高三数学课程教学设计(实用19篇)

格式:DOC 上传日期:2023-12-07 18:26:09
高三数学课程教学设计(实用19篇)
时间:2023-12-07 18:26:09     小编:温柔雨

面对挑战和困难时,总结自己的应对方式是不可或缺的,它可以帮助我们更好地面对未来的挑战。总结有助于我们发现自己在学习或工作过程中的弱点,并有针对性地解决这些问题。接下来是一些关于养成良好学习习惯的实用方法,希望对学生们有所启发。

高三数学课程教学设计篇一

三角函数的有关概念(b)。

理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化。

理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切。

终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义。

1、角的概念是什么?角按旋转方向分为哪几类?

2、在平面直角坐标系内角分为哪几类?与终边相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?

4、弧度制下圆的弧长公式和扇形的面积公式是什么?

5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?

6、你能在单位圆中画出正弦、余弦和正切线吗?

7、同角三角函数有哪些基本关系式?

1、给出下列命题:

(1)小于的角是锐角;

(2)若是第一象限的角,则必为第一象限的'角;

(3)第三象限的角必大于第二象限的角;

(4)第二象限的角是钝角;

(5)相等的角必是终边相同的角;终边相同的角不一定相等;

(6)角2与角的终边不可能相同;

2、设p点是角终边上一点,且满足则的值是。

3、一个扇形弧aob的面积是1,它的周长为4,则该扇形的中心角=弦ab长=。

4、若则角的终边在象限。

5、在直角坐标系中,若角与角的终边互为反向延长线,则角与角之间的关系是。

6、若是第三象限的角,则—,的终边落在何处?

例1、如图,分别是角的终边。

(1)求终边落在阴影部分(含边界)的所有角的集合;

(2)求终边落在阴影部分、且在上所有角的集合;

(3)求始边在om位置,终边在on位置的所有角的集合。

例2。(1)已知角的终边在直线上,求的值;

(2)已知角的终边上有一点a,求的值。

例3、若,则在第象限。

1、若锐角的终边上一点的坐标为,则角的弧度数为。

2、若,又是第二,第三象限角,则的取值范围是。

3、一个半径为的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是弧度或角度,该扇形的面积是。

4、已知点p在第三象限,则角终边在第象限。

5、设角的终边过点p,则的值为。

6、已知角的终边上一点p且,求和的值。

1、经过3小时35分钟,分针转过的角的弧度是。时针转过的角的弧度数是。

2、若点p在第一象限,则在内的取值范围是。

3、若点p从(1,0)出发,沿单位圆逆时针方向运动弧长到达q点,则q点坐标为。

4、如果为小于360的正角,且角的7倍数的角的终边与这个角的终边重合,求角的值。

高三数学课程教学设计篇二

本学期我担任了高三(8)、(9)班的数学教学工作,且担任了高三(8)的班主任。在学校正确领导下,也在我们高三数学组全体教师的团结协作下,我领会了较准确的高考趋势和高考大纲,学期的工作已经基本上顺利完成,班级的整体面貌有了较大的提高,学生的学习行为,情感教育,心理素质也有了一定的提高,老师的教育水平和经验得到了更大的提高。回顾这一学期的教学工作,我具体做法谈谈自己的一点总结和看法如下:

1.加强与同行的高三老师交流同时优化自己的课堂教学。

新课改高考形势下,高考数学考什么,要怎么教,学生要怎么学?无论是教师还是学生都感到压力很大,针对这一问题王劲松校长、谢庆奎主任的领导下,制定了严密的教学计划,提出了优化课堂教学,强化与外校老师的交流,培养学生应试能力方面做了不少工作,使课堂效率提高,考试的知识点能得到很重点复习和巩固,在课堂上和平时有意识地培养学生应试能力和心理素质方面得到了很多加强。这样,总体上,集把握住了正确的方向和教学内容,发挥我校学生的特长,因材施教。

高考的要求和高考的内容都发生了很大的变化,就要求我们必须转变观念,立足主干知识,夯实基础。复习时要求全面周到,注重知识的联系,准确掌握考试内容,做到复习不超纲,不做无用功,使复习更有针对性,准确掌握那些内容是要求了解的,那些内容是要求理解的,那些内容是要求掌握的,那些内容是要求灵活运用和综合运用的;细心推敲要考查的数学方法;在复习基础知识的同时要注重能力的培养,要充分体现学生的主体地位,将学生的学习积极性充分调动起来,课堂上要展现教师的分析思维,还要充分展现学生的思考思维,把教学活动体现为思维活动;同时不要增加难度,教学起点总体要低,使学生考试有成就感。对个别学生要注重提优补差,新高考将更加注重对学生能力的考查,有利于优秀的学生脱颖而出,取得更好的成绩;对于我们的学生要充分分析学习上存在的问题,解决他们学习上的困难,有取舍,有重点教学,培养他们学习数学的兴趣,激励他们勇于迎接挑战,不断挖掘潜力,最大限度提高他们的数学成绩,而不是去让他们所有的题目都会做。

