学习中的困难与挑战是我们不可避免的经历,总结能帮助我们更好地应对。写总结可以适当使用图表、统计数据等可视化形式,以增加可读性。以下是小编为大家整理的总结范文,希望能够给大家写总结提供一些启发和思路。
长方体和正方体体积教学设计篇一
1.1知识与技能:
1.2过程与方法:
在公式的推导过程中培养学生的观察能力、空间想象能力、提出问题的意识及解决实际问题的能力。
1.3情感态度与价值观:
使学生体会数学来源于生活,且服务于生活,产生热爱数学的思想感情。
2.1教学重点:
2掌握长、正方体体积的计算方法,解决实际问题。
2.2教学难点:
1、下列长方体的长、宽、高各是多少:
长:8厘米长:6分米长:8厘米长:12米。
宽:4厘米宽:2.5分米宽:4厘米宽:10米。
高:5厘米高:10分米高:4厘米高:1.5米。
2、下列图形是用1立方厘米的正方体搭成的。它们的体积各是多少立方厘米?
(1)活动一:
师:郑老师在每个4人小组都放了12个1平方厘米的小正方体和一张学习单,下面我们将以四人小组的形式进行探究。首先请看活动要求(课件出示):
a、四人小组合作用12个小正方体摆形状不同的长方体;
b、每摆出一种请在学习单上做好记录,然后再摆下一种;
c、摆完后想想你发现了什么,在四人小组内交流;
d、每组选出一位代表进行汇报。
生小组合作动手操作反馈,学生汇报,生每汇报出一种情况,师在黑板上的表格中板书:
师:观察表格,你发现了什么?
引导学生得出:只要用每行的个数乘以行数,得到一层所含的体积单位数,再乘以层数,就能得到这个长方体所含的体积单位数。
板书:体积=每行个数×行数×层数。
师:刚才同学们用12个小正方体摆出的长方体体积都是12平方厘米的,郑老师刚才也摆了两个,不过体积比你们大多了,但是要看懂郑老师的长方体必须发挥一下你们的空间想象能力。(课件出示)。
你知道这两个长方体的体积吗?你是怎么知道的?(生说,师填表)。
(2)活动二:
师:四人小组合作,你们能摆出一个体积更大的长方体吗?
预设:长5厘米,宽5厘米,高4厘米。
师:你发现了什么?每排个数、排数、层数相当于长方体的什么?
生:长宽高,因为每一个小正方体的棱长是1厘米,所以,每行摆几个小正方体,长正好是几厘米;摆几行,宽正好是几厘米;摆几层,高也正好是几厘米。
2、下面的长方体,看它包含有多少个体积单位?并指出它的长、宽、高各是多少。
(2)观察上面个部分之间的关系,可以得出:
第一个:5=5×1×1。
第二个:15=5×3×1。
第三个:12=3×2×2。
通过上面的关系式,可以得出:长方体的体积=长×宽×高。
如果用字母v表示长方体的体积,用a、b、c分别表示长方体的长、宽、高,那么长方体的体积计算公式可以写成:v=a×b×c。
因为正方体的性质,所有的棱长都相等,所以,正方体的体积=棱长×棱长×棱长。
如果用字母v表示正方体的体积,用a表示正方体的棱长,那么正方体的体积计算公式可以写成:v=a·a·a。
a·a·a也可以写作a?,读作“a的立方”,表示3个a相乘。
1、计算下面图形的体积。
v=abh=7×3×3=63(cm?)。
v=a3=4×4×4=64(cm)。
8×4×5=160(cm3)6×2.5×10=15(dm3)8×4×4=128(cm3)1.5×10×12=180(m3)。
解:v=abh。
=2.9×1×14.7。
=42.63(m?)。
答:这块石碑的体积是42.63立方米。
4、判断正误并说明理由。
(1)0.23=0.2×0.2×0.2。(√)。
(2)5x3=10x。(×)。
(3)一个正方体棱长4分米,它的体积是:43=12(立方分米)。(×)。
(4)一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米。(×)。
5、一个长方体的体积是48立方分米,长8分米、宽4分米,它的高是多少分米?
48÷8÷4=1.5(分米)。
答:它的高是1.5分米。
10×8×6=480(立方厘米)。
答:它的体积是480立方厘米。
(8×6)+(8×7+6×7)×2=244(平方分米)。
8×6×7=336(立方分米)。
答:制作这个鱼缸共需玻璃244平方分米。这个鱼缸的体积是336立方分米。
这节课我们学习了什么?
正方体的体积=棱长×棱长×棱长,v=a×a×a=a3。
v=a×b×h。
v=a×a×a=a3。
长方体和正方体体积教学设计篇二
课题二:
教学要求 使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。
教学过程。
一、创设情境。
填空:1、 叫做物体的体积。2、常用的体积单位有: 、 、 。3、计量一个物体的体积,要看这个物体含有多少个 。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)。
二、实践探索。
1.小组学习------长方体体积的计算。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。
观察结果:(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米)。
4 3 1。
含体积单位数:4×3×1=12(个)。
体积:4×3×1=12(立方厘米)。
(3)它含有多少个1 立方厘米?
(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?
(4)它的体积是多少?(同上板书)。
通过上面的实验,你发现了什么?(可让学生分小组讨论)。
结论:长方体的体积=长×宽×高。
用字母表示:v=a×b×h=abh。
应用:出示例1,让学生独立解答。
2.小组学习--正方体体积的计算。
结论:正方体的体积=棱长×棱长×棱长。
用字母表示为:v=a3。
说明:a×a×a可以写成a3,读作:a的立方。
应用:出示例2,让学生独立做后订正。
三、课堂实践。
1.做第34页的“做一做”的第1题。
(1)先让学生标出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做第33页的“做一做”的第2题。
3、做练习七的第4、6题。
四、课堂小结。
五、课后实践。
做练习七的第5、7题。
长方体和正方体体积教学设计篇三
教学目标:
2、能运用长、正方体的体积计算解决一些简单的实际问题。
3、培养学生归纳推理,抽象概括的能力。
教学重点和难点。
教学用具。
(一)复习准备。
1.提问:什么是体积?常用的体积单位有哪些?
2.请每位同学拿出4个1厘米3的正方体,摆成一个长方体。
教师:这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成,所以它的体积是4厘米3。)。
教师:如果再拼上一个1厘米3的正方体呢?
教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。如果想知道我们这间教室的体积应该怎么办呢?(引导学生理解有的物体是不能切开的,能不能运用学过的知识来解决。)能不能通过测量、计算来求出教室的体积呢?今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。
(二)引导探索。
师:“要想求长方体的体积,你们猜想可能与什么有关呢?”
(1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?
教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。
学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。
进一步验证:同桌合作,用小正方体摆出自己喜欢的长方体,看看长方体的体积是否等于长、宽、高的乘积。
教师:用v表示体积,a表示长,b表示宽,h表示高,公式可以写成:
板书:v=abh。
(2)练习:(学生口答。)出示老师的长方体教具,给出长、宽、高,求体积。
师:现在老师测量了教室的长是7、5米,宽是6米,高是3米,教室的体积是多少,你们知道吗?学生快速计算。
学生口答,老师板书:正方体体积=棱长×棱长×棱长。
用字母表示公式:用v表体积,a表示棱长,公式可写成:v=a·a·a或者v=a3。
(2)教学例2。
学生试做,指名板演。
做一做:出示老师的正方体的教具,求体积。(学生口答)。
(三)巩固反馈。
练习七5、6题。
(四)课堂总结。
长方体和正方体体积教学设计篇四
教学内容:教科书六年制五年级下册第99~102页。教学目标:
1.知识与技能目标:使学生掌握长方体体积公式的推导过程,理解长方体体积的计算公式;初步学会计算长方体的体积。
2.过程与方法目标:培养学生实际操作能力,同时发展他们的空间观念。
3.情感态度与价值观目标:在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
教学重点:在长方体、正方体体积计算公式的探究过程中,理解长方体含体积单位的.个数等于长、宽、高的乘积,进而推导出长方体(正方体)体积计算公式。教学难点:体积公式的推导。
教学准备:1立方厘米小正方块多媒体课件学具准备:1立方厘米的小正方体24个教学过程:
一、创设情境发现问题。
1、(课件出示)字典是我们学习的工具书,必须要常备身边的,聪聪遇到了这样的问题,他每天都要带一本字典,现在有两本内容同样的字典,他要选择其中的哪一本经常带在书包里比较方便呢?为什么?(小本的字典。体积小)。
其实刚才我们在比较他们的什么?(比较它们的体积。)体积指的是什么?(体积是指物体所占空间的大小)。
反馈交流,得出:含有多少个体积单位,它的体积就是多少。
理念依据:通过练习,使学生感知:体积是由体积单位组成的,要求长方体的体积可以用切一切、数一数小方块的方法。这既是对上节课体积单位的复习,也是这节课的教学起点。
3、师:是不是我们都可以用切一切、数一数小方块的方法来求一个物体的。
体积呢?
