新人教版数学八年级教案(精选18篇)

格式:DOC 上传日期:2023-12-07 16:04:05
新人教版数学八年级教案(精选18篇)
时间:2023-12-07 16:04:05     小编:灵魂曲

教案是教师在教学过程中为指导学生完成学习任务而拟定的一种明确的教学计划和组织安排。教案应该注重对学生的评价和反馈,及时调整教学策略,提高教学质量。以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。

新人教版数学八年级教案篇一

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。

[教学重、难点]。

1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。

[教学过程]。

活动1:利用数的奇偶性解决一些简单的实际问题。

让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。

试一试:

本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。

活动2:探索奇数、偶数相加的规律。

偶数+偶数=偶数。

奇数+奇数=偶数。

偶数+奇数=奇数。

[板书设计]。

数的奇偶性。

例子:结论:

12+34=48偶数+偶数=偶数。

11+37=48奇数+奇数=偶数。

12+11=23奇数+偶数=奇数。

新人教版数学八年级教案篇二

一、教学目标:

1.理解并掌握矩形的判定方法.

二、重点、难点。

1.重点:矩形的判定.

2.难点:矩形的判定及性质的综合应用.

三、例题的意图分析。

本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.

四、课堂引入。

1.什么叫做平行四边形?什么叫做矩形?

2.矩形有哪些性质?

3.矩形与平行四边形有什么共同之处?有什么不同之处?

通过讨论得到矩形的判定方法.

矩形判定方法1:对角钱相等的平行四边形是矩形.

矩形判定方法2:有三个角是直角的四边形是矩形.

(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)。

新人教版数学八年级教案篇三

1.积累“磬、攒、鳌头、琉璃、藻井、蟠龙、中轴线、金銮殿”等词语,掌握它们的读音和词义。

2.概述祖国传统的建筑艺术及故宫建筑艺术的独特风格和伟大成就。

3.简述方位词在按照空间顺序说明事物时的重要作用。

过程与方法目标。

1.能够整体把握文意,理清文章的说明顺序,学会按照空间顺序说明复杂事物的写作思路。

2.灵活运用本文重点突出,有详有略地说明事物的写法,学以致用,初步学会写说明文。

情感目标。

通过领略故宫博物院的宏伟艺术魅力,增强学生的民族自豪感,激发他们进一步发扬民族的创造精神,为把我们的祖国建设得更加美好而努力学习。

教学重点。

1.理清本文的说明顺序,探究作者的说明技巧。

2.以太和殿为例,体会本文重点突出、详略得当的写作特色。

教学难点揣摩语言,理解太和殿里作者描绘多姿多彩的龙的用意。

教法选择讨论法和点拨法相结合延伸拓展法图示法。

课前准备故宫图片。

教学过程设计。

教师组织与学生学习任务设计相关预设设计意图反思与改进。

教学过程。

一、导入:显示“故宫”全景图像。

故宫集中体现了中国传统的建筑艺术和独特的民族风格,是中国数千年宫殿建筑艺术的总结性杰作,让我们随着作者去参观故宫,去感受故宫的宏大壮丽和精美绝伦吧!

二、检查预习。

1.学生展示课前收集的有关故宫的图片和资料,由各位同学朗读或用自己的话介绍。学生提供的资料可能包括故宫的修建经过、规模、作用、地位和与故宫有关的重大史实,介绍这些资料,有助于学生熟悉说明对象,为理解课文作准备。