2优化练习,巩固知识,提高练习的有效性。

今年高考试卷模式有所改变,新课改后学生基础知识较零乱,因此学生的整体情况不一样,同一班级的学生,层次差别也较大,给教学带来很大的难度,这就要求要从整体上把握教学目标,又要根据各班实际情况制定出具体要求,对不同层次的学生,应区别对待,这样,对课前预习、课堂训练、课后作业的布置和课后的辅导的内容也就因人而异,对不同层次的学生提出不同的要求。在课堂讲解上也要分层次,基础题一般由学生来做,以增强他们的信心,提高学习的兴趣,对能力较强的学生去挖掘他们的潜力,提高他们逻辑思维能力和分析问题、解决问题的能力。课后作业的布置,既有全体学生的必做题也有针对较强能力的学生的练习题,让学生都能有所收获,使不同层次的学生的能力能得到提高。知识的巩固,技能的熟练,能力的提高都需要通过适当而有效的练习才能实现;首先,练习题要精选,题量要适度,选择额典型性和应用有效知识性的题目,以达到有效训练学生;对练习全批全改,做好学生的错题统计,对于错的较多的题目,找出错的原因。练习的讲评是高三数学教学的一个重要的环节,为了最大限度地发挥课堂教学的效益,课堂的讲评要科学化,要注重教学的效果,不该讲的就不讲,该点拨的要点拨,该讲的内容一定要讲透;对于典型问题,要让学生板演,充分暴露学生的思维过程,加强教学的针对性和有效性。多做限时练习,有效的提高了学生的应试能力。

3.加强学生的应试指导,培养减少非智力因素的影响。

充分利用平时的每一次练习和测试的机会,培养学生的答题的表达能力和卷面书写,答题得分等应试技巧,提高学生卷面的得分能力,如对选择题、填空题,要注意寻求合理、简洁的解题途经,要力争“保准求快”,对解答题的主要题型要做到解题方法心中有数,规范做答,努力作到“会而对,对而全”,减少无谓失分,要学生经常总结临场时的审题情况,答题顺序、技巧,总结考前和考场上心理调节的做法与经验,力争找到适合自己的心理调节方式和临场审题、答题的具体方法,逐步提高自己的应试能力;帮助学生树立信心、纠正不良的答题习惯、优化答题策略、强化一些注意事项。

总的说来,在这一学期中,我做到了全力以赴去提高学生的成绩,但与兄弟学校相比,还有很多不足,在今后的工作中,我还要努力向同行学习更有效的方法,让学生的成绩能提高得更快,学习不用特别努力就能把成绩搞上去,从而不断提高自己的教育教学水平。

高三数学课程教学设计篇三

高三数学第一轮复习以抓基础,练基本功(主要是解题基本功)为主,注重对知识的梳理,数学方法的养成,使学生对整个高中数学知识、方法和思想有个完整的认识,形成网络。在本轮复习中应对高中数学的所有考点,涉及的解题方法进行全面的复习,使学生对每个知识点掌握到位,对数学概念的内涵和外延,公式定理的适用范围有着本质、透彻的理解,使学生切实掌握数学基本知识,基本技能和基本的数学思想方法,对基本的解题方法(解题方法的培养、训练要注重通性通法,淡化特殊技巧)能运用自如,做到稳扎稳打,基础过关,牢固。

高三数学第二轮复习以专题复习、专题训练为主,注重学生数学能力与思维水平的养成,使学生在解题方法,解题技能上达到运用自如的境界。本轮复习中对高中数学重点内容要加深加难,重点培养学生解活题、较难题、难题的能力。专题复习既要按章节进行,又要按题型进行,按章节进行内容如下:函数与导数、数列(特别是递推数列)与极限、三角函数与平面向量、不等式、直线与圆锥曲线(注意圆锥曲线与向量的结合)、立体几何、概率与统计。按题型进行内容如下:选择题解法训练,填空题解法训练,解答题解法训练,特别要注重解答题训练的质量。

本轮复习应多在知识网络的交汇处选题,强调学科内的小综合,加强对知识交汇点问题的训练,达到培养学生整合知识,能综合地运用整个高中数学思想方法解题的能力之目的。

高三数学第三轮复习以强化训练、查漏补缺为主。在本轮复习中,让学生多做模拟题,强化做题的速度与质量。同时针对第一轮、第二轮的不足进行查漏补缺,特别是在第一轮、第二轮大多数学生做不出来的题目在本轮复习中可集中让学生重做,解决学生在前面复习中暴露的问题。

具体措施建议如下:

一、处理好课本与资料的关系对资料精讲,用好用巧,但不被资料束缚手脚,牵着鼻子走,不仅老师认真钻研资料,更要引导学生在复习课本的基础上认真钻研资料,用活用巧。

二、分层教学由于数学分为文理科,且文理各有不同的层次,所以分层教学非常必要,计划对高三数学分为四层:理科a层、文科a层、理科b、c层、文科b、c层,各层实施不同的教学进度。其中理a、文a在重点抓好基础的同时适当加深难度与深度,其他层主要抓基础。

三、抓好周练每周分层出一次周练,要求周练围绕上一周所授内容命题,题量适中,难易适当,针对性强,注重基础知识与方法的反馈训练。命题的主导思想是“出活题、考基础、考能力”。在周练的基础上,每章节复习过程中印发2005年高考试题分章选解给学生课后完成。

四、集体备课俗话说:三个臭皮匠顶得一个诸葛亮。在复习中充分发挥备课组集体力量,群策群力,科学备课。每周搞好一次备课组活动,讨论教学内容与教学方法的落实、改进情况。

