教案的编写需要紧密结合教材内容和教学目标。教案的编写要结合学科特点,合理安排知识点和教学重点。教案的编写应当注重教学的针对性和个性化,以下是一些教案的典型案例,供大家学习借鉴。
解方程数学教案设计篇一
一、用含有字母的式子表示:
(1)桃树的棵数是梨树的2倍,如果设梨树的棵数为x棵,则桃树的棵数为。
(2)桃树的.棵数是梨树的1.5倍,如果设梨树的棵数为x棵,则桃树的棵数为()。
(3)桃树的棵比梨多8棵,如果设梨树为x棵,则桃树为()。
(4)桃树的棵比梨少8棵,如果设梨树为x棵,则桃树为()。
(5)桃树是梨树的2倍多8棵,如果设梨树为x棵,则桃树为()。
(6)桃树是梨树的1.5倍少8棵,如果设梨树为x棵,则桃树为()。
二、只列方程不求解:
(1)有一个长方形的面积是3600㎡,宽是40m,长应是多少米?
(2)已知长方形的周长是26厘米,它的长是8厘米,它的宽应是多少厘米?
(3)已知正方形的周长是100厘米,它的边长是多少厘米?
(4)果园里有梨树和桃树共120棵,桃树的棵数是梨树的2倍,两种树各多少棵?
(5)果园的桃树比梨树多40棵,桃树是梨树的2倍,两种树各有多少棵?
三、找等量关系列方程解应用题:
四、综合练习。
解方程数学教案设计篇二
列方程解应用题是在第七册学习列出含有未知数的等式解一步计算应用题的基础上进行教学的。共分四个层次,首先教学比较容易的两步计算的应用题,其次教学两、三步计算的应用题,本课内容是第三个层次,第四是用方程和算术方法解应用题的比较。列方程解含有两个未知数的应用题,是第一次出现在全国统编教材上。例6的内容,在算术中称为和倍和差倍问题,由于是逆向思考题,解法特殊,不易掌握,现在用方程来解,不仅思路较简单,而且这两类问题的思路统一,解法一致,既可减轻学生负担又提高了解应用题的能力,是今后小学学习分数等应用题的基础,也是今后到中学继续学习代数方程解应用题所必须具备的知识,必须重视这部分内容的教学。
本节课的重点是正确设未知数和列出方程,关键要找出等量关系,列方程也是教学的难点。
二、对教学方法的选择。
列简易方程解应用题是中学列代数方程解应用题的基础,选择教学方法时,要注意中小学教学的衔接。
本节课首先要考虑正确运用迁移原理,这对中、小学的学习都将具有积极作用。在准备阶段的练习题中,不论是数量关系和解题的方法对学习例6都具有迁移的作用,利用这一原理可引导学生直接去做例6后的想一想,这既能培养迁移推理能力,也能促使学生养成独立思考的习惯。
其次,由于小学生仍处在从形象思维向抽象思维过渡的关键时刻,所以要考虑怎样做好这个过渡,在教学中采用画线段图帮助分析数量关系。线段图能使数量关系明显地呈现出来,有助于帮助学生设未知数,找等量关系和列出方程。
第三还要考虑学法指导。本课要教会学生阅读、分析应用题的方法、验算的方法,从不同角度思考问题的方法。在教学检验方法时,采用阅读的方式,让学生边读边想并说出两个检验式子的含义与作用,从中悟出检验的方法。教完例6后引导学生想不同的解题思路,列出不同的方程,就是教学生如何从不同角度思考问题的方法。这些方法对今后继续学习数学是十分必要的。
三、对教学环节的安排。
解方程数学教案设计篇三
本节课的重难点在于设未知数和找等量关系,通过这两道题的练习,为第三道题的变式练习做准备。
3.养殖场有白兔和黑兔,白兔的只数是黑兔的4倍。
(1)白兔和黑兔一共230只,白兔和黑兔各有多少只?
(2)白兔比黑兔多138只,白兔和黑兔各有多少只?