2.请游览过故宫的同学谈谈见闻和感受,也可展示拍摄的照片,激发学生的自豪感和求知欲。

3(1)辨明字音。

磬()攒()鳌()头琉()璃藻()井蟠()龙金銮()殿。

(2)辨析字形卸--御拢--珑湛--斟缀--辍。

谐--楷赐--踢琐--锁蟠--藩。

(2)卸(推卸)--御(抵御)拢(合拢)--珑(玲珑)湛(湛蓝)--斟(斟酌)缀(点缀)--辍(辍学)。

谐(和谐)--楷(楷体)赐(赐予)--踢(踢球)琐(琐碎)--锁(枷锁)蟠(蟠龙)--藩(藩篱)。

3)玲珑:精巧细致。

湛蓝:深蓝。布局:全面安排。肃穆:严肃而恭敬。幽雅:幽静而雅致。悠扬:形容声音时高时低,和谐动听。井然有序:形容整齐的样子。

三、朗读课文,整体感知文意。

1.教师朗读课文,学生听读,初步感知文意。

2.学生大声读课文两遍,给每个自然段加上序号,注意方位词语的运用。

3.教师要求学生画出参观故宫的路线图,同桌之间讨论、交流。

4.选三位同学口述参观故宫的路线,其余同学补充。

四、理清文章的说明顺序。

1.明确空间顺序。

(1)师生一同回顾关于说明文的说明顺序的知识。

常见的说明顺序有时间顺序、空间顺序、逻辑顺序。

说明的时间顺序和记叙的时间顺序相似。说明事物的发展变化宜采用时间顺序。

空间顺序要特别注意弄清空间的位置,注意事物的表里、大小、上下、前后、左右、东南西北等的位置和方向。写建筑物的结构,离开空间顺序难以让读者看明白。

逻辑顺序,常以推理过程来表现。说明事理用逻辑顺序便于体现事理的内部联系。

(2)提问:本文采用了哪一种说明顺序?

明确:本文是按照空间顺序说明介绍故宫的,大体上按照游览参观路线沿中轴线由南向北逐次介绍的。

教师总结:本文在安排说明顺序时着眼于纵贯紫禁城的中轴线,由南到北,逐次介绍建筑物。作者沿着参观路线,以天安门为起点,穿端门,进午门,过汉白玉石桥,来到前三殿。依次介绍了太和殿、中和殿、保和殿,并略提东西两侧的文华殿、武英殿。三大殿和文华殿、武英殿合称为“前朝”。然后继续向北,简单介绍了位于中轴线上的“内廷”建筑:乾清宫、交泰殿、坤宁宫以及御花园。最后出顺贞门到神武门而离开故宫,这样写井然有序,条理分明。

2.理清文章的结构层次,理解课文总说、分说相结合的特点。

五、重点分析课文5~8段,体会课文重点突出,详略得当的写作特色。

1.学生齐读5~8段。

2.学生精读5~8段,思考:

(1)作者介绍了太和殿哪些方面的情况?采用了什么样的说明顺序?

(2)作者为什么把太和殿作为解说的重点?

(3)揣摩文中写“龙”的句子,探究作者这样写的原因。

同桌之间交流,选六位同学回答。

明确:(1)对太和殿,先写使三大殿成为统一整体的台基--台基修建得很高(三层台基高七米),并且设施奇巧(排水管道是一千多个圆雕龙头),这就暗示和渲染了三大殿地位之尊崇,再写太和殿外观气势雄伟(是故宫最大的殿堂),色彩壮丽(金黄色的琉璃瓦重檐屋顶,装饰着青蓝点金和贴金彩画的斗拱、额枋、梁柱,红色大圆柱,金琐窗,朱漆门),内部装饰的庄严富丽(金銮宝座、雕龙屏、金柱、藻井、额枋等上面都装饰着多姿多态的龙);最后从它的位置和功用上(皇帝举行重大典礼的地方)说明它在设计方面的象征意义--过去封建皇帝凭借雄伟的建筑显示威严。使用的说明顺序是由外到内、总说和分说相结合。

(2)因为太和殿是“前朝”以至整个故宫的重点建筑物,是封建皇帝行使统治权力和举行重大典礼的场所,它的地位非常重要;另外它在整个建筑群中最具代表性。所以文章把太和殿作为介绍的重点。

(3)文中写龙的句子有:“仰望殿顶,中央藻井有一条巨大的雕金蟠龙。从龙口里垂下一颗银白色大圆珠,周围环绕着六颗小珠,龙头、宝珠正对着下面的宝座。梁枋间彩画绚丽,有双龙戏珠、单龙翔舞,有行龙、升龙、降龙,多态多姿,龙身周围还衬托着流云火焰。”

写龙,大概是基于这样的考虑:一是说明对象的特征决定的,故宫曾是封建统治的中心,它的建筑是为封建统治者服务的;二是龙有象征意义,历朝历代的皇帝把自己神化为受命于天的“真龙天子”,把龙作为自己的化身,龙是皇权的象征。

教师总结:说明文在以空间顺序说明事物时,要抓住重点,详略分明,这样才能突出说明事物的特征。同学们在今后的写作实践中,要学习作者这种重点突出,有详有略的写作特色。平均使用笔力,只能分散读者的注意力。