五、培养学生自学能力“授之以鱼,不如授之以渔”。对数学科而言,主要是对解题方法的点拨,解题思路的引导,让学生自己学会抓住题目已知条件的关键点,寻找解题的突破口。避免课堂教学“一言堂”现象,要注重课堂教学的精讲多练,注重对学生思维能力的培养。

六、培尖工作在强调名牌效应的今天,加强培尖尤其显得重要。特别是四个奥赛班,更要紧盯尖子生的学习状态。在复习过程中要选准苗子,培养他们良好的学习品质和学习习惯,培养他们较强的自学能力和应试能力,以及稳定的心理素质和良好的心态。对尖子生每次考试的试卷作好分析与针对性讲评。

七、运用现代教育技术授课。多制作课件,用课件上课,让学生体验数学知识的发生、发展过程,让课件的动感感染每一个学生,使他们感知数学的美感。

高三数学课程教学设计篇四

在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+dx+ey+f=0表示圆的条件。

【过程与方法】。

通过对方程x+y+dx+ey+f=0表示圆的的条件的`探究,学生探索发现及分析解决问题的实际能力得到提高。

【情感态度与价值观】。

渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

二、教学重难点。

【重点】。

掌握圆的一般方程,以及用待定系数法求圆的一般方程。

【难点】。

二元二次方程与圆的一般方程及标准圆方程的关系。

高三数学课程教学设计篇五

理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。

遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。

1、等差数列的通项公式。

2、等差数列的前n项和公式。

3、等差数列的性质。

引入:

1、“一尺之棰,日取其半,万世不竭。”

2、细胞分裂模型。

3、计算机病毒的传播。

由学生通过类比,归纳,猜想,发现等比数列的特点。

进而让学生通过用递推公式描述等比数列。

让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式。

注意:

1、公比q是任意一个常数,不仅可以是正数也可以是负数。

2、当首项等于0时,数列都是0。当公比为0时,数列也都是0。

所以首项和公比都不可以是0。

4、以及等比数列和指数函数的关系。

5、是后一项比前一项。

列:1,2,(略)。

小结:等比数列的通项公式。

1、教材p59练习1,2,3,题。

2、作业:p60习题1,4。

高三数学课程教学设计篇六

一、指导思想。

研究新教材,了解新的信息,更新观念,探求新的教学模式,加强教改力度,注重团结协作,面向全体学生,因材施教,激发学生的数学学习兴趣,培养学生的数学素质,全力促进教学效果的提高。

二、学生基本情况。

新的学期里,本人任教高三10、11班两个文科班的数学课,这些学生大部分基础知识薄弱,没有自主学习的习惯,自制能力差,上课注意力不集中,容易走神,课后独立完成作业能力差,懒惰思想严重,因此整个高三的复习任务相当艰巨。

三、工作措施。

1、认真学习《考试说明》,研究高考试题,提高复习课的效率。

《考试说明》是命题的依据,备考的依据。高考试题是《考试说明》的具体体现。因此要认真研究近年来的考试试题,从而加深对《考试说明》的理解,及时把握高考新动向,理解高考对教学的导向,以利于我们准确地把握教学的重、难点,有针对性地选配例题,优化教学设计,提高我们的复习质量。

2、教学进度。

按照高三数学组学年教学计划进行,结合本班实际情况,进行第一轮高三总复习,预计在2月底3月初完成。配合学校举行的月考,并及时进行教学反思。

3、了解学生。

通过课堂展示、学生交流互动、批改作业、评阅试卷、课堂板书以及课堂上学生情态的变化等途径,深入的了解学生的情况,及时的观察、发现、捕捉有关学生的信息调节教法,让教师的教最大程度上服务于学生。对于基础较薄弱的学生,应多鼓励、多指导学法,增强他们学下去的信心和勇气。

4、精心备课。

精心的备好每一节课,努力提高课堂效率,平常多去听同科教师的课,向老教师学习经验和好的教学方法,努力提高自己的任教能力。

5、优化练习。

提高练习的有效性:知识的巩固,技能的熟练,能力的提高都需要通过适当而有效的练习才能实现。练习题要精选,题量要适度,注意题目的典型性和层次性,以适应不同层次的学生;对练习要全批全改,做好学生的错题统计,对于错的较多的题目,找出错的原因。

练习的讲评是高三数学教学的一个重要的环节,不该讲的就不讲,该点拨的要点拨,该讲的内容一定要讲透;对于典型问题,要让学生展示讲解,充分暴露学生的思维过程,加强教学的针对性。多做限时练习,注重综合。选取“题型小、方法巧、运用活、覆盖宽”的题目训练学生的应变能力。

6、注重学习方法、数学方法的指导。

我们在复习中要加强数学思想方法的复习:如转化与化归的思想、函数与方程的思想、分类与整合的思想、数形结合的思想、特殊与一般的思想、或然与必然的思想等。以及配方法、换元法、待定系数法、反证法、数学归纳法、解析法等数学基本方法都要有意识地根据学生学习实际予以复习及落实。

针对学生的具体情况,进行复习的学法指导,使学生养成良好的学习习惯,提高复习的效率。如:要求学生建立错题本,尤其是考后错题,让学生养成反思的习惯;养成学生善于结合图形直观思维的习惯;养成学生表述规范,按照解答题的必要步骤和书写格式答题的习惯等。