4、学生讨论讨论后使学生明确:实际上,在很多情况下,往往不能用切割的方法来求长方体的体积。如:字典、洗衣机的体积、电脑主机的体积等。理念依据:从实际情况考虑,让学生体会到,要求一个物体的体积,必须有一个新的方法才能解决,激发学生的学习兴趣。)。
图(4)。
先利用多媒体将上环节使用的图(1)动态变成图(2)。
生:长方体的宽和高都不变。长变了,表面积变了,体积也变了。教师继续把图(2)动态变成图(3)。
生:长方体的长不变,高和宽都变了,表面积和体积也变了。教师也不做评论,再把图(3)变成图(4)。
生:长方体的长、宽、高都变了,表面积和体积也变了。
师:通过刚才的观察,你认为长方体的体积大小和什么有关?(长方体的体积和长、宽、高有关)。
7、再次猜想。
教师板书学生的猜想:长方体的体积=长×宽×高。
[设计意图]通过演示,使学生体会到长方体的体积和长、宽、高都有关系,进而大胆的提出猜想)。
三、动手实践、验证猜想课件出示小组合作要求1、提出小组合作要求。
请同学们小组合作,用你们手中的1立方厘米小正方体拼成形状不同的长方体,摆的时。
观察每个长方体的“总个数每排个数每层排数层。
数”分别与这个长方体的“体积、长、宽、高”有什么关系?然后把数字记录在表格里面。
2、小组合作学习。
全班同学以小组为单位,进行分工,开始操作、计算、记录、思考、讨论。(出示课件:
师:请各小组同学利用你手中的1立方厘米的小正方体,摆成3种长方体,并把有关数据填到表格中,好吗?生:好!
哪个小组愿意先汇报你们的研究过程和成果?
第一组:把12个正方体摆成3排,每排2个,摆2层。这个长方体的长是2厘米,宽是3厘米,高是2厘米,体积是12立方厘米。
第二组:把15个正方体摆成1排,每排5个,摆3层。这个长方体的长是6厘米,宽是1厘米,高是3厘米,体积是18立方厘米。
第三组:把24个正方体摆成3排,每排4个,摆2层。这个长方体的长是6厘米,宽是4厘米,高是1厘米,体积是24立方厘米。
师:你观察得非常仔细,解说也非常到位!真是一位小老师!谢谢你!师:通过这几个小组的拼摆再加上刚才xxx的讲解,同学们有什么新的发现?(学生略感疑惑)。
师:我们一起来讨论一下,(结合课件中出示的表格边指边说)摆每个长方体的“总个数、每排个数、每层排数、层数”分别与这个长方体的“体积、长、宽、高”有什么关系吗?同学们可以先和身边的同学讨论一下,然后把你的想法和大家交流。
4、学生进行短暂的讨论后进行了交流。
生1:长方体的体积就是摆这个长方体的小正方体的个数。
生2:我想补充一下。从我们填的表格中就可以看出,每排摆几个,长方体的长就是多少,每层摆几排,它的宽就是多少,一共摆几层,高就是多少。
生4:只要知道长方体的长、宽、高就能知道一排摆几个,摆几排,摆几层,就知道体积了。
生5:如果是教室的体积你怎么摆?
生6:老师,我觉得根本就不用摆了!只要量出长、宽、高就行了。
师:(疑惑状)什么叫量出长、宽、高就行了?谁听明白了?能结合表中的数据说一说吗?生7:老师,我明白了!量出长宽高就相当于是知道了一排摆几个,摆几排,摆几层。所以,用长乘宽再乘高就是教室的体积。
师:原来是这样啊!(面向生6)xxx,你同意他的解释吗?大家同意吗?生:同意!
5、发现总结长方体体积公式。
(教师在学生回答时相机将表中“总个数、每排个数、每层排数、层数”下面显示出“体积、长、宽、高及相对应的单位。”)。
(1):刚才老师把同学们的实验数据汇总了这张表,我们一起来观察。师问:每排的个数、每层的排数、层数与长、宽、高有什么关系。
汇报交流:长方体的体积就是摆这个长方体的小正方体的个数。每排摆几个,长方体的长就是多少。每层摆几排,它的宽就是多少。一共摆几层,高就是多少。(2)教师引导学生发现:小正方体的总个数=每排的个数×每层的排数×层数长方体的体积=长×宽×高学生动笔算一算每一组的长、宽、高相乘的积,算后汇报。
(3)引导学生把计算结果与记录表中的体积进行比较,发现长×宽×高的乘积就是长方体的体积。
(4)同学们真了不起,通过猜想、实验、验证总结出了长方体的体积计算公式,今后在学习上同样可以利用这种方法学习。
(5)字母表示:长方体体积用v表示,长用a表示,宽用b表示,高用h表示,长方体的体积公式用字母表示是v=a×b×h=abh板书:v=a×b×h=abh学生齐读公式。
6、长方体的体积计算公式的应用----解决课前猜想(算字典的体积)7、迁移推导出正方体的体积计算公式再次尝试:一个长方体提问怎样求它的体积。
课件出示:图形变化成正方体提问你能求出它的体积吗?
学生小组讨论。
教师说明:a3读作a的立方或a的三次方,表示3个a相乘。
长方体和正方体体积教学设计篇五
1、在操作中,感知出长方体的体积大小与它的长、宽、高等有关,长方体的体积。
2、能运用长、正方体的体积公式,计算长、正方体的体积。并能运用所学知识解决一些实际问题。
3、借助学生自己的动手操作、动口表述及课件的动态演示,培养学生的空间观念。
体积公式的运用及公式的推导过程。
体验公式的推导过程。
一、比较大小,复习引入。
1、比一比。出示书包、文具盒。问:谁大?谁小?
其实刚才我们在比他们的什么?体积指的是什么?
2、说出下列图形的体积是多大?你是怎么想的?(都是有棱长为1分米的正方体拼成的)。
小结:要知道一个物体的体积,只要知道这个物体含有多少个这样的体积单位。
3、出示橡皮。问:什么形状?它有体积吗?体积多大?请你估一估,猜猜它有多大?
4、揭示课题。
二、动手操作,感知认识。
还有不同的摆法吗?(学生边说,老师边演示四种不同的摆法)。
3、观察发现:通过刚才的摆,观察这些数据,你发现了什么?
三、启发探究,自主建构。
1、出示长5分米、宽3分米、高2分米的长方体。
问:要摆成这样的长方体需要多少个棱长为1分米的正方体?体积是多少立方分米?你能利用手中的学具摆一摆吗?(开始活动,发现不够摆)。
问:不够,怎么办?你能在头脑中想象,把它补充完整吗?(又开始活动)。
2、汇报交流。并演示摆的过程。
3、出示长8分米、宽4分米、高3分米的长方体。你能摆这个吗?
4、听要求摆。
(1)自己摆一个长6分米、宽3分米、高2分米的长方体,并说说它的体积。
(2)想象一个9米、宽7米、高4米的长方体,并说说它的体积。
5、思考总结。体积与长、宽、高有怎样的关系呢?并快速验证黑板上的数据。
四、解决疑难,运用拓展。
1、解决橡皮的体积。要求它的体积,需要知道什么?师提供测量数据,让学生求体积。
2、自己求数学书的体积。
3、出示:亚光纸箱厂生产一种正方体纸板箱,棱长是8分米。体积是多少立方分米?
五、全课总结。
长方体和正方体体积教学设计篇六
1、结合具体情境和实践活动,经历探索长方体、正方体体积的计算方法,掌握并能正确计算长方体、正方体的体积。
2、经历观察、操作、探索的过程,发展动手操作、抽象概括、归纳推理的能力。进一步发展空间观念。
3、运用体积计算公式解决一些简单的实际问题。
4、探究活动中体验学习数学、发现数学的乐趣,学会与人合作。
2、教学重点/难点。
教学重点:引导学生探索长方体体积的计算方法。
教学难点:理解长方体体积公式的意义。
3、教学用具。
教学课件、一个长方体拼制模型。
4、标签。
一、启发谈话,激趣引入。
二、学习“体积”、“体积单位”的概念。
2、出示差不多大的土豆和一个长方体石块,你知道它们哪个大吗?那你有什么办法?
