节课就来研究这个问题。
2、重视利用知识、方法的迁移来展开教学。
本课的例题探索,有一个目标就是使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。因此,笔者在执教时,根据陈星月的回答顺势复习了圆面积的推导:把一个圆平均分成16份、32份、64份或更多,剪开后可以拼成近似的长方形,圆的面积就可以转化成长方形的面积进行计算。接着提问:那么,受这个启发,那我们能不能将圆柱转化成长方体来计算体积呢?首先实物演示圆柱切拼的过程。把圆柱的底面平均分成16份,切开后可以拼成一个近似的长方体。然后进行课件演示,发现:把圆柱的底面平均分的份数越多,拼成的几何体会越来越接近长方体。这样有利于激活学生已有的知识和经验,使学生充分体会圆柱体积公式推导过程的合理性,并不断丰富对图形转化方法的感受。
3、重视通过核心问题的讨论和板书的精当设计来突出重点、突破难点。
核心问题即指中心问题,是诸多问题中相对最具思维价值、最利于学生思考及最能揭示事物本质的问题。它是在教学过程中,为学生更好地理解和掌握新知、更好地积累学习经验和方法,针对具体教学内容,提炼而成的教学中心问题。就如圆柱体积的计算而言,在这节课的教学过程中,教师抓住“圆柱的体积可能跟圆柱的哪些条件有关呢?”“拼成的长方体与原来的圆柱有什么关系?”“要计算圆柱的体积一般要知道哪些条件?”这三个问题,使学生在获取圆柱体积公式的同时又了解了体积公式的由来,并及时总结了思考问题的方法。核心问题也可以指为了探究知识的来龙去脉而在关键环节提出的指向性问题。
当然,需要注意和改进的地方是:书写格式的规范。
【本文地址:http://www.xuefen.com.cn/zuowen/18207525.html】