7、注意心理调节和应试技巧的训练。

应试的技巧和心理的训练要三高三的第一节课开始,要贯穿于整个高三的复习课,良好的心理素质是高考成功的一个重要环节。我们数学老师在讲课时尤其是考试中主要锻炼学生的心理素质,我们教育学生要以平常心来对待每一次考试。

高三数学课程教学设计篇七

教学目标:

结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学重点:

掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学过程。

一、复习。

二、引入新课。

1.假言推理。

假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。

(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。

(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。

2.三段论。

三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。

3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。

(1)对称性关系推理是根据关系的对称性进行的推理。

(2)反对称性关系推理是根据关系的反对称性进行的推理。

(3)传递性关系推理是根据关系的传递性进行的推理。

(4)反传递性关系推理是根据关系的反传递性进行的推理。

4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。

完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;(2)被断定的个别对象是该类的全部个别对象。

高三数学课程教学设计篇八

根据学科特点,结合我校数学教学的实际情况制定以下教学计划,第二学期高三数学教学计划。

抓基础知识和基本技能,抓数学的通性通法,即教材与课程目标中要求我们把握的数学对象的基本性质,处理数学问题基本的、常用的数学思想方法,如归纳、演绎、分析、综合、分类讨论、数形结合等。提高学生的思维品质,以不变应万变,使数学学科的复习更加高效优质。研究《考试说明》,全面掌握教材知识,按照考试说明的要求进行全面复习。把握课本是关键,夯实基础是我们重要工作,提高学生的解题能力是我们目标。研究《课程标准》和《教材》,既要关心《课程标准》中调整的内容及变化的要求,又要重视今年数学不同版本《考试说明》的比较。结合上一年的新课改区高考数学评价报告,对《课程标准》进行横向和纵向的分析,探求命题的变化规律。

我今年教授两个班的数学:(17)班和(18)班,经过与同组的其他老师商讨后,打算第一轮20xx年2月底;第二轮从20xx年2月底至5月上旬结束;第三轮从20xx年5月上旬至5月底结束。

(一)同备课组老师之间加强研究。

1、研究《课程标准》、参照周边省份20xx年《考试说明》,明确复习教学要求。

处理好几种关系:课标、考纲与教材的关系;教材与教辅资料的关系;重视基础知识与培养能力的关系。

3、研究08年新课程地区高考试题,把握考试趋势。

特别是山东、广东、江苏、海南、宁夏等课改地区的试卷。

4、研究高考信息,关注考试动向。

及时了解09高考动态,适时调整复习方案。

5、研究本校数学教学情况、尤其是本届高三学生的学情。

有的放矢地制订切实可行的校本复习教学计划。

(一)重视课本,夯实基础,建立良好知识结构和认知结构体系课本是考试内容的载体,是高考命题的依据,也是学生智能的生长点,是最有参考价值的资料。

(二)提升能力,适度创新考查能力是高考的重点和永恒主题。

教育部已明确指出高考从“以知识立意命题”转向“以能力立意命题”。

(三)强化数学思想方法数学不仅仅是一种重要的工具,更重要的是一种思维模式,一种思想。

注重对数学思想方法的考查也是高考数学命题的显著特点之一。

数学思想方法是对数学知识最高层次上的概括提炼,它蕴涵于数学知识的发生、发展和应用过程中,能够迁移且广泛应用于相关科学和社会生活,教学工作计划《第二学期高三数学教学计划》。

在复习备考中,要把数学思想方法渗透到每一章、每一节、每一课、每一套试题中去,任何一道精心编拟的数学试题,均蕴涵了极其丰富的数学思想方法,如果注意渗透,适时讲解、反复强调,学生会深入于心,形成良好的思维品格,考试时才会思如泉涌、驾轻就熟,数学思想方法贯穿于整个高中数学的始终,因此在进入高三复习时就需不断利用这些思想方法去处理实际问题,而并非只在高三复习将结束时去讲一两个专题了事。

(四)强化思维过程,提高解题质量数学基础知识的学习要充分重视知识的形成过程,解数学题要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,注意多题一解、一题多解和一题多变。

多题一解有利于培养学生的求同思维;一题多解有利于培养学生的求异思维;一题多变有利于培养学生思维的灵活性与深刻性。

在分析解决问题的过程中既构建知识的横向联系,又养成学生多角度思考问题的习惯。

(五)认真总结每一次测试的得失,提高试卷的讲评效果试卷讲评要有科学性、针对性、辐射性。

讲评不是简单的公布正确答案,一是帮学生分析探求解题思路,二是分析错误原因,吸取教训,三是适当变通、联想、拓展、延伸,以例及类,探求规律。还可横向比较,与其他班级比较,寻找个人教学的薄弱环节。根据所教学生实际有针对性地组题进行强化训练,抓基础题,得到基础分对大部分学校而言就是高考成功,这已是不争的共识。第二轮专题过关,对于高考数学的复习,应在一轮系统学习的基础上,利用专题复习,更能提高数学备考的针对性和有效性。在这一阶段,锻炼学生的综合能力与应试技巧,不要重视知识结构的先后次序,需配合着专题的学习,提高学生采用“配方法、待定系数法、数形结合,分类讨论,换元”等方法解决数学问题的能力,同时针对选择、填空的特色,学习一些解题的特殊技巧、方法,以提高在高考考试中的对时间的掌控力。第三轮综合模拟,在前两轮复习的基础上,为了增强数学备考的针对性和应试功能,做一定量的高考模拟试题是必须的,也是十分有效的。