演示书上的实验,得出:土豆占的空间小,石块占的空间大。
4、计量体积的大小,要用到什么呢?常用的体积单位有哪些?请同学们自学14页中间部分。
5、学生汇报:
(1)常用的体积单位。
(2)拿出课前做的1立方厘米、1立方分米的小正方体,说说哪边哪些物体的体积大约是1立方厘米、1立方分米。
(3)立方米是怎么规定的?老师用3根1米长的木条搭成一个互相垂直的架子,放在墙角感知1立方米的大小,并说说生活中哪些物体的体积跟1立方米差不多大。
6、摆一摆:用棱长是1厘米的正方体木块,摆成下图中不同形状的模型,你知道它们的体积是多少立方厘米?(见教材)。
得出:要计量一个物体的体积,就要看这个物体含有多少个体积单位。
2、实践:拼摆长方体,四人一组,用不少于16块小正方体拼摆长方体,并分别记下摆出的长方体的长、宽、高和体积。
3、小组合作:学生四人一小组操作并做好实验记录。
思考:
(1)每排摆几个?每层摆了几排?摆了几层?
(2)一共摆了多少个小正方体?
(3)这个图形的体积是多少?
4、汇报实验结果。
每排个数。
每层排数。
层数。
小正方体个数。
让学生观察表格中填写的各数,你发现了什么?
小正方体的个数=每排个数×每层排数×层数。
‖‖‖‖。
6、学生汇报,交流,板书。
读题,思考:求砖的体积就是求什么?这个长方体的长、宽、高分别是什么?利用公式,直接求出体积。
生:正方体是长、宽、高都相等的特殊的长方体。
2、师生共同归纳:正方体的体积=棱长×棱长×棱长。
用字母表示为:v=a×a×a=a3。
师强调:读作a的立方,表示3个a相乘。3a表示3个a相加。
3、应用公式:
例题2:一块正方体的石料,棱长是6厘米,这块石料体积是多少?课堂小结。
回顾一下,今天的学习大家有什么收获?
课后习题。
(1)。一个长方体的长是4厘米,宽是3厘米,高是2厘米,它的体积是24立方厘。
米。()。
米)()。
(3)。棱长6厘米的正方体,表面积和体积一样。
大。()。
板书。
物体所占空间的大小,叫做物体的体积。
常用的体积单位有:立方米、立方分米、立方厘米。
小正方体的个数=每排个数×每层排数×层数。
‖‖‖‖。
v=abh。
v=a×a×a=a3。
长方体和正方体体积教学设计篇七
课题三:
教学要求在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。。
教学重点理解底面积。
教学用具投影仪。
教学过程。
一、创设情境。
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。
2、填空。
(1)长、正方体的体积大小是由确定的。
(2)长方体的体积=。
(3)正方体的体积=。
二、探索研究。
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。
结论:长方体的体积=底面积×高。
正方体的体积=底面积×棱长。
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
v=sh。
三、课堂实践。
1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。
2.做第35页的“做一做”的第2题。
首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。
3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结。
学生小结今天学习的内容。
五、课后实践。
做练习七的第10、11、12题。
长方体和正方体体积教学设计篇八
1、结合具体情境和实践活动,经历探索长方体、正方体体积的计算方法,掌握并能正确计算长方体、正方体的体积。
2、经历观察、操作、探索的过程,发展动手操作、抽象概括、归纳推理的能力。进一步发展空间观念。
3、运用体积计算公式解决一些简单的实际问题。
4、探究活动中体验学习数学、发现数学的乐趣,学会与人合作。
2.教学重点/难点。
教学重点:引导学生探索长方体体积的计算方法。
教学难点:理解长方体体积公式的意义。
3.教学用具。
教学课件、一个长方体拼制模型。
4.标签。
一、启发谈话,激趣引入。
二、学习“体积”、“体积单位”的概念。
2、出示差不多大的土豆和一个长方体石块,你知道它们哪个大吗?那你有什么办法?
演示书上的实验,得出:土豆占的空间小,石块占的空间大。
4、计量体积的大小,要用到什么呢?常用的体积单位有哪些?请同学们自学14页中间部分。
5、学生汇报:
(1)常用的体积单位。
(2)拿出课前做的1立方厘米、1立方分米的小正方体,说说哪边哪些物体的体积大约是1立方厘米、1立方分米。
(3)立方米是怎么规定的?老师用3根1米长的木条搭成一个互相垂直的架子,放在墙角感知1立方米的大小,并说说生活中哪些物体的体积跟1立方米差不多大。
6、摆一摆:用棱长是1厘米的正方体木块,摆成下图中不同形状的模型,你知道它们的体积是多少立方厘米?(见教材)。
得出:要计量一个物体的体积,就要看这个物体含有多少个体积单位。
2、实践:拼摆长方体,四人一组,用不少于16块小正方体拼摆长方体,并分别记下摆出的长方体的长、宽、高和体积。
3、小组合作:学生四人一小组操作并做好实验记录。
思考:
(1)每排摆几个?每层摆了几排?摆了几层?
(2)一共摆了多少个小正方体?
(3)这个图形的体积是多少?
4、汇报实验结果。
每排个数。
每层排数。
层数。
小正方体个数。
让学生观察表格中填写的各数,你发现了什么?
小正方体的个数=每排个数×每层排数×层数。
‖‖‖‖。
6、学生汇报,交流,板书。
读题,思考:求砖的体积就是求什么?这个长方体的长、宽、高分别是什么?利用公式,直接求出体积。
生:正方体是长、宽、高都相等的特殊的长方体。
师:根据这种关系,你能推导出正方体的体积公式吗?
2、师生共同归纳:正方体的体积=棱长×棱长×棱长。
用字母表示为:v=a×a×a=a3。
师强调:读作a的立方,表示3个a相乘。3a表示3个a相加。
3、应用公式:
例题2:一块正方体的石料,棱长是6厘米,这块石料体积是多少?课堂小结。
回顾一下,今天的学习大家有什么收获?
课后习题。
(1).一个长方体的长是4厘米,宽是3厘米,高是2厘米,它的体积是24立方厘。
米。()。
米)()。
大。()。
板书。
物体所占空间的大小,叫做物体的体积。
常用的体积单位有:立方米、立方分米、立方厘米。
小正方体的个数=每排个数×每层排数×层数。
‖‖‖‖。
v=abh。
v=a×a×a=a3。
读书破万卷,下笔如有神。上面这5篇《长方体和正方体的体积》优秀教学设计就是为您整理的长方体和正方体的体积教学设计范文模板,希望可以给予您一定的参考价值。
长方体和正方体体积教学设计篇九
义务教育课程标准实验教科书数学五年级下册第三单元《长方体和正方体的体积》,教材41页42页。
学生已经探索并掌握长方形、正方形以及其他一些常见多边形的特征,并直观认识长方体和正方体的基础上进行教学的。从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。对常见平面图形特征及其周长、面积计算方法的探索,既为进一步探索长方体、正方体这样的立体图形的特征以及表面积、体积的计算方法奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也能为进一步学习其它立体图形打好基础。
2.培养学生实际操作能力,同时发展他们的空间观念;
3.在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
探索长方体体积的计算方法。
挂图,若干个1立方厘米小正方块
1立方厘米的正方体16块
一、创设情境,揭示课题
1、实物引入
上节课,我们认识了体积和体积单位,谁来说说什么是体积,体积单位有哪些呢?
根据学生回答,其他学生也动手摆。
如果再拼上一个1立方厘米的正方体,它的体积又是多少呢?(学生操作)。
再拼上一个1立方厘米的正方体,这个长方体就含有5个1立方厘米的正方体,它的体积就是5立方厘米。
2、揭示课题,可见要计量一个物体的体积,就要看这个物体含有多少个体积单位。今天我们就来学习怎样计算长方体和正方体的体积。(板书:长方体和正方体的体积)
二、猜想验证,探究新知
1、提出猜想
你能不能摆出一个长方体,并计算它的体积?出示表格。学生四人一小组,每组一张表格。
长宽 高正方体个数体积
长方体1
长方体2
长方体3
长方体4
请同学们一小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。
学生活动,师巡视。小组汇报?学生黑板前展示表格,并做详细汇报。 引导学生观察表格:观察表格中的数据,从中你能发现什么呢?通过观察比较,同学们有了一个大胆的猜想:长方体的体积等于它的长、宽、高的乘积。这个猜想是否正确呢?我们还要进一步研究。
(板书:)长方体的体积=长×宽×高。
2、验证猜想
用1立方厘米的正方体摆出下面的长方体,各需要多少个?先想一想,再摆一摆。
1、长4厘米,宽1厘米,高1厘米。
2、长4厘米、宽3厘米、高1厘米。
3、长4厘米、宽3厘米、高2厘米
那究竟对不对呢?让我们再来摆一摆。学生小组讨论,动手操作,师巡视。组织交流,课件出示拼摆后的图形。
你是怎么摆的?体积是多少?和我们之前的猜想一样吗?