请同学们先独立完成第一问,然后我们进行交流。
第二问请大家认真思考,观察与第一问的区别,独立完成后,进行交流。
四、课堂小结。
通过本节课的学习:
解方程数学教案设计篇四
教学内容:
教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。
教学目标:
理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。
教学重点:
教学难点:
会列方程表示数量关系。
教学过程:
一、教学例1。
1.出示例1的天平图,让学生观察。
提问:图中画的是什么?从图中能知道些什么?想到什么?
2.引导。
(1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。
(2)如果学生能主动列出等式,告诉学生:像“50+50=100”这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出“你会用等式表示天平两边物体的质量关系吗?”
二、教学例2。
1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。
2.引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。
3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。
三、完成练一练。
1.下面的式子哪些是等式?哪些是方程?
2.将每个算式中用图形表示的未知数改写成字母。
四、巩固练习。
1.完成练习一第1题。
先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。
2.完成练习一第2题。
五、小结。
六、作业。
完成补充习题。
板书设计:
x+50=100。
x+x=100。
像x+50=150、2x=200这样含有未知数的等式叫做方程。
解方程数学教案设计篇五
1、这堂课从简单问题入手,由浅至深,比较符合初一学生的认知性,学生了解了概念后马上让他们开启自己的智慧大门,并让学生自己找到符合概念的条件,加深印象。穿插式的练习,让学生能够趁热打铁,更加熟练的掌握和理解一元一次方程的一些概念。在上课的过程中更重视的是学生的探索学习,以及数学“建模”能力的培养。为后面学习打下基础。
3、在课堂的第二个环节中,通过实际问题的'引入,让学生动起脑来,阶梯型问题的设置使得一些后进生也投入到课堂中来,体现了差异性的教学。在学生慢慢列出方程的同时其实也培养了他们的逻辑思维能力,也体会到了列方程它与算式相比较之下的优点,合作式的学生活动增进了学生的合作交流能力,我并通过一些激励性的话语激发学生参与数学的兴趣,在列完方程的最后让学生归纳出列方程解应用题的基本步骤。使学生加深对知识的掌握也培养了他们的语言组织能力以及学会标准的数学用语。
二、从教学方法反思。
本节课本着“尊重差异”为基础,先“引导发现”,后“讲评点拨”,所以再讲解前面概念的时候,我稍稍放慢速度让后进生听的明白,因为方程是解应用题的基础,抓住基础知识再去发展他们的逻辑思维能力对后进生是十分重要的。
三、从学生反馈反思。
这堂课学生能积极思考,认真学习,课后作业都能及时完成。作业质量较好,但是对于稍难点的实际问题得列式还是有一些问题。在应用题的列式方面是所有学生学习的一个难点,这是我后面课堂要注意的地方:如何去教会学生找到数量关系去列方程。
解方程数学教案设计篇六
3、能解二元一次方程组的方法求两条直线的交点坐标。
2、用解二元一次方程组的方法求两条直线的交点坐标。
1、做图像时要标准、精确,近似值才接近。
先自学课本,用心思考自主学习部分,努力独立完成,再与其他同学讨论未明白的内容。课上展示,针对自己不明白问题多听多问。
自主学习部分:
问题1.(1)方程x+y=5的解有多少组?写出其中的几组解。
(3)在一次函数y=5-x的图像上任取一点,它们的坐标适合方程x+y=5吗?
(5)由以上的探究过程,你发现了什么?
问题2.
(3)由以上探究过程,我们发现解二元一次方程组的方法除了加减消元法和代入消元法,还可以用法解方程组;我们还发现可以利用解二元一次方程组的方法求两条直线交点的坐标。
合作探究:
1、用做图像的方法解方程组。
2、用解方程的方法求直线y=4-2x与直线y=2x-12交点。
解方程数学教案设计篇七
1.教材背景。
作为曲线内容学习的开始,“曲线与方程”这一小节思想性较强,约需三课时,第一课时介绍曲线与方程的概念;第二课时讲曲线方程的求法;第三课时侧重对所求方程的检验.