1、强化知识的综合性和交汇性,巩固方法的选择性和灵活性。

2、检查复习的知识疏漏点和解题易错点,探索解题的规律。

3、检验知识网络的生成过程。

4、领会数学思想方法在解答一些高考真题和新颖的模拟试题时的工具性。

(1)从班级实际出发,我要帮助学生切实做到对基础训练限时完成,加强运算能力的训练,严格答题的规范化,如小括号、中括号等,特别是对那些书写“像雾像雨又像风”的学生要加强指导,确保基本得分。

(2)在考试的方法和策略上做好指导工作,如心理问题的疏导,考试时间的合理安排等等。

(3)与备课组其他老师保持统一,对内协作,对外竞争。自己多做研究工作,如仔细研读订阅的杂志,研究典型试题,把握高考走势。

(4)做到“有练必改,有改必评,有评必纠”。

(5)课内面向大多数同学,课外抓好优等生和边缘生,尤其是边缘生。

班级是一个集体,我们的目标是“水涨船高”,而不是“水落石出”。

(6)要改变教学方式,努力学习和实践我校总结推出的“221”模式。

教学是一门艺术,艺术是无止境的,要一点天份,更要勤奋。

(7)教研组团队合作虚心学习别人的优点,博采众长,对工作是很有利的。

(8)平等对待学生,关心每一位学生的成长,宗旨是教出来的学生不一定都很优秀,但肯定每一位都有进步;让更多的学生喜欢数学。

高三数学课程教学设计篇九

教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。

教学难点:遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。

教学过程:

一.复习准备。

1.等差数列的通项公式。

2.等差数列的前n项和公式。

3.等差数列的性质。

二.讲授新课。

引入:1“一尺之棰,日取其半,万世不竭。”

2细胞分裂模型。

3计算机病毒的传播。

由学生通过类比,归纳,猜想,发现等比数列的特点。

进而让学生通过用递推公式描述等比数列。

让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式。

注意:1公比q是任意一个常数,不仅可以是正数也可以是负数。

2当首项等于0时,数列都是0。当公比为0时,数列也都是0。

所以首项和公比都不可以是0。

3当公比q=1时,数列是怎么样的,当公比q大于1,公比q小于1时数列是怎么样的?

4以及等比数列和指数函数的关系。

5是后一项比前一项。

列:1,2,(略)。

小结:等比数列的通项公式。

三.巩固练习:

1.教材p59练习1,2,3,题。

2.作业:p60习题1,4。

第二课时5.2.4等比数列(二)。

教学重点:等比数列的性质。

教学难点:等比数列的通项公式的应用。

一.复习准备:

提问:等差数列的通项公式。

等比数列的通项公式。

等差数列的性质。

二.讲授新课:

1.讨论:如果是等差列的三项满足。

那么如果是等比数列又会有什么性质呢?

由学生给出如果是等比数列满足。

2练习:如果等比数列=4,=16,=?(学生口答)。

如果等比数列=4,=16,=?(学生口答)。

3等比中项:如果等比数列.那么,

则叫做等比数列的等比中项(教师给出)。

4思考:是否成立呢?成立吗?

成立吗?

又学生找到其间的规律,并对比记忆如果等差列,

5思考:如果是两个等比数列,那么是等比数列吗?

如果是为什么?是等比数列吗?引导学生证明。

6思考:在等比数列里,如果成立吗?

如果是为什么?由学生给出证明过程。

三.巩固练习:

列3:一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项。

解(略)。

列4:略:

练习:1在等比数列,已知那么。

2p61a组8。

高三数学课程教学设计篇十

函数的综合应用主要体现在以下几方面:

1、函数内容本身的相互综合,如函数概念、性质、图象等方面知识的综合。

2、函数与其他数学知识点的综合,如方程、不等式、数列、解析几何等方面的内容与函数的综合。这是高考主要考查的内容。

3、函数与实际应用问题的综合。

b2—1=1。

答案:a。

2、若f(x)是r上的减函数,且f(x)的图象经过点a(0,3)和b(3,—1),则不等式|f(x+1)—1|2的解集是___________________。

解析:由|f(x+1)—1|2得—2。

又f(x)是r上的减函数,且f(x)的图象过点a(0,3),b(3,—1),

高三数学课程教学设计篇十一

一、概述。

九年制义务教育九年级数学(北师大版)下册第三章第五节“直线和圆的位置关系”。本节是探索直线与圆的位置关系,课本通过操作、观察直线与圆的相对运动,提示直线与圆的三种位置关系,探索直线与的位置关系,和圆心到直线的距离与半径之间的大小关系的联系,并突出研究了圆的切线的性质和判定。在本节的设计中,充分体现了学生已有经验的作用,用运动的观点研究直线与圆的位置关系,使学生明确图形在运动变化中的特点和规律。

