六年级数学圆锥体积的说课稿(模板14篇)

格式:DOC 上传日期:2023-12-07 17:37:06
六年级数学圆锥体积的说课稿(模板14篇)
时间:2023-12-07 17:37:06     小编:紫薇儿

总结让我们懂得感恩,懂得珍惜,懂得在变化中不断成长。需要梳理和整理好相关材料和资料,为写总结做好准备。小编精选了一些有关总结的范文,希望能为大家提供一些写作的思路和方法。

六年级数学圆锥体积的说课稿篇一

教学内容:教科书第20~21页例5及相应的“试一试”,“练一练”和练习四的第1~3题。

教学目标:

1、组织学生参与实验,从而推导出圆锥体积的计算公式。

2、会运用圆锥的体积计算公式计算圆锥的体积。

3、培养学生观察、比较、分析、综合的能力以及初步的空间观念。

4、以小组形式参与学习过程,培养学生的合作意识。

5、渗透转化的数学思想。

教学重点:理解和掌握圆锥体积的计算公式。

教学难点:理解圆柱和圆锥等底等高时体积间的倍数关系。

教学资源:等底等高的圆柱和圆锥容器一套,一些沙或米等。

教学过程:

一、联系旧知,设疑激趣,导入新课。

1、我们已经知道了哪些立体图形体积的求法?(学生回答时老师出示相应的教具——长方体,正方体圆柱体,然后板书相应的计算公式)。

2、我们是用什么方法推出圆柱体积的计算公式的?(是把圆柱体转化为长方体来推导的。板书:转化)。

3、(出示教具)大家觉得这个圆锥与哪个立体图形的关系最近呢?(老师比较学生指出的圆柱与圆锥的底和高,引导学生发现这个圆柱与圆锥等底等高)。

5、它们的'体积之间到底有什么关系呢?

二、实验操作、推导圆锥体积计算公式。

1、课件出示例5。

(1)通过演示使学生知道什么叫等底等高。

(3)实验操作,发现规律。

(用学具演示)在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。

(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。

2、教师课件演示。

3、学生讨论实验情况,汇报实验结果。

4、启发引导推导出计算公式并用字母表示。

圆锥的体积=等底等高的圆柱的体积×1/3=底面积×高×1/3。

用字母表示:v=1/3sh。

5、教学试一试。

(1)出示题目。

(2)审题后可让学生根据圆锥体积计算公式自己试做。

(3)批改讲评。注意些什么问题。

三、发散练习、巩固推展。

1、做“练一练”第1、2题。

指名一人板演,其余学生做在练习本上。集体订正,强调要乘以1/3。

2、做练习四第1、2题。

学生做在课本上。之后学生反馈。错的要求说明理由。

四、小结。

这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

学生交流。

五、作业。

练习四第3题。

六年级数学圆锥体积的说课稿篇二

我今天教学的内容是圆锥的体积,圆锥是小学几何初步知识的最后一个教学单元中的内容,是在掌握了圆的周长、面积和圆柱的体积的基础上进行教学的。通过教学,使学生认识圆锥,掌握圆锥的特征以及各部分的名称。理解求圆锥体积公式的计算公式,会运用公式计算圆锥的体积。圆锥体是人们在生产、生活中经常遇到的形体。

2、教学目标:

(1)知识目标:通过观察和实验使学生理解和掌握圆锥特征和圆锥的体积公式,能运用公式正确地计算圆锥的体积。

(2)技能目标:培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。

(3)情感态度目标:渗透事物间相互联系的辨证唯物主义观点的启蒙教育。

3、教学重难点。

(1)重点:理解和掌握圆锥的特征、体积的计算公式。

(2)难点:掌握圆锥高的测量方法和圆锥体积公式的推导过程。

根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法、设疑诱导法为辅。教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考、操作,教师适时地演示,化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

根据学法指导自主性和差异性原则,让学生在“观察一操作一概括一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。

课堂教学是学生数学知识的获得、技能技巧的形成、智力、能力的发展以及思想品德的养成的主要途径。为了达到预期的教学目标,我对整个教学过程进行了系统地规划,遵循目标性、整体性、启发性、主体性等一系列原则进行教学设计。设计了六个主要的教学程序是:

(一)复习旧知,课前铺垫。

(二)提出质疑,引入新课。

(三)动手操作,获得新知。

(四)综合练习,发展思维。

(五)课后小结,归纳知识。

(六)作业布置,巩固新知。

(一)复习旧知,课前铺垫。

1、怎样计算圆柱的体积?