7×4×3=84立方厘米,所以它的体积就是84立方厘米。
3、概括公式
v=abh
长、宽、高都相等的长方体就是什么图形?你能直接写出正方体的体积公式吗?把你的想法在小组里说一说。
学生汇报:
因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中长、宽、高都叫棱长,正方体的体积=棱长×棱长×棱长。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。
出示正方体,出示公式。
强调写的时候,3要写在a的右上角,并且要写的小一些。
小训练:完成例2,在练习本上完成,集体订正。
三、巩固应用
计算下面长方体和正方体的体积。
1、长9厘米、宽6厘米、高5厘米
2、长0.5米、宽2.5米、高0.8米
3、棱长6分米
四、课堂小结
这节课我们一起学习了长方体和正方体的体积计算,你都有哪些收获?
长方体和正方体体积教学设计篇十
在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。
教学及训练。
重点。
理解底面积。
仪器。
教具。
投影仪。
教学内容和过程。
教学札记。
一、创设情境。
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。
2、填空。
(1)长、正方体的体积大小是由确定的。
(2)长方体的体积=。
(3)正方体的体积=。
二、探索研究。
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。
结论:长方体的体积=底面积×高。
正方体的.体积=底面积×棱长。
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
结论:长方体(或正方体)的体积=底面积×高,用字母表示:v=sh。
三、巩固练习。
1.做第20页的“练一练”。学生独立做后,学生讲评。
首先帮助学生理解:什么是横截面?再让学生做后学生讲评。
3.做练习三的第9、10题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结。
学生小结今天学习的内容。
五、课后练习。
做练习三的第11、12、13题。
长方体和正方体体积教学设计篇十一
教学目标:
知识与技能:
经历对长方体和正方体的知识系统化的整理,加深对长方体正方体的形体特征的认识,分清表面积和体积的概念,能熟练地掌握形体的表面积和体积(容积)的计算,解决一些实际问题。
解决问题:
初步学会用形体知识提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展学生应用意识、实践能力与创新精神。
情感与态度:
通过解决实际问题,让学生感受到数学与生活的密切相关,使学生形成积极参与数学教学活动,并积极与人合作获得成功的体验,树立学好数学的信心与勇气。
教学过程:
一、假设问题情境,激发学习兴趣。
开展生生之间、师生之间对话,教师要引导注意安全与游泳前的准备运动等等的相关的内容。
指名学生回答,也可让学生小组讨论交流后反馈,由学生各抒己见。教师要注意凡学生提出的问题都要给于一定的评价性的肯定,同时要注意正确思想的引导。
二、自主合作整理,构建知识网络。
让学生每四人一组小组动手合作列出知识纲要。
小组的成果开展反馈并给于展示(可借投影仪)。
三、综合应用知识,解决实际问题。
师述:现在在请你们为学校设计建游泳池的方案?
你们认为建游泳池要解决哪些问题呢?
学生讨论说一说。
出示教师的几个问题:
(1)游泳池的长宽高各是多少米?
(2)池占地多大?
(3)挖出多少的土?
(4)池内的四周和底部用什么铺,要铺多大的面积?
(5)要放入多少的水?
小组反馈合作的结果。
四、开展激励评价,体验成功喜悦。
师述:你们说一说哪种好呢?
第9课时实践活动粉刷围墙。
教学目标。
1、让学生经历粉刷围墙的实践活动,巩固有关表面积等方面的知识,加强数学知识在实际生活中的应用。
2、在引导学生准备测量、明确分工、解救问题的过程中,培养学生的合作意识,提高学生收集、整理、分析信息的能力。
3、在利用数学知识制定方案的过程中,体验数学知识与生活的紧密联系,并利用数学知识科学地知道生活,感受成功。
教学重点。
整理分析和比较信息,制定方案。
教学难点。
策略多样化后的优化策略。
教学过程。
一、情境再现,激趣导入。
师:(课件出示围墙的污点和裂缝)大家看到这些图片想说些什么?(生争相发言)老师听出来大家都根热爱我们的学校,看来粉刷围墙势在必行。这节课我们一定要拿出一份可行的方案,解决这个问题。(板书题目:粉刷围墙)。
二、集体规划,确定步骤。
1、确定研究步骤。
作为粉刷围墙工作的小工程师,你认为应分哪几步去完成这项工作呢?(生回答)。
2、根据学生回答,教师引导学生确定研究步骤。
(1)调查相关数据信息(包括粉刷面积、涂料费用、人工费用等)。
(2)选择信息综合计算,得出粉刷草案。
(3)整理研究结果,呈现出书面粉刷方案。
三、引导学生汇报课前调查情况。
师:课前各组已经分头去调查了相关的粉刷信息,请大家以组为单位汇报搜集到的信息,其他小组有不同意见可以互相补充。
1、分组汇报。
(1)调查粉刷面积的小组汇报调查结果,明确围墙的长、高,并汇报计算面积的准确过程。
(2)调查涂料价目的小组汇报外墙涂料价目调查情况。
(3)调查人工费用的小组汇报人工费用调查情况。
2、指导学生计算人工费用及涂料数量。
(1)学生独立计算人工费用及涂料数量。
(2)集体订正。
四、小组合作,制订粉刷方案。
涂料型号不同,价格也不同,到底该选择哪种涂料?一共要花多少钱?怎样做才能有实用有美观呢?请各小组同学合作,拿出你们认为最好的粉刷计划。
1、小组合作综合分析。
2、小组为单位进行汇报,体现策略多样化,展示学生的多种方案。
3、优化选择。
4、学生独立计算买已选涂料粉刷一共需要的费用。
5、书面整理并呈现粉刷围墙的方案。
6、对方案的润色和个性化设计。
五、课外延伸,完美计划。
六、全课总结,感受成功。
长方体和正方体体积教学设计篇十二
1、知识与技能目标:通过学习,让学生知道长方体和正方体的各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。
2、过程与方法目标:让学生经历观察,交流,归纳等认识长方体和正方体特征的过程。
3、情感态度与价值观目标:让学生积极主动参与数学活动,在总结和归纳长方体、正方体的特征以及关系的过程中获得积极的学习体验。
教学难点:建立“立体图形”的空间概念,了解长方体、正方体的关系。
(一)创设情境,导入新课。
用多媒体向学生展示一些基本图形长方形、正方形、三角形、平行四边形、梯形,询问学生:“这些图形我们统称为什么形?”在学生回答称为平面图形。
让学生拿出自己准备的盒子,观察之后告诉他们像盒子这样占有一定空间的图形,叫立体图形,今天我们我们来研究立体图形中的长方体和正方体的特征,并板书课题——长方体和正方体的认识。
(二)探究新知。
1、认识长方体的面、棱、顶点。
首先请学生拿出已准备好的长方体(学具),闭上眼睛摸一摸,想一想:“长方体是由什么围成的?两个面相交处有什么?三条棱相交处有什么?”让学生告诉我他们的发现,然后将拿出长方体,边摸边讲解:什么叫面、棱、顶点。
请学生用手中的学具四人一小组研究长方体和正方体面、棱、顶点的特征,完成表格。
给出了三组小棒,让学生判断哪组可以组成长方体。学生汇报正方体的面、棱、顶点的特征。
让学生总结前面讲到的长方体、正方体的特征,并进行对比,说一说它们相同点和不同点。
(三)多种练习,巩固新知。
(四)课堂小节。
让学生谈一谈体会,概括本节课所学知识。
长方体和正方体体积教学设计篇十三
在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。
理解底面积。
投影仪。
一、创设情境。
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。
2、填空。
二、探索研究。
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
v=sh。
三、课堂实践。
1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。
2.做第35页的“做一做”的第2题。
首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。
3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。
四、课堂。
学生今天学习的内容。
五、课后实践。
做练习七的第10、11、12题。
长方体和正方体体积教学设计篇十四
1.通过观察、猜想、操作、想象、推理、探索等数学活动,自主探索长方体、正方体关于面、棱、顶点的特征,理解长方体长、宽、高的含义。
2.立足想象与操作,自主探索并发现长方体顶点、棱、面之间的关系,理解长方体和正方体的关系。
3.在自主探索长方体和正方体特征的过程中,培养学生的空间观念和推理能力。
把握特征,培养空间观念。
空间观念的培养。
课件、模型、搭长方体的材料等。
师:同学们,今天老师给大家带来了很多的数学图形,你认识它们吗?(认识)。
师:那这个图形叫什么?这个呢?这个……。
师:在这些图形里,你能分辨哪些是平面图形,哪些是立体图形吗?(能)。
师:你上来试一试。请将是平面图形的拖到左边,是立体图形的拖到右边。
师:同学们,他做的对吗?(对)。
师:很好,今天,我们就一起进入立体图形的世界,更深入的认识一下长方体和正方体。(板书课题:长方体和正方体的认识)。
师:同学们,你们在生活中见过哪些物体的形状是长方体或正方体的?