二、设计理念。

鼓励学生从事观察、测量、折叠、平移、旋转、推理证明等活动,帮助学生有意识地积累活动经验,获得成功的体验。教学中应鼓励学生动手、动口、动脑和交流,充分展示“观察、操作——猜想、探索——说理(有条理地表达)”的过程,使学生能在直观的基础上学习说理,体现合情推理和演绎推理的融合,促进学生形成科学地、能动地认识世界的良好品质。

(1)激发学生亲自探索直线和圆的位置关系。

(2)通过实践让学生理解直线与圆的三种位置关系——相交、相切、相离的含义。

(3)探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。

四、教学重点。

直线与圆的三种位置关系——相交、相切、相离。

从设置情景提出问题,到动手操作、交流,直至归纳得出结论,整个过程学生不仅得到了直线与圆的位置关系,更重要的是经历了知识过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学、应用数学。

五、教学难点。

探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。

高三数学课程教学设计篇十二

等比数列的通项公式的应用。

提问:等差数列的通项公式。

等比数列的通项公式。

等差数列的性质。

1、讨论:如果是等差列的三项满足。

那么如果是等比数列又会有什么性质呢?

由学生给出如果是等比数列满足。

2、练习:如果等比数列=4,=16,=?(学生口答)。

如果等比数列=4,=16,=?(学生口答)。

3、等比中项:如果等比数列。那么,

则叫做等比数列的等比中项(教师给出)。

4、思考:是否成立呢?成立吗?

成立吗?

又学生找到其间的规律,并对比记忆如果等差列,

5、思考:如果是两个等比数列,那么是等比数列吗?

如果是为什么?是等比数列吗?引导学生证明。

6、思考:在等比数列里,如果成立吗?

如果是为什么?由学生给出证明过程。

列3:一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项。

解(略)。

列4:略:

练习:1在等比数列,已知那么。

高三数学课程教学设计篇十三

尊敬的各位评委、各位老师:

大家好!

今天我说课的题目是《平面向量的数量积》。下面我将从四个方面阐述我对本节课的分析和设计。

第一部分:教学内容分析:

1、教材的地位及作用:

将平面向量引入高中课程,是现行数学教材的重要特色之一。由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数形结合和转换的桥梁。而这一切之所以能够实现,平面向量的数量积功不可没。《平面向量的.数量积》是高一数学下册第五章第六节的内容。平面向量数量积是中学数学的一个重要概念。它的性质很多,应用很广,是后面学习的重要基础。本课是第一课时,学生对概念的理解尤为重要。

2、教学目标的设定:

(1)知识目标:

高三数学课程教学设计篇十四

河北省唐山师院玉田分校附小高秀艳。

指导教师:河北省玉田县教育局教研室薛玉春。

河北省唐山师院玉田分校附小钱守旺。

教学内容:教科书第96~98页。

教学要求:

1.通过对问题情境的探索,使学生在已有的经验的基础上自己得出计算9加几的各种方法;通过比较,使学生体验比较简便的计算方法;使学生初步理解“凑十法”,初步掌握9加几的进位加法的思维过程,并能正确计算9加几的口算。

2.培养学生初步的观察、比较、抽象、概括能力和动手操作能力,初步的提出问题、解决问题的能力。发散学生的思维,培养创新意识。

3.培养学生合作学习和用数学的意识。

教学重难点:理解“凑十法”的思维过程。

教学准备:

教具:实物投影,投影片,小棒18根。

学具:每人准备小棒18根。

教学过程:

一、教学例1。

1.教师用投影出示课本p96~97的全景图。

教师说明:这是学校运动会的场面,从图中你看到什么?

(让学生自己看图互相说一说)。

2.学生回答后教师指出:运动会上,学校为了给运动员解渴,准备了一些饮料,已经喝了一些,比赛快要结束时小明问:“还有多少盒?”

师:你们知道还有多少盒吗?互相说一说。

(学生互相说时,教师巡视,注意发现不同的方法)。

学生可能出现三种算法:(1)数数法:1、2、3、4……12、13,一共有13盒。

(2)接数法:箱子里有9盒,然后再接着数10、11、12、13,一共有13盒。

(3)凑十法:把外面的一盒饮料放在箱子里凑成10盒,10盒再加上剩下的3盒,一共是13盒。

教师说明:你们说的几种方法都很好,这三种方法中你最喜欢哪一种?

3.学生回答后教师指出:刚才有的同学用数的方法知道了还有多少盒饮料,也有的同学是通过计算的方法得到的。下面我们一起看一看这些同学是怎样计算9加几的。

提问:要算还有多少盒饮料怎样列式?(板书9+4)。

师:9加4该怎样计算呢?请同学们用小棒摆一摆。

教师指导学生进行操作:左边摆9根小棒代表盒子里的9盒饮料,右边摆4根小棒代表盒子外边的4盒饮料。

师:谁能结合板书完整地说一说,刚才我们是怎样计算9+4的?

4.利用课本右边的资源提出用加法计算的数学问题。

师:同学们接着看图,运动会上有9个踢踺子的,还有6个跳远的,要求踢键子的和跳远的一共有多少人,应该怎样列式?(板书:9+6)。

师:9+6等于多少呢?自己用小棒摆一摆。

学生汇报后,教师启发:你们还可以提出什么问题?