指名回答,教师板书:圆柱体的体积=底面积×高。

2、一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?

指两名板演,全班齐练,集体订正。

(二)提出质疑,引入新课。

圆锥有什么特征?它的体积如何计算呢?

今天我们就利用这些知识探讨新的——怎样计算圆锥的体积(板书课题)。

(三)动手操作,获得新知。

教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:

学生回答,教师板书:

圆柱——(转化)——长方体。

圆柱体积公式——(推导)——长方体体积公式。

教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。

一、教材分析教材通过向等底等高的圆柱和圆锥倒水的实验,得到圆锥体积的计算公式v=1/3sh。也就是等底等高的圆锥体积是圆柱体积的三分之一。教课......

六年级数学圆锥体积的说课稿篇三

季艳芳老师的语文课给我的感受是备课充分、讲解精辟、重点突出、善于调动学生积极性。

房平老师的英语课思路清晰、语言流畅、安排合理、效果良好。

林燕、陈红梅老师的课有一定改进,但仍需努力,要加强教师基本功训练,虚心学习,不断提高,力争成为学校骨干教师。

刘梦麟:

3月1日听了林燕老师的《dreamhomes》,认为林燕老师的教学组织能力有了很大进步,知识点讲解清晰,所选练习讲解较精当,教学中各环节能有效衍接,课堂容量较足。但根据初一学生状况,课堂教学中学生口语练习还可增加,知识点的讲解、巩固如能使用多媒体设备来辅助教学效益会更高。

3月6日听了邵宏誓老师的《美好人生我选择》——直面升学与择业,认为本节课学习内容是与学生生活、学习紧密结合、息息相关的课题,教师授课中有针对性地探讨了学生面临的问题及相应对策,教学中能密切结合校园内及学生身边熟悉的事件开展教学,深入浅出,启发学生进行思考,开展讨论。教师语言表述清晰、精要、幽默。建议教师要对学生的分析、提炼、总结问题的能力加强培养,提高要求。

3月8日听了陈红梅老师的一堂课,认为本节语法课内容紧扣知识要点,所选内容突出了重点、难点,加深了学生的体会,便于学生理解。教师语法授课中讲解能注意引导、启发。在课堂中学生朗读能力培养还略显欠缺,各环节紧凑性还可加强,老师对学生纪律要提高要求。

知识的记忆、整理,结合习题在授课中及时巩固,并做到精批精讲,板书相当清晰、规范。但做为复习课,对学生能力要求可再提高一些,课堂上可适当给予学生互动的空间。

刘凤:3月6日听了曹国华老师的《第二次鸦片战争》一课,认为本堂课知识点明确,条理清晰,板书大方,教师注意归纳总结,能联系书本以外的'知识,扩大学生听闻。教学语言形象、丰富、生动,浅入深出,但与学生互动交流稍显欠缺。

3月8日听了李春涛老师的《分式的加减法》,认为该课语言幽默、风趣,生动形象,着力于学生积极性的调动,引导学生动手、动口,注意矫正反馈,注重双基训练。

3月12日听了顾惠芳老师的《我的老师》一课,认为教师语言语调抑扬顿挫,普通话过硬,板书优美,基本功扎实,能循循善诱,逐步引导学生思考问题及分析事件与人物,解决讨论要点有成效。并注重学生的诵读能力、口头表达能力的培养,学生的学习习惯较好。3月13日听了狄永伟老师的《鸟(专题)》一课,认为该专题内容丰富多彩,一定程度上积淀了学生的文学素养,学生参与多,课件精美,涉及知识范围广,开阔学生眼界,点面结合加练笔,让学生对鸟的认识逐步深入,效果较好。

3月13日听了季艳芳老师的《曹刿论战》,认为教师能让学生在理解中背诵,逐步掌握本文的重点、难点,但气氛少活泼。教师注意引导学生积累一些文言虚词和固定用法,能一定程度上自译成文。做到讲练结合,联系疏通新旧知识,分析精当。

六年级数学圆锥体积的说课稿篇四

教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过盛水实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。学生感到非常简单易懂,因此学起来并不感到困难,但教学过后,仍感到有许多不尽人意之处。