本课为第二课时。
主要内容有:解析几何与坐标法;求曲线方程的方法(直译法)、步骤及例题探求.
2.本课地位和作用。
承前启后,数形结合。
曲线和方程,既是直线与方程的自然延伸,又是圆锥曲线学习的必备,是后面平面曲线学习的理论基础,是解几中承上启下的关键章节.
“曲线”与“方程”是点的轨迹的两种表现形式.“曲线”是轨迹的几何形式,“方程”是轨迹的代数形式;求曲线方程是用方程研究曲线的先导,是解析几何所要解决的两大类问题的首要问题.体现了坐标法的本质——代数化处理几何问题,是数形结合的典范.
后继性、可探究性。
求曲线方程实质上就是求曲线上任意一点(x,y)横纵坐标间的等量关系,但曲线轨迹常无法事先预知类型,通过多媒体演示可以生动展现运动变化特点,但如何获得曲线的方程呢?通过创设情景,激发学生兴趣,充分发挥其主体地位的作用,学习过程具有较强的探究性.
同时,本课内容又为后面的轨迹探求提供方法的准备,并且以后还会继续完善轨迹方程的求解方法.
数学建模与示范性作用。
曲线的方程是解析几何的核心.求曲线方程的过程类似于数学建模的过程,它贯穿于解析几何的始终,通过本课例题与变式,要总结规律,掌握方法,为后面圆锥曲线等的轨迹探求提供示范.
数学的文化价值。
解析几何的发明是变量数学的第一个里程碑,也是近代数学崛起的两大标志之一,是较为完整和典型的重大数学创新史例.解析几何创始人特别是笛卡儿的事迹和精神——对科学真理和方法的追求、质疑的科学精神等都是富有启发性和激励性的教育材料.可以根据学生实际情况,条件允许时指导学生课后收集相关资料,通过分析、整理,写出研究报告.
3.学情分析。
我所授课班级的学生数学基础比较好,思维活跃,在刚刚学习了“曲线的方程和方程的曲线”后,学生对这种必须同时具备纯粹性和完备性的概念有了初步的认识,对用代数方法研究几何问题的科学性、准确性和优越性等已有了初步了解,对具体(平面)图形与方程间能否对应、怎样对应的学习已经有了自然的求知欲望.
二、目标分析。
1.教学目标。
知识技能目标。
理解坐标法的作用及意义.
掌握求曲线方程的一般方法和步骤,能根据所给条件,选择适当坐标系求曲线方程.
过程性目标。
通过学生积极参与,亲身经历曲线方程的获得过程,体验坐标法在处理几何问题中的优越性,渗透数形结合的数学思想.
通过自主探索、合作交流,学生历经从“特殊——一般——特殊”的认知模式,完善认知结构.
通过层层深入,培养学生发散思维的能力,深化对求曲线方程本质的理解.
情感、态度与价值观目标。
通过合作学习,学生间、师生间的相互交流,感受探索的乐趣与成功的'喜悦,体会数学的理性与严谨,逐步养成质疑的科学精神.
展现人文数学精神,体现数学文化价值及其在在社会进步、人类文明发展中的重要作用.
2.教学重点和难点。
难点:几何条件的代数化。
依据:求曲线方程是解几研究的两大类问题之一,既是重点也是难点,是高考解答题取材的源泉.主要包括两种类型求曲线的方程:一是已知曲线形状时常用待定系数法;二是动点轨迹方程探求,本课的重点主要是探索动点的曲线方程.
曲线与方程是贯穿平面解几的知识,是解析几何的核心.求曲线方程是几何问题得以代数研究的先决,求曲线方程的过程类似数学建模的过程,是课堂上必须突破的难点.
三、教学方法及教材处理。
1.教学方法:探究发现教学法.