学生每提一个问题,教师就让学生说一说一共有多少人。对于9加几的问题,还要让学生说一说自己是怎样想的。

二、练习反馈。

1.圈一圈,算一算。(“做一做”第1题)。

学生独立看图说意,并动手圈一圈,直接看图写出得数。

2.看图列式。(“做一做”第2题)。

学生独立看图填写,订正时可以让学生说一说是怎样想的。

3.教师提问:通过今天的学习,你都会计算9加几了?

学生每说一个算式,就让学生说出得数。

三、课堂小结。

今天我们学习的题目有什么特点?(板书课题:9加几)。

教师指出:今天我们学习的是9加几,计算9加几的题目,可以用数的方法,也可以用计算的方法。

[教师的小结点到为止,不给过多的结论性的东西,不限制学生的算法。]。

四、课堂作业。(“做一做”第3题)。

学生在课本上独立完成,个别有困难的学生,教师给予个别指导和帮助,也可以让学生借助学具学习。

高三数学课程教学设计篇十五

平面向量基本定理是一节内容简单但运用困难的一节课。

对于新课引入环节,记得去年我由向量的加法法则和数乘运算引入,教师提问,学生回答;然后直接给出问题:如果是平面内的任意两个不共线的向量,那么平面内的任意向量可以由这两个向量表示吗?这就是这节课要学习的问题。而今年在重新思考之后,在引入上完全是学生在动手做,通过复习向量的加法法则和数乘运算让学生回忆旧知并为新知识做好铺垫,并且这张作图纸的功能一直贯穿整节课的学习,也让学生从直观上得到平面向量基本定理的内容作准备。在学生复述了上述知识之后,让学生在方格纸上画出,并画出,让学生感知由,通过数乘运算和向量的加法法则是可以表示出的,那么反过来已知可以由来表示吗?引出课题。应用新的设计之后的好处是让学生能够很容易的进入到本节课的学习状态中来,因为学生很明白这节课学习的主要内容,这比原来的设计方案要更加的顺畅和细致,也更加符合学生的认知水平。

对于教材的挖掘上,对于例题的结论,以前是像对一般习题一样,讲解明白后一带而过,而后发现这个结论在以后做题上有很大的用处然后再次强调,而本次我在课上就做了足够的强调,课后发现学生的作业做得很顺畅。

对于教学时间控制上,在教学中,作为老师的我常常想在这一节课中让学生能够完全掌握我所教的知识,同时也要考虑到课程的完整性,希望在各个方面都能够做到尽善尽美。我在回忆这节课的时间把握上,果真看出了一些问题,具体来说,第一:在开始的引入中对于学生作图的这一个环节上耗时太多,好多的学生已经能够很快的做出图来,而我却只看那些作图较慢的同学,这里浪费了很多的时间,其实,归因来说,还是对学生学习能力的不了解,导致了在教学中的“以偏概全”;第二:在作课堂小结时,平面向量的基本定理已经得出没有必要在进行重复,我在这里处理的不当,请一位学生又复述了一遍定理的内容,如果时间还有富余的话,这样进行可能就没有问题,但是这时距离下课仅有两分钟,再有这样的环节就不是明智之选了,因此,拖堂了几分钟。

通过这次的经历,我的教学设计可以说已经不是三易其稿了,可能也有“四易或者五易”了,但是每经过一次这样的过程就感到自己确实又进步了一些。现在再回想准备的阶段和正式上课的时候所经历的困难和迷茫到最后的成竹在胸,就感到自己所付出的都是值得的。

高三数学课程教学设计篇十六

它是沟通代数、几何、三角函数的一种工具,有着极其丰富的实际背景.其教育价值主要体现在有助于学生体会数学与实际生活的联系,感受数学在解决实际问题中的作用,有助于学生认识数学内容之间的内在联系,体验、领悟数学的创造性和普遍联系性,有助于学生发展智力,提高运算、推理能力。

(1)应了解的内容:共线向量的概念,平面向量的基本定理,用平面向量的数量积处理有关长度、角度和垂直的问题。

应理解的内容:向量的概念,两个向量共线的充要条件,平面向量坐标的概念。

应掌握的内容:向量的几何表示,向量的加法与减法,实数与向量的积,平面向量的坐标运算,平面向量的数量积及几何意义,向量垂直的条件。

(2)注意处理好新旧思维矛盾。

学习向量运算与学习数的运算有类似之处:从学习顺序上看,都是先定义运算,再研究运算性质;从学习内容来看,向量运算具有与数的运算类似的良好性质。当引入向量后,运算对象扩充了,不仅仅是数的运算了,向量运算是建立在新的运算法则上,向量的运算与实数的运算不尽相同,向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用,它有一套自己的运算法则。但很多学生往往完全照搬数的运算法则,而不注意向量运算法则的特点,因此常常出错。

在教学中要注意新旧知识之间的矛盾冲突,及时让学生加以辨别、总结,利于正确理解向量的实质。例如向量的加法与向量模的加法的区别,向量的数量积与实数积的区别,在坐标表示中两个向量共线与垂直的充要条件的区别等等。

(3)注意数学思想方法的渗透。

在这一章中,从引言开始,就注意结合具体内容渗透数学思想方法。例如,从帆船在大海中航行时的位移,渗透数学建模的思想。通过介绍相等向量及有关作图的训练,渗透平移变换的思想。

由于向量具有两个明显特点——“形”的特点和“数”的特点,这就使得向量成了数形结合的桥梁,向量的坐标实际是把点与数联系了起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题。