新课伊始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手进行盛水实验,让孩子亲历教学的验证过程——用圆锥模型盛满三杯水才能倒满等底等高圆柱模型。从实验中得出结论:等底等高圆柱体积是圆锥体积的三倍;等底等高的圆锥体积是圆柱体积的三分之一。从而推出圆锥的体积公式:v锥=1/3sh,这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。

六年级数学圆锥体积的说课稿篇五

1、本节教材是义务教育小学数学(人教版)六年制第十二册第三单元《圆柱、圆锥和球》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导,例1、例2,相应的“做一做”及练习十二的第3、4、5题。

2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

3、教学重点:能正确运用圆锥体积计算公式求圆锥的体积。

4、教学目标:

(3)德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

5、教具准备:等底等高的圆柱、圆锥一对,与圆柱等底不等高的圆锥一个,与圆柱等高不等底的圆锥一个。

学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,一定量的细沙。

著名教育家布鲁纳说过:“教学不是把学生当成图书馆,而要培养学生参与学习的过程。”学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:

1、实验操作法。

波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”因此,我在学生已经认识圆锥的基础上,设计了一个实验,通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。

2、比较法、讨论法、发现法三法优化组合。

几何知识具有逻辑性、严密性、系统性的特点。因此在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一”。然后再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生用不等底等高的空圆锥、空圆柱盛沙做实验,发现有时装不下,有时不够装,有时刚好装满,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。

“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”这是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此我在讲求教法的同时,更重视对学生学法的指导。

1、实验转化法。

有些知识单凭解说是无法让学生真正理解的,只有通过实验,反复操作,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。

2、尝试练习法。

苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在教学两道例题时,让学生尝试自己独立解答,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

本节课我设计了以下五个教学程序:

1、复习旧知,做好铺垫。

(1)看图说出圆锥的底面和高。

(2)一个圆柱体零件,底面积是6.28平方厘米,高是3厘米,它的体积是多少?

这两道题是复习圆锥的认识和圆柱的体积公式及其应用,为新知迁移做好铺垫。

2、谈话激趣,导入新课。

六年级数学圆锥体积的说课稿篇六

1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的`计算公式,能运用公式解答有关实际问题。

2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。

3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。

教学重点:通过实验的方法,得到计算圆锥的体积。

教学难点:运用圆锥的体积公式进行正确地计算。

教学准备:等底等高的圆柱和圆锥容器模型各一个。

一、复习导入。

师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。

1、圆柱体积的计算公式是什么?(指名学生回答)。

2、圆锥有什么特征?

同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)。

二、探究新知。

课件出示等底等高的圆柱和圆锥。

1、引导学生观察:这个圆柱和圆锥有什么相同的地方?

学生回答:它们是等底等高的。

猜想:

(1)、你认为圆锥体积的大小与它的什么有关?

(2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?

2、学生动手操作实验。

(1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?

(2)、通过实验,你发现了什么?

小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一。

问:把圆柱装满一共倒了几次?

生:3次。

师:这说明了什么?

生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。(板书:圆锥的体积=1/3×圆柱体积)。

师:圆柱的体积等于什么?

生:等于“底面积×高”。

师:那么,圆锥的体积可以怎样表示呢?(板书:圆锥的体积=1/3×底面积×高)。

师:用字母应该怎样表示?(v=1/3sh)。

师:在这个公式里你觉得哪里最应该注意?

三、教学试一试。

四、巩固练习。

2、判一判。

3、算一算。

4、拓展延伸。

五、总结。

通过这节课的学习,你有什么收获呢?

六、板书:

圆锥的体积=圆柱的体积×1/3。

圆锥的体积=底面积×高×1/3。

用字母表示v=1/3sh。

六年级数学圆锥体积的说课稿篇七

今天听了史老师的圆锥的体积一课,深深地被老师精湛的教学艺术,深厚的教学经验所打动了。

本节课值得学习的地方很多:

情景来源于生活,既学生活动可造房子,又与两位教师家孩子有关,学生兴趣盎然。其中的数学问题又与本节学课教学目标紧密联系。起到很好的导入效果。

教师为每个组准备了学具,学生都能参与到实验中,印象深刻。

操作完毕后,学生加以汇报,把实验过程和发现交代的都很清楚,在这个环节学生还能引发更深层的'思考,对老师板书进行质疑补充,充分体现教学中师生关系的民主化。

如:等底等高这一前提条件的引出。接着教师自然而然的让学生又以观察圆柱圆锥的关系,比较他们的底面积和高。这一环节学生对等底等高这一条件理解就更为深刻了。

实验结束,学生发现等底等高圆柱和圆锥的体积关系后,教师设计了一个小练习看图填空,根据圆柱体积求圆锥体积,根据圆锥体积求圆柱体积,这样独特的设计,方便了更多的学生总结圆锥体积计算公式。