师:我们周围许多物体的形状都是长方体或正方体(正方体也叫立方体)。
2.认识长方体。
师:我们先来认识一下长方体。请同学们看,在长方体中,老师手摸得这些平平的地方叫做长方体的面,然后面与面相交的这条线就叫做长方体的棱,三条棱相交的这个点叫做长方体的顶点。
师:同学们的桌上都有一个长方体的物体。接下来,请同学们带着下面这些问题摸一摸你的长方体。
(1)长方体有()个面。
(2)每个面是什么形状的?
(3)哪些面是完全相同的?
(4)长方体有()条棱。
(5)哪些棱长度相等?
(6)长方体有()个顶点。
师:你们有答案了吗?我们一起来看一下。
师:通过刚刚的活动我们知道了:长方体一般是由6个长方形(特殊情况下有两个相对的面是正方形)围成的立体图形。在一个长方体中,相对的面完全相同,相对的棱长度相等。
3.制作长方体,认识长、宽、高。
交流:
师:同学们,刚刚我们初步认识了长方体,你们想亲自动手用小棒做一个长方体吗?(想)。
师:那想要搭成一个长方体,需要几根小棒呢?(12根)。
师:为什么是12根?
师:给你12根一定能搭成吗?
学生思考并回答。
操作:
师:同学们想好了吗?我们一起来试一试。
出示任务要求:
(1)选择其中的一种方案,小组合作搭一个长方体。
(2)进一步思考其他方案可不可以搭成,为什么?
(3)思考在搭长方体的过程中自己的发现。
学生操作。
反馈:
师:同学们完成了吗?请问哪些方案不能搭成长方体?
方案2。
师:这些方案都用了12根小棒,为什么唯独2号方案不可以搭成长方体?
预测1:2号方案黄色小棒不够了,而蓝色的多了一根。
预测2:每种长度都应该是4根才够,否则搭不成。小结:长方体有12条棱,分成3组,每组都是4根。
预测1:每种长度都有4根。
引导学生指一指模型并板书:分成3组,每组4根。
预测2:长度相同的4根小棒,放在相对的位置。
板书:位置相对。
预测3:每组相等的小棒,都是平行的。
师:(利用模型引导学生观察)水平面相对的棱互相平行;
垂直面相对的棱互相平行;
侧面相对的棱互相平行。
预测4:每个顶点上有3条长度不等的棱。
师:同学们,请看模型。老师把长方体的前面和后面拆下来看一下,我们会发现它们的长与宽都是用的一样的小棒,所以前面和后面是一样的长方形,同样的道理,左边和右边是一样的长方形,上面和下面是一样的长方形。我们再一次发现长方体有6个面,并且相对的面大小相同。
师:接下来,我们来看一下方案3搭成的长方体,哪些同学是用方案3搭的?
师:(出示方案3)这个长方体与与用方案1搭的长方体相比,有什么特别之处吗?
预测:方案1搭的长方体6个面都是长方形,方案3搭的长方体有2个面是正方形。
师:是的,这是方案1的长方体,我们可以将它怎样变化,得到方案3搭的长方体呢?(课件演示)。
师:再进一步思考,我们能不能继续把这个长方体变成正方体呢,有什么办法?
学生反馈,师动态演示。
师:(展示方案4所搭成的正方体)正方体与长方体相比有什么相同,什么不同?
师:根据你们的回答,老师画出了这幅图,这个图是什么意思?在以前学习中有没有这样的图?(出示长方形与正方形的集合图,体会两者关系。)。
师:其实,正方体是长、宽、高都相等的特殊的长方体。
长方体和正方体体积教学设计篇十五
1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。
2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。
长、正方体模型、课件、长、正方体形状的纸盒等。
创设情境,导入新课。
出示长方体模型,您能告诉大家这个长方体体积是多少?并说一说是怎样想的吗?
教师演示,学生感知这个长方体模型的体积(每层有4个,共3层,一共是12个),这个长方体的体积就是12立方厘米。
揭示课题:对一些不可以分割的长方体,我们有没有办法计算的他体积呢?(板书:长方体和正方体的体积)。
操作探究,发现规律。
学生按照要求用正方体搭出四个不同的长方体并编号。
让学生观察,并作小组交流。
用了几个小正方体?不数,你怎样计算小正方体的个数?
根据所搭的长方体填表:(表格略)。
根据表格,引导分析,发现规律。
比较每一个长方体的体积,和计算小正方体个数的方法,你能得出什么结论?
引导学生猜想:长方体的体积和他的长宽高有什么关系?
再次探索,验证猜想。
出示例题10,让学生摆一摆,再数一数,看看一共用多少个小正方体。
如果让你摆一个长5厘米,宽4厘米,高3厘米的长方体,你能说出要用几个1立方厘米的小正方体吗?学生思考后回答。
引导概括,得出公式。
交流的出结论:
v=abh。
启发引导。
正方体是特殊的长方体,你能根据长方体的体积公式写出正方体的体积公式吗?
让学生尝试,再交流得出结论:
学生阅读教材第26页,说说正方体体积的字母公式。
应用拓展,巩固练习。
做“试一试”
先指名说出长方体的长宽高分别是多少?正方体的棱长是多少,再独立计算。交流时先说说公式,再说说怎样列式。
做“练一练”第1题。
观察题中的图形,说出每个图形的长宽高或棱长,在独立完成。
做“练一练”第2题。
先让学生选择几个式子说说其表示的意思,再口算。
做练习四第2题。
完成练习四第1、3题。
长方体和正方体体积教学设计篇十六
1、通过观察、分类、操作、讨论等活动,进一步认识长方体、正方体,了解长方体、正方体各部分的名称。
2、经历观察、操作和归纳过程,发现长方体和正方体特点,理解他们之间的关系。
3、通过具体的操作活动,发展空间观念,增强数学学习的兴趣和学好数学的自信心。
通过观察、操作等活动概括出长方体、正方体的特征。掌握长方体、正方体的特征,以及长方体和正方体之间的关系。让学生理解长方体棱的关系和建立初步的空间观念。
本课我设计了四个环节。
第一环节创设情境,激发学生的兴趣。让学生联系已知、观察实物、建立表象,导入新课:
首先,课件显示已经学过的平面图形,强调“平面图形是由线段围成的”,为下面讲“体是由平面围成的”埋下伏笔。接着,老师出示长方体并引导学生观察:“它是由什么围成的?生活中哪些物体的形状是这样的?”在学生作答的基础上,课件出示生活中见到的各种长方体物体,告诉学生这些物体的形状是长方体,让学生初步感性认识长方体。然后老师适时提问:“怎样判断一个物体的形状是不是长方体呢?我们研究了长方体的特征,就能够准确地判断了。”这种利用直观图形复习旧知,提问题导课的方式能够激发学生的学习兴趣,使学生明确本节课的学习目标,并激起了求知欲,自觉、有意识地投入到新知识的学习中去。
第二环节动手实践,探索新知。
在这个环节中我抓住目标,让学生合作学习,概括出长方体和正方体的特征,抽象图形。
(一)探究长方体的特征。
在这个重点环节中,我设计了四个教学层次。
1、观察实物或模型,认识长方体的面、棱、顶点,初步感知面、棱、顶点的含义。让学生仔细观察,并用手摸一摸,通过视觉、触觉等多种感官共同参与大脑的分析活动,鼓励学生交流讨论。在学生观察的时候,教师要深入到学生当中,引导他们观察,概括定义时,引导学生用自己的话来描述长方体的外部构成。在学生充分感知的基础上,课件进行演示,然后用下定义的方式揭示概念,(课件出示长方体的面、棱、顶点及定义——长方体上平平的部分是长方体的面;两个面相交的边叫长方体的棱;三条棱相交的点叫长方体的顶点。)对于顶点的认识,让学生观察,用手摸一摸长方体三条棱相交的地方有什么?学生可能说有一个角。如果出现这种情况,教师可以引导学生回忆什么叫角,并画角研究它的构成,使学生知道刚才看到的不是角而是顶点。课件演示:先闪动三条棱,再闪动三条棱相交的点,指出顶点的含义:我们把三条棱相交的点叫做顶点。这样使学生对长方体各部分的名称留下深刻的印象,为展开研究长方体的特征铺平道路。
2、师生共同探究长方体的特征,解决重点。
这部分重点教学我采用分组讨论、合作学习的方式,让学生动手操作,用数一数、比一比、量一量、剪一剪等方法,并动脑想一想,长方体有哪些特征,给学生留出广阔的探究空间。在学生充分讨论的.基础上,组织学生汇报交流。如果学生回答得不够充分或条理不太清晰时,我预设了这样一些铺垫性的问题:
(1)长方体有几个面?你是怎样数的?每个面是什么形状?相对的面有什么关系?