高三数学课程教学设计篇十七

向量作为一种运算工具,其知识体系是从实际的物理问题中抽象出来的,它在解决几何问题中的三点共线、垂直、求夹角和线段长度、确定定比分点坐标以及平移等问题中显示出了它的易理解和易操作的特点。

一、总体设想:

本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。

二、教学目标:

知识和技能:

两个非零向量的夹角;定义;本质;几何意义。

掌握向量数量积的主要变化式:;。

过程与方法:

从物理中的物体受力做功,提出向量的夹角和数量积的概念,然后给出两个非零向量的夹角和数量积的一般概念,并强调它的本质;接着给出两个向量的数量积的几何意义,提出一个向量在另一个向量方向上的投影的概念。

给出向量的数量积的运算律,并通过例题具体地显示出来。

由数量积的定义式,变化出一些特例。

情感、态度和价值观:

使学生学会有效学习:抓住知识之间的逻辑关系。

三、重、难点:

【重点】数量积的定义,向量模和夹角的计算方法。

四、教学方案及其设计意图:

平面向量的数量积,是解决垂直、求夹角和线段长度问题的关键知识,其源自对受力物体在其运动方向上做功等物理问题的抽象。于是在引导学生学平面向量数量积的概念时,要围绕物理方面已有的知识展开,这是使学生把所学的新知识附着在旧知识上的绝好的机会。(如图)首先说明放置在水平面上的物体受力f的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力f的所做的功为w,这里的(是矢量f和s的夹角,也即是两个向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。以此为基础引出了两非零向量a,b的数量积的概念:,是记法,是定义的实质――它是一个实数。按照推理,当时,数量积为正数;当时,数量积为零;当时,数量积为负。

向量数量积的几何意义在证明分配律方向起着关键性的作用。其几何意义实质上是将乘积拆成两部分:。此概念也以物体做功为基础给出。是向量b在a的方向上的投影。

高三数学课程教学设计篇十八

(2)能力目标:

通过对平面向量数量积定义的剖析,培养学生分析问题发现问题能力,使学生的思维能力得到训练。

(3)情感目标:

通过本节课的学习,激发学生学习数学的兴趣,体会学习的快乐。

第二部分:教法分析:

采用启发引导式与讲练相结合,并借助多媒体教学手段,使学生理解平面向量数量积的定义,理解定义之后引导学生推导数量积的性质,通过例题和练习加深学生对平面向量数量积定义的认识,初步掌握平面向量数量积定义的运用。

第三部分:教学程序设计:

完整版。

高三数学课程教学设计篇十九

(浙江省安吉县孝丰高级中学)。

摘要:在分析平面向量数量积的作用、地位和教学目标的基础上,引出平面向量数量积的重要性质,以历年高考中的经典例题为例进行分析,采用微课的教学方式,旨在提高学生解决问题的能力,并培养他们的创新解题思维和实践能力。

平面向量的数量积是高中必修第四版的内容,作为高中课程中的重要内容,在教学中有着很重要的地位。向量是图形位置的直观体现,而且又具有很好的运算性质,是运算与图形进行有机结合的重要途径。通过把空间图形的特性间接转化为向量的运算,简化了空间直线和平面所带来的问题,是研究物理学和其他工程技术的重要工具。

针对学生对平面向量的`数量积的学习,在微课程教学中要达到以下目标才能让学生充分掌握平面向量数量积的性质和应用方法。首先是认知目标,应理解平面向量数量积的含义和物理意义,学会基本的数值计算以及向量垂直关系的判断方法。其次是能力目标,通过平面向量数量积的学习,培养学生运用数学知识解决实际问题的意识和能力,激发他们学习的欲望和热情,注重自主学习能力的培养。

在设计微课时,为了更好地了解平面向量数量积的性质,提高学生解决问题的能力,要具体介绍平面向量的数量积的性质和运算规律,下面将以高考中的实例进行分析。

平面向量的数量积在计算时,一般有两种考查形式,()一种是纯向量形式,一种是以几何图形为载体,侧重点还是对数量积的运算。

评析:在这道题的求解过程中,运用到了数量积的几何形式计算,基本思路就是要建立基向量思维,选取一组基底,把需要求解的向量用基底表示出来,再运用平面向量的数量积公式和法则进行求解,解这类几何图形问题,要注意把握几何图形之间的关系和性质。

答案:a。

评析:本题是考查向量模的取值范围大小问题,对向量的基本知识和运用进行了全面的考查,尤其是向量的概念、线性计算与数量积、角度与模值之间的相互计算等,计算方法可以采用代数法和几何法两种。

从上述例1、2中可以看出,平面向量的数量积是高考考查的重点和难点,不仅局限于对向量概念的考查,更多的是对立体几何、解析几何和三角函数等一系列的知识点进行综合考查,近年来又逐渐加入了不等式、线性规划等方面的内容。

对于平面向量数量积的应用,要学会把几何问题和物理学问题转变为向量问题。利用微课的教学优势,通过平面向量数量积的微课程学习,充分调动学生学习的积极性,不断提高他们的数学素养。

参考文献:

高维玺。探究高中数学新课程中的向量及其教学[j]。新课程:中旬,(07)。

【本文地址:http://www.xuefen.com.cn/zuowen/17969995.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档