练习的安排,由易到难,先是独立列式计算,我来评评理,然后是直列式不计算,列式过程注重听取不同的方法,拓宽学生的思路。再后来又出现填空判断等练习,综合性较强,加上教师随口编出的练习将知识分数除法联系起来,融会贯通,到此学生对本节知识得以较好的掌握。提升练习为学生联系实际生活理解数学知识在生活中的价值提供了很好的资源。

建议:练习中再多创设一些独立练习的环节,给学困生一思考的空间,也方便教师考查学生当堂的掌握情况。

六年级数学圆锥体积的说课稿篇八

本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.

数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。

1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。

3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。

圆锥体积公式的推导。

学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对于新的知识教学,他们一定能表现出极大的热情。

试验探究法小组合作学习法。

多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)。

2课时。

第一课时。

1、你能计算哪些规则物体的体积?

2、你能说出圆锥各部分的名称吗?

【设计意图】通过对旧知识的回顾,进一步为学习新知识作好铺垫。

展示砖工师傅使用的铅锤体(圆锥),你能测试出它的.体积吗?

【设计意图】以生活中的数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)。

探究一:(分组试验)圆柱与圆锥的底和高各有什么关系?

1、猜想:猜想它们的底、高之间各有什么关系?

2、试验验证猜想:每组拿出圆柱、圆锥各1个,分组试验,试验后记录结果;。

3、小组汇报试验结论,集体评议:(注意汇报出试验步骤和结论)。

4、教师介绍数学专用名词:等底等高。

【设计意图】通过探究一活动,初步突破了本课的难点,为探究二活动活动开展作好了铺垫。

探究二:(分组试验)研讨等底等高圆柱与圆锥的体积之间有什么关系?

1、大胆猜想:等底等高圆柱与圆锥体积之间的关系。

2、试验验证猜想:每组拿出水槽(装有适量的水),通过试验,你发现了圆柱的体积和圆锥的体积有什么关系?边试验边记录试验数据(教师巡视指导每组的试验)。

3、小组汇报试验结论(提醒学生汇报出试验步骤)。

教学预设:

(1)圆椎的体积是圆柱体积的3倍;。

(2)圆锥的体积是圆柱体积的三分之一;。

(3)当等底等高时,圆柱体积是圆锥体积的3倍,或圆锥的体积是圆柱体积的三分之一等等。

4、通过学生汇报的试验结论,分析归纳总结试验结论。

5、你能用字母表示出它们的关系吗?要求圆锥的体积必须知道什么条件呢?(学生反复朗读公式)。

【设计意图】通过学生分组试验探究,在实验过程中自主猜想、感知、验证、得出结论的过程,充分调动学生主动探索的意识,激发了学生的求知欲,培养了学生的动手能力,突破了本课的难点,突出了教学的重点。

探究三:(伸展试验---演示试验)研讨不等底等高圆柱与圆锥题的体积是否具有三分之一的关系。

1、观察老师的试验,你发现了圆柱与圆锥的底和高各有什么关系?

3、学生通过观看试验汇报结论。

4、教师引导学生分析归纳总结圆锥体积是圆柱体积的三分之一所存在的条件。

5、结合探究二和探究三,进一步引导学生掌握圆锥的体积公式。

【设计意图】通过教师课件演示试验,进一步让学生明白圆锥体积是圆柱体积的三分之一所存在的条件,更进一步加强学生对圆锥体积公式理解,再次突出了本课的难点,培养了学生的观察能,分析能力,逻辑思维能力等,进一步让学生从感性认识上升到了理性认识。

2、口答题:【题目内容见多媒体展示】独立思考---抽生汇报---学生评议。

【设计意图】通过判断题、口答题题型的训练,及时检查学生对所学知识的理解程度,巩固了圆锥体的体积公式。而拓展题型具有开放性给学生提供思维发展的空间,让他们有跳起来摘果子的机会,以达到培养能力、发展个性的目的。

这节课你学到了什么呢?