遵循以学生为主体,教师为主导,发展为主旨的现代教育原则,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,通过学生主动探索、积极参与、共同交流与协作,在教师的引导和合作下,学生“跳一跳”就能摘得果实,于问题的分析和解决中实现知识的建构和发展,通过不断探究、发现,让学习过程成为心灵愉悦的主动认知过程,使师生的生命活力在课堂上得到充分的发挥.
2.学法指导。
学生学法:互相讨论、探索发现。
由于学生在尝试问题解决的过程中常会在新旧知识联系、策略选择、思想方法运用等方面遇到一定的困难,需要教师指导.作为学生活动的组织者、引导者、参与者,教师要帮助学生重温与问题解决有关的旧知,给予学生思考的时间和表达的机会,共同对(解题)过程进行反思等,在师生(生生)互动中,给予学生启发和鼓励,在心理上、认知上予以帮助.
这样,在学法上确立的教法,能帮助学生更好地获得完整的认知结构,使学生思维、能力等得到和谐发展.
解方程数学教案设计篇八
2.通过自学探究掌握裁边分割问题。
(阅读课本p47页,思考下列问题)。
1.阅读探究3并进行填空;
2.完成p48的思考并掌握裁边分割问题的特点;
设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则:
由中下层学生口答书中填空,老师再给予补充。
思考:如果换一种设法,是否可以更简单?
设正中央的长方形长为9acm,宽为7acm,依题意得。
9a·7a=(可让上层学生在自学时,先上来板演)。
效果检测时,由同座的同学给予点评与纠正。
9.如图,要设计一幅宽20m,长30m的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)。
注意点:要善于利用图形的平移把问题简单化!
(只要求设元、列方程)。
解方程数学教案设计篇九
学生在解方程的基础上进一步学习用方程解决实际问题,通过我的教学实践和教学反思,我觉得“重视关键句分析训练,让学生感悟方程的思想。”
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。由于我知道我们现在的.数学课堂教学对等量关系式的训练不够重视,于是我课前谈话中用了很多时间对等量关系式的写法进行了训练。先从倍数关系,再到相差关系,然后两种关系合并,要求学生分别写出等量关系式,为本节课的教学打下良好的基础。为了突出根据关键句写等量关系式,我出示例题后,直接问:“三句话中你觉得哪一句最重要,为什么?”让学生根据“的东北虎只数比的3倍还多100只,写出三种等量关系,有三种关系式就对应着三种解法,哪一种关系式最容易想到。让学生感受到要提高正确率,我们可以从最容易的入手,学生已经掌握了“求一个数比另一个数的几倍多几(或少几)”的实际问题,我们就要引导学生,充分利用已有的知识经验解决新的问题。学生是学习的主体,出示问题后让学生尝试解决问题,教师通过巡视,充分了解学生的困难以及想法,然后才能很好的组织交流。为了使学生认识到方程的思想,我故意让学生先交流用倒推策略解决问题,当交流完列式后让学生说出每一步所表示的意识时,学生感到困难,再次问学生用倒推策略解决时,还可能出现什么错误,这样从两个方面让学生认识到用倒推策略解决的不足,才能更好的让学生主动愿意来学习用方程来解。方法的优劣是比较出来的,当然也是因人而异的。方程为什么要写设语,方程是怎样列出来的,把未知转化为已知条件,才能更好的利用我们最容易想到的等量关系式列出方程才能大大提高正确率。解完例题再次比较总结,列方程是怎样想的,而倒推策略是怎样想的。然后再总结列方程解决问题的一般步骤,只有让学生充分感受到方程的作用和价值,学生才会自愿用列方程来解决新的问题。