六、说话训练。

要求学生采用与本文不同的顺序口头介绍故宫。

教师提示:可以试着以神武门为出发点,沿中轴线前行到午门,介绍沿途的建筑;可以以三大殿为中心分别介绍三大殿前后的建筑;可以以保和殿北面的长方形小广场为中心分别介绍广场以南的建筑--前朝和广场以北乾清门以内的建筑--内廷;可以按不同的功用将故宫里的建筑分成几组逐次介绍。

选四位同学口头介绍,其余同学评价。

七、课堂小结。

故宫博物院是一个庞大的建筑群,值得介绍的东西很多很多(九千多间房屋,九个多万件藏品,九百多万件档案材料),如果全部说明,难免太多太杂,中心不突出。作者抓住中轴线,采用空间说明顺序,运用总--分--总的写法,突出重点,详略分明,使读者对路线、方位、各组建筑物的特点与联系,清晰明了,使文章条理十分清楚。说明对象“故宫博物院”给我们留下了清晰而深刻的印象。

八、布置作业。

阅读下面这段话,指出其说明顺序,并画出说明这种顺序的有关词语。

陵墓的入口位于最南端,标志是一座三间三楼的石牌坊。在明间的檐下,悬挂着孙中山先生手书“博爱”横匾一方。石坊北就是通往陵门的缓长坡道,汽车可循此直达陵门之前。墓道北端有一倾斜台地,东、西两侧各建面阔三间的硬山卷棚小屋一片,为过去守陵卫士的驻所。正面建陵门,高十五米,宽二十四米,深八米,蓝玻璃单檐歇山顶。屋身用花岗石砌成无梁殿式样,正中拱门楣上镌刻着中山先生手书“天下为公”几个金光大字。

(提示:采用空间顺序介绍陵墓,由南向北,依次介绍了石牌坊、墓道、卷棚小屋、陵门)。

导学预设1:

让学生能够自主完成学习任务,正确朗读字音,语句的节奏,作家作品介绍。

评价预设1:

学生分组分层量化评价,按1-6号分别1-6分的办法,同时对作答的学生做口头评价。抢答的形式更具竞争性。

导学预设2:

通过朗读,收集课文信息进行勾画,填写故宫布局图。

评价预设2:

评价预设3:

通过对学生的学习状态和成果的观察,发现评价点,针对特定对象作出评价。

导学预设4:

学生根据教师出示的问题。

评价预设3:

通过对学生的学习状态和成果的观察,发现评价点,针对特定对象作出评价。

导学预设5:

教师要对学生小组回答内容作总结,如本小组在学习中表现的是否积极,每个人是否按要求完成任务了,谁表现的突出,谁表现的不好,得分、失分原因,和其它小组比较还有哪些不足,应该怎样改进等等。

导学预设6:

分析文章语言,让学生根据理解回答,教师对学生回答情况做必要的总结,表扬优秀小组。

导学预设7:。

学生提出质疑,发挥学生的分析理解能力,学生交流后教师总结。

评价预设4:

通过对学生的学习状态和成果的观察,发现评价点,针对特定对象作出评价。

设计意图1:

明确学习任务,让学生养成学会预习的良好习惯。

设计意图2:

训练学生阅读和信息提炼能力能力。

设计意图3:

培养学生语言概括能力,理清文章的说明顺序。

设计意图4:

1.让学生速度课文,掌握信息,准确把握人物特点。

设计意图5:

利用小组评价解决问题,通过评价引导小组派较低层次的同学回答,从而培养小组关注弱势,形成得分策略。同时也为较差学生建立自信和使他们感受成功快乐。

运用小组合作的形式,以激励学生并引发互相之间的竞争意识,在潜移默化中培养学生良好的学习习惯。

设计意图6:

虽然大的方向明确了,但细节上学生思路还不是很明确,所以提示思考方向还是非常必要的,有利于打开他们的思路,也可以平衡各组的成果,增强竞争力。

反思与改进1:

让学生到黑板板书补充内容,更能能调动学习积极性。

反思与改进2:

学生做导游,提示要注意顺序,说明地位和作用,让学生查阅资料。

反思与改进3:

通过对课堂效果观察,口头即时激励性评价优于隐性量化评价,灵活量化评价更具调动性,分层评价应多引导,以内化为小组关注每个成员的主动行为,因此总结性评价就显得尤为重要。

反思与改进4:

学生的自主意识还没有充分建立,所以在完成这个任务中,很多同学缺乏自信,更倾向于与同伴交流。所以培养自主意识还需要引起重视,独立思考、完成任务必须做到独立。口头激励的运用,效果明显,对学生树立自信有一定作用,需要教师有目的的去做这项工作。

反思与改进5:

有意识的随时发现评价点,并有目的的实施相应的评价,无疑是对学生良好学习习惯培养的很好的方式,需要教师重视并加以实施。

板书设计:

故宫博物院。

(空间顺序)。

课后回顾及反馈:

1,突出说明文教学,让学生学会判断说明顺序及说明方法。

2,突出本文详略得当的写作特点。

作业批改记录:

学生作业上交及时,大部分学生作业工整,出现问题采取集中订正和个别辅导的方法。

侯晓旭。

将本文的word文档下载到电脑,方便收藏和打印。

新人教版数学八年级教案篇四

《图形的位似》这节课内容抽象而且学生以前没接触过,对学生来说接受起来难度很大,因此在教学的过程中,首先由手影这种学生较熟悉的形式让学生感受这种位置关系,然后通过动手操作的形式进一步探究位似图形的相关性质。在教学的过程中,为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识。探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新。

但是,这节课也存在很多不足之处:

1、学生动手操作、探究位似图形的过程都很顺利,但是很多小组在总结位似图形的性质时出项了语言表达的困难。

2、学生对于“每组对应点”认识还是不够,导致在判断位似图形时出现问题。

3、评价形式过于单调。一直是教师“很好”“太棒了”之类的评价,不能更好的调动学生的积极性。

4、小组合作时个别学生没有真正动起来。

5、没有让学生自己感受当位似图形不同时位似中心在位似图形的不同位置这一动态特点。

6、学生证明位似图形时证明过程还是不够严谨。

7、缺少了位似图形在生活中的应用。

改进措施:

1、通过小组合作交流的方式不断提高学生语言表达能力和逻辑思维能力。

2、强调“每组对应点”就是“所有的对应点”,在图上任意取几对对应点,通过连线,也经过位似中心,通过这样的动手实践,让学生印象更深刻。

3、通过各种途径评价学生,让自己的评价活泼多样。譬如:鼓励性眼神、肢体语言、同学们的掌声、定量评价、奖惩措施等等。

4、做好小组长的培训工作,让他们在小组中起到领导和协调的作用,抓住整个小组的节奏,让每个学生都参与进来,同时,多举行小组捆绑评价的活动,让后进的同学为了不拖后腿而不得不参与进来。

5、加强几何画板的学习和利用。信息技术与数学教学有机整合,有利于学生主动参与、乐于探究、勤于动手、动脑,体现了开放式的教育模式,开阔了学生的视野,推动了数学课堂现代化的发展。在这节课中,如果添加几何画板,那么位似中心和位似图形的五种位置关系就很形象的展现在我们面前。

6、加强学生几何题证明的条理性、严谨性的训练。培养学生的逻辑思维能力和语言的组织能力。

7、让学生在课下自己寻找我们生活中位似图形的影子,将数学和生活紧密联系起来。

在今后的教学中,我将牢记这些不足之处,不断改进,不断修炼自己,让自己的教学更进步,更成熟。

今天有关今天小编就为大家精心整理了一篇有关英语口语的相关内容,以便帮助大家更好的复习。

新人教版数学八年级教案篇五

1.1知识与技能:

使学生学会计算长方体和正方体的体积,并能利用公式正确进行计算。

1.2过程与方法:

在公式的推导过程中培养学生的观察能力、空间想象能力、提出问题的意识及解决实际问题的能力。

1.3情感态度与价值观:

使学生体会数学来源于生活,且服务于生活,产生热爱数学的思想感情。

教学重难点。

2.1教学重点:

2掌握长、正方体体积的计算方法,解决实际问题。

2.2教学难点:

长、正方体体积公式的推导过程。

教学工具。

教学过程。

一、复习引入。

1、下列长方体的长、宽、高各是多少:

长:8厘米长:6分米长:8厘米长:12米。

宽:4厘米宽:2.5分米宽:4厘米宽:10米。

高:5厘米高:10分米高:4厘米高:1.5米。

2、下列图形是用1立方厘米的正方体搭成的。它们的体积各是多少立方厘米?