(2)长方体有多少条棱?你是怎样数的?哪些棱的长度相等?
(3)长方体有多少个顶点?
学生汇报交流,教师借助课件动态显示验证:大家请看。
(1)这是演示让学生数面,并验证相对的面完全相同。鼓励学生用多种方式进行探索,如把长方体剪开,用重叠的方法比较面的特点;也可以把面拓印在纸上,通过比较发现相对的面完全相同。让学生知道根据长方体面的位置,我们分别把它们叫做前面、后面、上面、下面、左面、右面。
关于面的形状让学生观察发现有两种情况:一种是6个面都是长方形,另一种情况是有4个面是长方形,另外两个相对的面是正方形。
(2)这是演示把棱分成四组,有规律地数出有12条棱,并验证相对的4条棱的长度相等。
探讨棱的特征时,可以问问学生是怎样数的,怎样数才能既不重复又不会遗漏,让学生直观感受数棱时把棱分成三组,每组4条,然后按顺序数。通过量每条棱的长度,发现规律:相对的棱的长度是相等的。通过课件的演示发现这四条棱是平行的。在与学生交流中通过观察、数一数来突破教学的难点。
(3)这是显示有8个顶点。
让学生结合课件体会按照一定的顺序数一数,长方体有几个顶点,学生说出数的结果。
探究出面、棱、顶点的特点之后,让学生看课件再简单回顾一下,指名让学生把长方体的特征完整的总结。(课件出示:依次隐去6个面,再分组闪动12条棱,最后一次闪动8个顶点。)学生回答以后教师指出,我们要判断一个物体是不是长方体,要根据长方体的特征去分析。
观察、发现、总结长方体的特征是本课的重点和难点。在这个过程中,老师要适当引导,循序渐进。比如在数面和棱的多少时,通过先让学生自已数,过渡到老师指导下的有规律地数,不仅教知识而且教方法,对培养学生的能力大有益处。预设:学生在数面、棱、顶点时可能重复或遗漏,所以在此引导学生按一定的顺序数,同时数的时候不要随意翻转手中的学具。此外,学生可能会认为相对的棱只有两条,教师要再次给学生观察的时间,使学生发现长方体相对的棱有四条。让学生分组讨论、合作学习,使学生充分参与到知识的形成过程,体现了教师为主导、学生为主体的教学原则,培养了学生团结协作解决问题的精神。
由实物到几何图形,是认识的又一次飞跃,是培养和发展学生空间观念的主要凭借,也是本节课的教学难点。所以在和学生一起观察、发现、归纳出了长方体的特征后让学生认识长方体立体图,完善对长方体的整体认识。(过渡语)刚才我们认识了这些长方体,如果把它们画下来该是什么样的呢?下面我们就来研究如何画图表示长方体。
让学生拿自己的长方体,从不同角度进行观察,看最多能看到几个面。学生观察后发现,最多能看到它的三个面。然后让学生把自己的长方体放在桌子的左上角进一步观察,你看到了哪三个面,哪三个面看不到?学生实践后用课件演示,如果把这个长方体放在左前方观察,所看到的图形就是这样的。(课件演示)在这个图形中,你看到了哪几个面?哪几个面看不到?结合课件告诉学生,看不到的面用虚线表示。这叫长方体的立体图,看图的时候,同学们要注意,上、下、左、右这四个面画的是平行四边形,但实际上表示的却是长方形。然后让学生指一指书上立体图形的6个面、12条棱、8个顶点加以巩固。
这样设计的原因是实物与图形之间的相互成像是空间观念的主要表现。经过这样一个过程就能更好地帮助学生初步形成立体图形的空间观念,提高学生看立体图的能力。并运用多媒体的动画功能,从实物中隐化、抽象出长方体物体的图形。并与前面学习的长方体的特征,在学生头脑中共同构建,由实物特征、图形,形成长方体的概念,突破了本节课的教学难点!
4、抽象图形,并认识长方体的长、宽、高。
在认识长方体图形的基础上,课件演示并讲解长、宽、高的概念,(我们把相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。)突出强调由于长方体放置的方式不同,其长、宽、高也随之变化,(结合立体图说明,习惯上,长方体的位置固定以后,把底面中较长的棱叫做长,较短的中棱叫做宽,和地面垂直的棱叫做高。)然后,教师将长方体横放、竖放、侧放,让学生分别说出长方体的长、宽、高。接着让学生指出自己手中长方体的长、宽、高,再量一量手中这个长方体框架的长宽高分别是多少?根据学生交流的结果可能不同的情况,说明长方体摆放位置不同,长宽高的说法可能不一样。这样做的意图是在空间观念的形成过程中,视觉、触觉可以为大脑思维提供直接的、丰富的素材,因此我设计让学生的手、眼、脑协同发挥作用,以形成长方体的表象。
(二)探究正方体的特征。
有了研究长方体特征的基础,在探究正方体的特征时,可以通过长方体变成正方体的动画,把正方体的特征化难为易,让学生初步体会到正方体与长方体的关系,迁移学习方法,较好的达到学习目标。
用课件出示动画图像:长方体转换为正方体,学生观察后讨论新得到的长方体与原来长方体比较有什么变化?归纳得出结论:长、宽、高变为相等,我们把它的长、宽、高都叫做棱长,六个面都变成了正方形,长方体变为正方体。然后让学生观察自己带来的正方体,如魔方、积木等,用刚才研究长方体特征的方法研究正方体的特征。通过学生的研究可以得到:正方体的6个面是完全相同的正方形,正方体12条棱长相等。
通过观察、实践学生概括出了长方体和正方体的特征,此时需要对新课进行归纳总结。
引导学生按照面、棱、顶点的次序,找出长方体和正方体的相同点和不同点,并整理出表格。然后分组讨论:正方体在具有长方体这些特征的前提下,它的独特之处是什么?归纳出结论:正方体是特殊的长方体。课件出示长方体、正方体的集合图。
通过对长方体及正方体的特征比较,从而渗透事物是相互联系的辩证思想,以图文结合的形式生动形象直观地展现本节课的重点内容,让学生铭刻记忆,融会贯通。
第三环节实践运用,巩固新知。
1、判断。
前3道小题为基本题,通过这样的练习使学生进一步掌握并灵活运用长方体、正方体的特征。第4小题加深了难度,培养学生的空间想象力,当学生有困难时,可让学生利用手中的小正方体摆一摆,可以在本上画一画,教师则借助课件帮助学生理解。
2、选择。
让学生区分计算某一个面的面积时需要用到哪一条棱的长度。独立探讨长方体棱长总和的计算方法。这题的设计目的是让学生在空间想象力的基础上根据所求问题筛选出有效信息解决问题,并且及时反馈学生对前面所学知识的掌握程度。也可以为调整后续教学方案获得新的信息。
3、拓展题。
变式拓展练习的设计,是为了在加强基础知识训练的同时,提升学生灵活应变的能力。
第四环节梳理知识,反思总结。
要求学生以小组为单位进行学习汇报,整理本节课学到的知识,并说出是怎样学到的。这样做的目的是不仅关注学习的结果,更关注知识的探讨过程,把学生当作知识建构的主体,当作活生生的、富有个性的人,使数学课堂焕发出生命的活力。
以上是我对《长方体的认识》一课的粗浅的理解和不成熟的设计,“三人行,必有我师焉。”学无止境,研无止境,在思维的碰撞中方能迸射出智慧的火花。请各位领导老师多批评指正。
长方体的长和宽到底如何确定?是以底面长方形的长边为长,短边为宽,还是以长方体水平放置后左右方向的棱为长,前后方向的棱为宽?这一问题在我校数学组内产生了争议。其实,如何确定长方体的长、宽、高可能只是人们的一种约定俗成。无论如何确定,它的表面积和体积的大小都不会因此发生改变。但如果按左右方向为长、前后方向为宽,垂直方向为高,那么在教学长方体的表面积时就可以帮助学生总结出如下规律:
长方体的前、后面=长x高x2。
长方体的左、右面=宽x高x2。
长方体的上、下面|=长x宽x2。