1、做在书上作业:练习四第4、7题。

2、坐在作业本上作业:练习四第3题。

六年级数学圆锥体积的说课稿篇九

圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。以往几次,都是按老方法进行,一开始教师就准备了一个圆柱和一个圆锥,先比较它们的底面积相等,再分别量出它们的高也相等。进而由老师做实验,把圆锥装满水(或沙)往圆柱里倒,学生观察倒了几次正好把圆柱装满。接着推导圆锥的体积等于圆柱体积的三分之一,并重点强调求圆锥的体积一定要乘三分之一。一节课上下来非常轻松,非常顺利,时间也充足,作业效果也还不错。可是到了综合运用问题就出来了:忘记乘三分之一的,计算出错的,已知圆锥的体积和底面积,求高时,直接用体积除以底面积的,出的错误五花八门。

再上这节课时,我加强了以下几个点的教学,收到了较好的效果。

2、实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。学生获得的不仅是新活的数学知识,同时也获得了探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

4、列出算式后,不要按部就班的从左算到右,先观察算式的特点,寻求简单的计算方法,把口算和计算有机结合。

六年级数学圆锥体积的说课稿篇十

教学重点。

圆锥体体积计算公式的推导过程.。

教学难点。

正确理解圆锥体积计算公式.。

教学步骤。

一、铺垫孕伏。

1、提问:

(1)圆柱的体积公式是什么?

(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.。

2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)。

二、探究新知。

(一)指导探究圆锥体积的计算公式.。

1、教师谈话:

2、学生分组实验。

3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)12345。

4、引导学生发现:

板书:

5、推导圆锥的体积公式:用字母表示圆锥的体积公式.板书:

6、思考:要求圆锥的体积,必须知道哪两个条件?

7、反馈练习。

圆锥的底面积是5,高是3,体积是。

圆锥的底面积是10,高是9,体积是()。

(二)教学例1。

学生独立计算,集体订正.。

板书:

答:这个零件的体积是76立方厘米.。

2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)。

(1)已知圆锥的底面半径和高,求体积.。

(2)已知圆锥的底面直径和高,求体积.。

(3)已知圆锥的底面周长和高,求体积.。

4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

(三)教学例2。

1、例2在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米.每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)。

思考:这道题已知什么?求什么?

要求小麦的重量,必须先求什么?

要求小麦的体积应怎么办?

这道题应先求什么?再求什么?最后求什么?

2、学生独立解答,集体订正.。

六年级数学圆锥体积的说课稿篇十一

冀教版小学数学六年级下册第40~42页。

1、知识与技能:知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥的体积。

3、情感态度与价值观:积极参加数学活动,了解圆锥和圆柱之间的联系获得探索数学公式的活动经验。

了解圆锥的特点,探索并理解圆锥体积的计算公式会用公式计算圆锥的体积。

理解圆锥的高和圆锥体积公式中sh表示的实际意义。

1、等底等高的圆柱和圆锥型容器,一些沙子。

2、多媒体课件。

教学流程:

一、炫我两分钟。

主持学生指名叫学生回答下列问题。

1.圆柱有几个面?各有什么特点?

2.怎样计算圆柱的体积?

学生回答问题。

二、创设情境。

1.教师先出示一个圆柱形容器,提问:如果想知道这个容器的容积,怎么办?

2.出示问题情境。

最近老师家准备装修,准备了一堆沙子,可是老师遇到了一个难题,大家和我一起解决好吗?(出示沙堆图片),这堆沙子的底面半径是2米,高是1.5米,工人告诉我要用6立方米沙子,我不知道我准备的这些沙子够不够?怎样计算这堆沙子的体积呢?今天我们就一起来研究一下圆锥体积的计算方法。(板书课题)。

三、探究新知。

尝试小研究一(课前):了解圆锥的特点。

1.观察圆锥形的物体或图片,它们有哪些特点?

我的发现。

2.圆锥由1个()面和1个()面2个面组成,圆锥的底面是一个(),圆锥的侧面是一个()。

3.从圆锥顶点到底面圆心的距离是圆锥的(),用字母()表示。

六年级数学圆锥体积的说课稿篇十二

教学要求:

l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

3.培养学生初步的空间观念和发展学生的思维能力。

演示得出圆锥体积等于等底等高圆柱体积的的教具。

教学重点:掌握圆锥的特征。

教学难点:理解和掌握圆锥体积的计算公式。

教学过程:

一、复习引新。

2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第13页插图)。

这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)。

1.认识圆锥。

我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

2.根据教材第13页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。

4.学生练习。

5.教学圆锥高的测量方法。(见课本第13页有关内容)。

6.让学生根据上述方法测量自制圆锥的高。

7.实验操作、推导圆锥体积计算公式。

(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第14页上面的图)。

(3)实验操作,发现规律。

你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。

得出只有等底等高的圆锥才是圆柱体积的。

(5)启发引导推导出计算公式并用字母表示。

圆锥的体积=等底等高的圆柱的体积。

=底面积高。

用字母表示:v=sh。

8.教学例l。

(1)出示例1。

(2)审题后可让学生根据圆锥体积计算公式自己试做。

(3)批改讲评。注意些什么问题。

1.做练一练第2题。

指名一人板演,其余学生做在练习本上。集体订正,强调要乘以。

2.做练习三第2题。

学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。

3.做练习三第3题。

让学生做在课本上。小黑板出示、指名口答,老师板书。第(3)、(4)题让学生说说是怎样想的。

这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

练习三第4、5题。

六年级数学圆锥体积的说课稿篇十三

美国教育心理学家奥苏伯尔说:如果我不得不把教育心理学还原为一条原理的话,影响学习的最重要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。本节课是学生在认识了圆锥特征的基础上进行学习的。圆锥高的概念仍是本节课学习的一个重要知识储备,因而有必要在复习阶段利用直观教具通过切、摸等活动,帮助学生理解透彻。学生分组操作时,肯定能借助倒水(或沙子)的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。但是他们不易发现隐藏在实验中的等底等高的这一条件,这是实验过程中的一个盲点。为凸现这一条件,可借助体积关系不是3倍的实验器材,引导学生经历去粗取精、去伪存真、由表及里、层层逼近的过程,进行深度信息加工。

一、复习旧知,铺垫孕伏。

1.(电脑出示一个透明的圆锥)仔细观察,圆锥有哪些主要特征呢?

2.复习高的概念。

(1)什么叫圆锥的高?

(2)请一位同学上来指出用橡皮泥制作的圆锥体模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)。

评析:

圆锥特征的复习简明扼要。圆锥高的复习颇具新意,通过动手操作,从而使抽象的高具体化、形象化。

二、创设情境,引发猜想。

1.电脑呈现出动画情境(伴图配音)。

夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小白兔去动物超市购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)。

2.引导学生围绕问题展开讨论。

问题一:狐狸贪婪地问:小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)。

问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)。

问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)。

过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。

评析:

数学课程要关注学生的生活经验和已有的知识体验,教师在引入新知时,创设了一个有趣的童话情境,使枯燥的数学问题变为活生生的生活现实,让数学课堂充满生命活力。学生在判断公平与不公平中蕴涵了对等底等高圆柱和圆锥体积关系的猜想,他们在这一情境中敢猜想、要猜想、乐猜想,在猜想中交流,在交流中感悟,自然地提出了一个富有挑战性的数学问题,从而引发了学生进一步探究的强烈欲望。

三、自主探索,操作实验。

下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。

出示思考题:

(1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?

(2)你们的小组是怎样进行实验的?

1.小组实验。

六年级数学圆锥体积的说课稿篇十四

1、通过练习学生进一步理解、掌握圆锥的特征及体积计算公式。

2、能正确运用公式计算圆锥的体积,并解决一些简单的实际问题。

3、培养学生认真审题,仔细计算的习惯。

重点:进一步掌握圆锥的体积计算及应用。

难点:圆锥体积公式的灵活运用。

教学过程。

一、知识回顾。

1、前几节课我们认识了哪两个图形?你能说说有关它们的知识吗?

2、学生说,教师板书:

圆锥圆柱。

特征1个底面2个。

扇形侧面展开长方形。

体积v=1/3shv=sh。

二、提出本节课练习的内容和目标。

三、课堂练习。

(一)、基本训练。

1、填空课本1----2(独立完成后校对)。

已知:底面积、直径、周长与高求体积(小黑板出示)。

(二)、综合训练:

1、判断。

(1)圆锥的体积等于圆柱的1/3。

(2)长方体、正方体、圆柱和圆锥的体积公式都可用v=sh。

(3)一个圆柱形容器盛满汽油有2.5升,这个容器的容积就是2.5升。

(4)圆锥的体积是否4立方厘米,底面积是6平方厘米,那么高是4厘米。

2、应用:练习四第45题任选一题。

3、发展题:独立思考后校对。

四课堂小结:说说本节课的收获。

【本文地址:http://www.xuefen.com.cn/zuowen/17960247.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档