解方程数学教案设计篇十
本节课的重难点都是从实际于问题中寻找相等关系,从而列方程解决实际问题,为了更好地突出重点、突破点,在教学过程中着力体现以下几方面的特点:
1、突出问题的应用意识。首先用一个学生感兴趣的突出问题引入课题,然后运用算术方法给出答案,在各环节的安排上都设计成一个个问题,引导学生能围绕问题开展思考、讨论,进行学习。
2、体现学生的主体意识。始终把学生放在主体地位,让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从感受到从算术方法到代数方法是数学的进步。通过学生之间的合作与交流,得了出问题的不同解答方法,让学生对这节课的学习内容、方法、注意点等进行归纳。
3、体现学生思维的层次性。首先引导学生尝试用算术方法解决问题,然后逐步引导学生列出含未知数的式子,寻找相等关系列出方程。在寻找相等关系,设未知数及练习和作业的布置等环节中,都注意了学生思维的层次性。
4、渗透建模的思想。把实际问题中的数量关系用方程的形式表示出来,就是建立一种数学模型,有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出数学模型的能力。
从当堂练习和作业情况来看,收到了很好的教学效果,绝大部分学生都能根据实际问题准确地建立数学模型,但也有少数几个学生存在一定的问题,不能很好地列出方程。
【拓展阅读】。
解方程数学教案设计篇十一
上海市小学数学新教材三年级第2单元:“用两位数除”小单元。
1、通过复习,进一步理解和掌握除数是两位数除法的计算法则,提高计算能力。
2、通过自主探索和共同探讨活动,引导学生理清知识脉络、学会分析归纳、有序整理的方法,提高学习能力。
整理知识结构,构建知识网络。
一、情景引入:
1、师:春天到了,勤劳的蚂蚁们在干什么呢?
7227÷53900÷45467÷538304÷279082÷7。
师:你们能估一估商是几位数吗?你有什么好办法来判断的?
2、揭题。
观察这些算式有什么相同的特征?
师:除数是两位数的除法是我们这个单元学习的内容,今天我们就来回顾与整理一下这个单元的内容。(板书:回顾与整理)。
二、知识整理:(通过改错训练引导学生回忆与整理有关知识)。
1、纠错1。
师:判断对与错。错在哪里?我们用哪些方法可以判断错与对?
(板贴:除到哪一位,商就写到那一位)(哪一位不够商1,就商0)(估计商是几位数,除数×商+余数=被除数)。
2、纠错2。
师:错在哪里?(板贴:余数要比除数小)(及时调商最关键)。
3、小结:看来小朋友们不仅掌握了除数是两位数除法的计算法则,而且掌握了检验的方法。理清了思路,我们去解决一些实际问题。
三、解决问题:
师:从图上获得了什么信息?能解决什么问题?
师:每人选择2条线路,来计算小巧所花的时间。
(抽5人板演)。
师:现在你知道每条线路需要多少时间?
师:我们一起来回顾一下这5道题的计算过程。
1、前2题有什么明显的特征?(0是怎么得来的?)。
2、第3题有什么特征呢?(同头无除商9、8)。
3第4、5题你又是如何试商的?
师:根据不同的题目选择适合的试商方法,这样计算又对又快?(选择合适的试商方法进行试商,能提高计算速度和准确率)。
四、拓展训练:
师:通过刚才的问题解决,老师发现小朋友不但会做,而且会说算理。
那接下来的题目你还能又快又准确的完成吗?