如果按底面长方形的长边为长、短边为宽,则在长方体的表面积计算推导过程中就必须根据物体的摆放来灵活确定每个面的面积如何列式了。这一问题如何处理,将关系到后继长方体表面积的教学设计。
在无法定夺的情况下,请教了教研员。结论如下:如果长方体是水平放置,人们习惯于将左右方向的棱称为长,前后方向的棱称为宽。如果长方体非水平方向放置,人们则一般以底面较长的边为长,较短的边为宽。
2、纸上得来终觉浅,绝知此事必躬行。
有人说“我听了,就忘了;我看了,记住了;我做了,才理解了。”听、看、做代表着三个不同层次,在大脑皮层留下的痕迹也有深有浅。今天的课堂教学很好地印证了上面这段话,也使我深切地感受到课堂应该成为所有学生探究的舞台,而非老师或个别学生展示的舞台。
实践证明:教师的演示或部分学生的操作不能代替大家的自主探究,只有亲身参与,才能更好地将书本知识内化为个体储备,进而运用到解决生活中的实际问题。因此在今后教学中,要注意拓展探究的时间和空间,让课堂成为学生探究的舞台。
在教学完长、宽、高的认识后,我顺势补充了长方体棱长和的相关内容。原因有二:一是通过拼摆长方体框架,能够帮助学生顺利推导出棱长和的计算公式;二是教材练习中对这部分有所涉及,必须在课堂教学中有所渗透。
作业中相应习题建议调换一下顺序,先教学第7题,再讲第6题。因为第7题是要求长方体12条棱长之和,而第6题则需要根据实际灵活处理,只求出其中8条棱长之和即可(少了两条长和两条宽)。
4、知识点较多,时间分配上有些力不从心。
本课我既想让学生通过充分探究发现长方体的特征,又想培养他们的空间观念,能仅凭立体图就正确回答出长方体各个面的面积该如何列式,还想让他们掌握棱长和的简便求法。
我将长方体的特征定为本课教学重点,因此在探究上给予学生充分的时间,并在方法与策略上注意引导,学生学得较扎实。但到后面两部分时,明显觉得教学时间不够,只能囫囵吞枣。总之,感觉一节课40分钟难以扎实完成教学任务。
长方体和正方体体积教学设计篇十七
3、在探究学习中培养学生动脑思考,动手操作,归纳总结的能力。
学生准备小正方体(多个)ppt。
1、填空。
(1)()叫做物体的体积。
(2)常用的体积单位有()()()。
2、下面各图是用棱长1厘米的小正方体拼成的,它们的体积各是多少。学生回答后,教师总结:物体体积的大小取决于这个物体里所含单位体积的多少。
1、出示一个长方体实物,请学生猜猜它的体积大约是多少?那么怎么能准确地知道这个物体的体积是多少呢?这节课我们就来学习“长方体的体积”(板书课题)。
2、出示学习目标:
1、回顾“以旧学新”的几何问题研究方法。
以前我们在研究推导平面图形面积计算公式时,都用过哪些方法:数方格、割补法。看看这两种方法,哪种适合研究长方体体积。简单讨论后,确定用“数方块”的方法。
2、教师ppt演示切割物体数方块,让学生明白:这种方法虽然可以,但是操作起来麻烦,有些物体是不容易切割,不能切割,而且,物体的长、宽、高必须是整厘米的。
3、质疑思考:那么我们能不能通过量出长方体长、宽、高的长度,用计算的方法呢?长方体的长、宽、高和长方体的体积之间有着怎样的联系呢?下面,我们就动手操作,小组合作来研究这个问题。
4、出示小组研究提示。
(1)用体积为1立方厘米的小正方体摆成不同的长方体(至少摆两种)。
(2)把不同的长方体的相关数据填入下表(29页表格)。
(3)观察上表,你发现了什么?你能总结出长方体体积的计算方法吗?
6、即使练习:(例1)出示例1,指名口答,指导用字母公式计算的书写格式。
7、根据例1右边的正方体图形,让学生总结出正方体体积的计算方法正方体体积=棱长×棱长×棱长用字母表示:v=a×a×a=a3a3读作“a的立方”,表示3个a相乘。
1、建筑工地要挖一个长50米、宽30米、深50厘米的长方体土坑,一个要挖出多少方的土?(33页第8题)。
2、一块棱长30厘米的正方体冰块,它的体积是多少立方厘米?(33页第9题)。
3、一块长方体肥皂的尺寸如下图,它的体积是多少?要用硬纸板给它做个包装盒,至少需要多少平方厘米的纸板?(31页做一做第一题增加一个问题)。
这节课你有什么收获?
v=abh正方体体积=棱长×棱长×棱长。
v=a×a×a=a3。
长方体和正方体体积教学设计篇十八
知道长方体体积公式的推导过程,掌握长方体体积的计算公式。
【过程与方法】。
在观察、操作、探索的过程中,进一步发展空间观念,增强动手操作、抽象概括和归纳推理的能力。
【情感态度与价值观】。
在合作探究的学习中,体验学习数学的乐趣,增强对数学的学习兴趣。
二、教学重难点。
【重点】。
【难点】。
三、教学过程。
(一)导入新课。
1.复习回顾:物体的体积概念和单位。
2.用课件展示生活中常见的长方体,提问长方体的体积该如何计算。
(二)生成新知。
1.操作转化。
提问:长方体的体积与哪些数据有关?引导学生通过数组成几个不同形状的长方体的小正方体的个数记录、整理数据。
分组实验,教师巡视。
学生操作预设:学生数面前长方体时在数小立方体时和同组其他同学不同,教师可以引导学生按一定的顺序来数小正方体,从左往右依次数体积为1立方厘米的小正方体;学生在实验后对数据的记录不够工整,教师可以建议学生将所得数据参考教材中的方格进行填写。
学生汇报展示,总结发现:长方体的体积与长、宽、高有关。
2.操作探究,验证猜想。
学生独立思考后汇报:长方体的体积等于长乘宽乘高。
3.总结概括。
(三)巩固提高。
1.课件展示不同长、宽、高的长方体,组织同学们计算各个长方体的体积。
2.展示两个具体的长方体,比较那个长方体的体积大小。
(四)小结作业。
小结:师生共同总结本节课的收获。
作业:在生活中,找两个长方体并量出它们的长宽高,计算出它们的体积。
四、板书设计。
长方体和正方体体积教学设计篇十九
学习过程:
一、板书课题。
师:同学们,今天我们一起来学习“长方体和正方体的体积计算。
(板书课题)。
二、出示目标。
师:这节课我们的目标是(齐读):
2、应用公式正确计算长方体和正方体的体积,并能解决生活中有关的实际问题。
三、自学指导(一)。
认真看投影出示形体,完成书本第29页的表格。
猜一猜:长方体的体积与长方体的长、宽、高之间有什么关系?
3分钟后比一比谁填写正确。
四、第一次先学后教。
(一)先学。
师:看书时,比谁看的最认真,坐姿最端正。下面,自学竞赛开始。
生认真自学,教师巡视,督促人人认真地看书。
(二)后教。
(1)指名填空。
问:有不同的答案吗?同意黑板上同学的举手?
(2)议一议。
师:分组交流一下长方体的体积与它的.长、宽、高之间有什么关系?
个别回答。让多名学生发言。
五、自学指导(二)。
认真看书第29、30页。
1、分别在表格内写出小正方体的个数和长方体的体积。
2、再次猜一猜:长方体的体积与它的长、宽、高之间有什么关系?
4、正方体的体积计算公式是什么?如何用字母表示?
4分钟后比一比谁填写正确。
六、第二次先学后教。
(一)先学。
师:下面,自学竞赛开始。
生认真自学,教师巡视,督促人人认真地看书?
指名板书。
(二)后教。
(1)更正。
师:观察黑板上的答案,发现错误的同学请举手。(用黄色粉笔更正)。
(2)指名回答。
师:再次猜一猜:长方体的体积与它的长、宽、高之间有什么关系?
正方体的长、宽、高之间有什么关系?
正方体的体积计算公式是什么?如何用字母表示?
(3)小结。
出示公式?生齐读?