五、课堂总结:
通过今天这节课的复习和整理,你对除数是两位数的除法的计算,有什么话想对同学和老师说。
六、独立作业:
竖式计算并验算。
7416÷5623434÷7813066÷32。
解方程数学教案设计篇十二
1.使学生进一步理解乘数是两位数的连续进位乘法的算理,掌握两位数的进位乘法的计算方法。
2.培养学生的分析推理能力。
理解乘数是两位数的连续进位乘法的`算理。
掌握两位数的进位乘法的计算方法。
一、自主探索,领悟知识。
1.创设情景,提出问题。
一个牌子写着“门票每人48元”,有7名同学进入博物馆参观展览。
(1)学生根据以上情景提出数学问题。
2.改变情景,引出新课。
改变条件:一共进72人。学生根据新情景提出问题。
(1)教师根据学生提出的问题有选择性地解答并板书:48×72。
(2)小组研究计算方法。
(3)小组汇报。
(4)教师根据情况,重点指出以下两个方面:
计算方法与前面的相同,相同的数位要对齐。不同的是48×72需要连续进位,要特别注意。
(5)练习:683745。
×34×82×46。
2.学习例4。
出示例题。
(1)让学生读题理解题意,再口头列出算式。
(2)让学生独立试做。
(3)请一名学生展示计算过程,并说一说算理。
(4)其他学生补充完整,必要时教师给予指导。
(5)练习215309。
×32×25。
二、巩固反馈,深化知识。
1.第11页的做一做。
2.判断。
(1)57(2)306(3)193(4)403。
×35×35×36×35。
25515301158215。
17112043791612。
196513570494816335。
板书:用两位数乘(连续进位)。
48×72=3456114×59=6726(分)。
48114。
×72×59。
961026。
336570。
34566726。
答:要用6726分。
解方程数学教案设计篇十三
教学内容:
教科书第12~13页,“回顾与”、“练习与应用”第1~4题。
教学目标:
1、通过回顾与,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。
2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。
教学过程:
一、回顾与。
1、谈话引入。
本单元我们学习了哪些内容?
你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?
在小组中互相说说。
2、组织讨论。
(1)出示讨论题。
(2)小组交流,巡视指导。
(3)汇报交流。
你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?
(等式与方程都是等式;等式不一定是方程,方程一定是等式。)。
(含有未知数的等式是方程。)。
(等式性质:)。
(求方程中未知数的值的过程叫做解方程。)。
同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。
二、练习与应用。
1、完成第1题。
(1)独立完成计算。
(2)汇报与展示,说说错误的原因及改正的方法。
2、完成第2题。
(1)学生独立完成。
(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)。
3、完成第3题。
(1)列出方程,不解答。
(2)你是怎样列的?怎么想的?大家同意吗?
(3)完成计算。
4、完成第4题。
单价、数量、总价之间有怎样的数量关系?
指出:抓住基本关系列方程,y也可以表示未知数。
三、课堂。
通过回顾与,大家共同复习了有关方程的知识,你还有什么疑问吗?
解方程数学教案设计篇十四
教学目标:
1、使学生理解除数是一位数,商是整十、整百数的口算方法,学会正确、熟练地进行计算。
2、引导学生将掌握的口算乘法知识迁移到口算除法中去,培养学生迁移类推的能力。
3、培养学生的语言表达能力。
教学重点:
能正确进行口算。
教学难点:
掌握口算除法的思维方法,理解算理。
教具准备:
口算卡片、小棒。
教学过程:
一、学前准备。
1、口算。
教师出示口算卡片,学生抢答。
2、口答。
60里面有几个十?800里面有几个百?240里面有几个十?
3、把6根小棒平均分成3份,每份是多少根?
二、探究新知。
1、学习教材第11页例1。
(1)教师:我们来帮助小朋友解决问题吧。
教师板书:60÷3。
(2)尝试解答60÷3。
(3)交流、汇报计算方法。
(4)动手操作。
请同学们拿出6捆小棒,分一分。
(5)说说谁的.方法最简单,你喜欢用哪种方法进行口算。
(6)同桌交流60÷3的口算过程。
教师指导,帮助学习有困难的学生。
2、学习600÷3=。
(1)板书:600÷3=。
师:这道题应怎样想呢?
(2)尝试口算600÷3=。
(3)提问:谁能说出600÷3的口算方法。
3、学习教材第12页例2。
板书:120÷3。
(2)观察被除数与刚才所学例题中的被除数有什么不同。
(3)引导学生独立口算。
(4)说一说思考的过程。
三、课堂作业新设计。
1、教材第11页“做一做“。
(1)集体看“做一做“。
(2)观察每组中上下两题的异同。
(3)找出其中的运算规律。
(4)独立完成。
(5)验证其运算规律是否正确。(当被除数扩大到原来的10倍,除数不变时,商也扩大到原来的10倍)。
2、教材第13页练习三的第1―3题。
(1)独立完成。
(2)边做边口述口算过程。
四、思维训练。
1、列式并写出得数。
(1)6000除以3的多少?
(2)3600除以4的多少?
2、抢答。(口算卡)。
解方程数学教案设计篇十五
1、理解并掌握用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。
2、进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。
3、认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。
一、复习旧知,唤起经验。
(游戏)要求:一定发生的就立正,不发生的就坐着不动。
(1)太阳从东方升起。
(2)明天要上学。
(3)地球绕着太阳转。
(4)明天会下雨。
明天会不会下雨呢?都有可能,但可能性是多少呢?这节课我们就来研究可能性的大小。(板书课题)。
二、创设情境,引导发现。
举例:做游戏时用掷硬币的方法决定谁先开始,二个人每个人的可能性都是1/2。
1、教学例1。
同学在打乒乓球时是怎么决定谁先发球的?
提问:用猜左右的方法决定由谁先发球公平吗为什么。
学生讨论后明确:一共有2种情况,乒乓球可能在左手,也可能在右手,对于运动员来说,无论猜左还是猜右,猜对的可能性是一半,猜错的可能性也是一半.
可能性是一半用分数怎么表示你怎么想到是。
追问:2表示什么,1呢。
小结:乒乓球可能在左手,也可能在右手,所以猜的结果只有"对"或"错"两种可能,猜对与猜错的可能性相等,都是.用这种方法决定谁先发球是公平的。
2、同步体验。
拿出一个口袋。
(1)谈话:这里面原来有一些球,现在放入一个红球,从中任意摸出一个球,摸到红球的可能性是几分之几(学生肯定有疑问)。
(2)打开袋子(一红一蓝)问:有答案了吗你怎么想的。
(3)交流中明理:一共2个球,任意摸一个,有2种情况,摸到红球是1种情况,所以摸到红球的可能性是().
(4)再往袋中放入一个绿球,任意摸一个球,摸到红球的可能性是几分之几为什么。
(5)疑问:为什么摸到红球的可能性会不同呢这说明可能性的大小和什么有关。
(6)小结:一共有几个球,红球有一个,摸到红球的可能性是几分之一.
三、迁移和提升。
自学例2,并集体讲解。
“试一试”
“练一练”
四、实践与应用。
1、”非常6+1”,共有12只蛋,9只金蛋,如果你是第一个打进电话的人,你成为幸运星的可能性是多少?如果第一个人砸了一个蛋是金蛋,而你是第二个打进电话的人,你成为幸运星的可能性是多少?.
2、语文中的数学问题。
用分数表示可能性的大小:。
平分秋色、十拿九稳、天方夜谭、百发百中。
3、练习十八1-2。
四、全课总结,感受价值.
提问:今天我们学习了什么你有什么收获你觉得这些知识有什么用。
解方程数学教案设计篇十六
教学目标:
1.在具体情境中认识列与行,理解数对的含义,能用数对表示具体情境中的位置。
2.使学生经历由具体的实物图到方格图的抽象过程,提高学生的抽象思维能力,渗透坐标思想,发展空间观念。
3.使学生体验数学与生活的密切联系,拓宽知识视野,体会数学的价值,进一步增强用数学的眼光观察生活的意识,提高学习数学的兴趣。
重点难点:
理解数对的含义,能用数对表示位置。
课前准备:
课件。
教学过程:
一、谈话导入。
生:从右向左数第4排的第2个。
师:谁还想说?
生:从左向右数第2排的第3个。
师:还有不同的说法吗?
生:从后往前数,第4排的第3个。
师:怎么同一个人的位置有这么多种说法呢?
生1:人们是从不同的角度和不同的方位观察的。
生2:人们的视觉不同,也就是观察的角度不同,说的方法就不一样了。
生:有点乱。
师:我们能不能寻找一种既简单又准确的方法来描述位置呢,这节课我们就一起来探讨如何确定位置。(板书:确定位置)。
【本文地址:http://www.xuefen.com.cn/zuowen/17973573.html】