七、检测。
1、课本第30页试着做一做。(只列式不计算)。
要求:认真做题,并把字写端正,写大点。
(1)找3名同学上台板演,其余同学写在练习本上。
生独立完成,师巡视,发现错题板书于黑板上对应位置。
(2)更正。
师:观察黑板上的题,发现错误的同学请举手。(用黄色粉笔更正)。
2、课本第31页第一题(只列式不计算)。
要求:认真做题,并把字写端正,写大点。
(1)找3名同学上台板演,其余同学写在练习本上。
生独立完成,师巡视,发现错题板书于黑板上对应位置。
(2)更正。
师:观察黑板上的题,发现错误的同学请举手。(用黄色粉笔更正)。
八、课堂小结。
同学们,今天我们学习了长方体和正方体体积计算公式及字母表示法。
九、当堂训练。
作业:练习七第8、9题。
将本文的word文档下载到电脑,方便收藏和打印。
长方体和正方体体积教学设计篇二十
知识与技能目标:
2.能说出长方体、正方体体积计算公式,并会用字母表示;
3.会正确计算长方体、正方体的体积,并联系简单的生活应用。
过程与方法目标:
1.通过拼搭,培养动手和动脑能力;
2.通过公式的推导,培养迁移、类推能力和抽象概括能力。
情感态度与价值观目标:
在个人及小组的探究活动中,培养团队协作,勇于探索的品质。
学生通过摆放、观察、比较、分析,明确“长方体的体积所含体积单位数正好是长、宽、高的乘积”。
1.多媒体课件。
2.学具:每人一些单位1立方厘米的小正方体。
今天,我们有幸来到这里共同学习一节数学课,我感到非常高兴。与其说是共同学习,也许不如说我们共同分享。其实,我是一个愿意和大家共同分享的人,因为“分享倍增快乐,合作迈向成功”(图片)同学是否愿意一起分享你们的聪明与智慧呢?(出示故事,学生阅读)。
问题:你认为她是一个怎样的小姑娘?
师:对!聪明与勇敢是她最高贵的品质,值得我们尊敬与学习。
那么,你想不想成为这样的人呢?老师有几条秘诀给大家共同分享。(出示图片)你们能做得到吗?愿意展现自己的聪明与勇敢与大家共同分享吗?看,聪明的学生就是这么任性,愿意倍增快乐,迈向成功。好!回答老师一个问。
(问题2)为什么三个一齐就拉不上来呢?(引导学生说明三个一齐占的空间大或地方大)。
师:同学们,这就是聪明,这就是勇敢,我们分享了快乐,我们也会取得成功。这位同学的回答,使我们这一节数学课从一个精彩迈向另一个精彩,因为他说出了我们数学生活学习中常用的也是非常重要的一个概念体积,什么是体积,体积就是物体所占空间的大小。(板书)这一节我们就来研究(板书:长方体与正方体的体积)。(上课)。
师:看到这个题目,你想知道什么呢?(教师引导学生明白)。
生:长方体的体积与哪些条件有关,长方体的体积如何计算。
教师板书学习目标:
1、长方体的体积与长方体的哪些因素有关?
师:下面就让我们共同分享我们的聪明与智慧吧。
探究活动一。
目标:长方体的体积与长方体的哪些因素有关。
材料:三本五年级数学书。
要求:
1、用三本相同的书通过摆、拼来说明此题。
2、小组合作,有讲解,有观察,有记录。
3、将你们的成果写成结论,推荐学生讲解汇报。
(教师巡视,对学生提出的疑问进行指导,引发学生对长方体问题的思考)。
学生汇报:长方体的体积与长方体的长宽高有关。因为宽和高不变,长增加,体积增加。同样,体积也增加。
师:我们找到了体积变化的相关条件,那么怎样计算长方体的体积呢?
探究活动二。
材料:长宽高1厘米的小正方体若干。
要求:
1、组内学员要有分工合作精神,有观察,有记录。
2、请你用1立方厘米的小正方体拼成几种不同的长方体。
3、拼一种长方体,指出相对应的长宽高,并填写到表格中。
4、分析表格中的数据,并得出有关体积的结论。(学生活动,教师巡视指导学生完成对体积的探究)。
学生汇报:要注重引导学生说出推导体积公式的过程,如:长方体的体积与长方体的长宽高相关,也就是说长宽高的某种运算就能得到体积,相乘得到长方体的积。又试用其他几个,也同样得到相同的结论。所以我认为:长方体的体积等于长宽高相乘。
教师引导学生说完整,说明理由。并板书,学生齐读。
师:我们在学习数学的过程中,往往要求我们将数学生活化,将生活数学化,学习数学就是为了解决数学问题,请看:
探究活动三:
目标:解决生活中的数学问题。
要求:
1、认真审题,理解题目中的数字和问题。
2、有疑问,可以在组内进行交流探讨。
3、要写出计算公式,工整认真,格式要正确。学生汇报,展示自己的作业成果。
师:每一组的同学都完成的很好,在组内进行了分享了自己对长方体体积的学习成果,帮助了别人,快乐了自己。但是在我们的生活中,有一类特殊的长方体,那么,它特殊在哪儿呢?看!
探究活动四:
目标:正方体体积的计算。
要求:
1、认识正方体是长宽高都相等的特殊长方体。
2、组内学生讨论,能自己推导出正方体的体积公式。
3、能利用所学正方体知识解决数学问题。
看同学们学得多好啊!可我国伟大的教育家孔子说过:学而时习之,意思是,我们学习了新的知识,就要及时有效地进行复习和应用,这样才能掌握地更好。
3、作业:强化训练。
4、思考:组合图形的计算。
快乐的时间就是那么的短暂,同学们这一节,我们不仅学会长方体和正方体的计算,而且学会了观察、思考、合作,更重要的是学会了分享,学会了合作。让我们重新审视我们先前说过的一句话:分享倍增快乐,合作迈向成功。
谢谢大家!
长方体和正方体体积教学设计篇二十一
1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,解决一些简单的实际问题。
2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。
3、培养学生动手操作、抽象概括、归纳推理的能力。
使学生理解长方体的体积公式的推导过程,掌握长方体体积的计算方法。
小正方体若干个教法学法合作法、讨论法。
教学环节第一次备课动态修改。
一、复习导入。
这节课我们就来学习长方体的体积的计算。(小本的字典,体积小)。
(分割成若干个小正方体,再比较,求长方体的体积就是求长方体所含有多少个这样的体积单位。)。
二、概括公式。
1、学生猜想。
一个物体的大小和什么有关呢?
(1)长、宽相等的时候,越高,体积越大。
(2)长、高相等的时候,越宽,体积越大。
(3)高、宽相等的时候,越长,体积越大。
与长、宽、高都有关系。
2、动手实践操作。
这个猜想正确吗?下面就请同学们通过实验去验证我们的猜想是否正确。
课件出示记录表。(课本29页)。
(1)提出小组合作要求。
请同学们小组合作,用你们手中的1立方厘米小正方体拼成形状不同的长方体,每拼成一种就记录下它的长、宽、高和体积各是多少,然后计算出来验证刚才的猜想是否正确。
(2)小组合作学习。
(3)小组派代表汇报。
生:把4个正方体摆成1排,每排4个,摆1层。这个长方体的长是4厘米,宽是1厘米,高是1厘米,体积是4立方厘米。
(2)引导学生把计算结果与记录表中的体积进行比较,发现长×宽×高的乘积就是长方体的体积。
板书:v=a×b×h=abh,学生齐读公式。
现在请同学们根据长方体的体积计算公式,在小组内讨论讨论:正方体体积的计算公式是什么?学生小组讨论。
教师追问:你们是怎么想的?
学生:因为正方体是特殊的长方体,当长方体的长、宽、高都相等时,长宽高也就是正方体的棱长。所以正方体的体积=棱长×棱长×棱长。
教师说明用字母表示v=a×a×a=a3。
说明:a3读作a的立方或a的三次方,表示3个a相乘。
学生齐读公式。
5、教学底面积。
三、练习。
1、出示课本30页的例一:生独自完成,集体订正。
2、课本31页做一做。
四、课堂总结。
今天你有哪些收获?还有什么疑问?
板书设计:
长方体的体积=长×宽×高正方体的体积=棱长×棱长×棱长。
v=a×b×h=abhv=a×a×a=a3。
v=s×h=shv=s×h=sh。
例1.v=abhv=a3。
=7×3×4=6×6×6。
=84cm3=216dm3。
长方体和正方体体积教学设计篇二十二
1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。
2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。
3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。
一、复习引入。
(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?
(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?
二、学习新课。
探究正方体体积公式:
问:通过计算2号长方体的体积你们发现了什么?
引导学生明确:
(1)这个长方体长、宽、高都相等,实际上它是一个正方体。
(2)正方体体积=棱长×棱长×棱长(板书)。
(3)如果用v表示正方体体积,用a表示它的棱长字母公式为:v=a。
教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:v=a3(板书)。
三、议一议。
如果用s表示底面积,上面的公式可以写成:
v=sh。
四、巩固练习。
计算下面图形的体积。
正方体体积=棱长×棱长×棱长长方体(或正方体)的体积=底面积×高。
v=a3v=sh。
【本文地址:http://www.xuefen.com.cn/zuowen/17980828.html】