3、怎样知道这个长方体的体积是多少呢?

今天我们就一起来学习长方体和正方体的体积。(板书:长方体和正方体的体积)。

二、新知探究。

1、长方体的体积。

(1)活动一:

师:郑老师在每个4人小组都放了12个1平方厘米的小正方体和一张学习单,下面我们将以四人小组的形式进行探究。首先请看活动要求(课件出示):

a、四人小组合作用12个小正方体摆形状不同的长方体;

b、每摆出一种请在学习单上做好记录,然后再摆下一种;

c、摆完后想想你发现了什么,在四人小组内交流;

d、每组选出一位代表进行汇报。

生小组合作动手操作。

反馈,学生汇报。

生每汇报出一种情况,师在黑板上的表格中板书:

师:观察表格,你发现了什么?

引导学生得出:只要用每行的个数乘以行数,得到一层所含的体积单位数,再乘以层数,就能得到这个长方体所含的体积单位数。

板书:体积=每行个数×行数×层数。

师:刚才同学们用12个小正方体摆出的长方体体积都是12平方厘米的,郑老师刚才也摆了两个,不过体积比你们大多了,但是要看懂郑老师的长方体必须发挥一下你们的空间想象能力。(课件出示)。

你知道这两个长方体的体积吗?你是怎么知道的?(生说,师填表)。

(2)活动二:

师:四人小组合作,你们能摆出一个体积更大的长方体吗?

预设:长5厘米,宽5厘米,高4厘米。

师:你发现了什么?每排个数、排数、层数相当于长方体的什么?

生:长宽高,因为每一个小正方体的棱长是1厘米,所以,每行摆几个小正方体,长正好是几厘米;摆几行,宽正好是几厘米;摆几层,高也正好是几厘米。

2、下面的长方体,看它包含有多少个体积单位?并指出它的长、宽、高各是多少。

(2)观察上面个部分之间的关系,可以得出:

第一个:5=5×1×1。

第二个:15=5×3×1。

第三个:12=3×2×2。

通过上面的关系式,可以得出:长方体的体积=长×宽×高。

如果用字母v表示长方体的体积,用a、b、c分别表示长方体的长、宽、高,那么长方体的体积计算公式可以写成:v=a×b×c。

根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?

3、正方体的体积。

因为正方体的性质,所有的棱长都相等,所以,正方体的体积=棱长×棱长×棱长。

如果用字母v表示正方体的体积,用a表示正方体的棱长,那么正方体的体积计算公式可以写成:v=a·a·a。

a·a·a也可以写作a?,读作“a的立方”,表示3个a相乘。

正方体的体积计算公式一般写成v=a3。

三、巩固提升。

1、计算下面图形的体积。

v=abh=7×3×3=63(cm?)。

v=a3=4×4×4=64(cm)。

2、求下列长方体的体积。

8×4×5=160(cm3)6×2.5×10=15(dm3)8×4×4=128(cm3)1.5×10×12=180(m3)。

解:v=abh。

=2.9×1×14.7。

=42.63(m?)。

答:这块石碑的体积是42.63立方米。

4、判断正误并说明理由。

(1)0.23=0.2×0.2×0.2。(√)。

(2)5x3=10x。(×)。

(3)一个正方体棱长4分米,它的体积是:43=12(立方分米)。(×)。

(4)一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米。(×)。

5、一个长方体的体积是48立方分米,长8分米、宽4分米,它的高是多少分米?

48÷8÷4=1.5(分米)。

答:它的高是1.5分米。

10×8×6=480(立方厘米)。

答:它的体积是480立方厘米。

(8×6)+(8×7+6×7)×2=244(平方分米)。

8×6×7=336(立方分米)。

答:制作这个鱼缸共需玻璃244平方分米。这个鱼缸的体积是336立方分米。

课后小结。

这节课我们学习了什么?

我们学习了长方体和正方体体积的计算公式。

长方体的体积=长×宽×高,v=a×b×h。

正方体的体积=棱长×棱长×棱长,v=a×a×a=a3。

板书。

长方体和正方体的体积。

长方体的体积=长×宽×高。

v=a×b×h。

正方体的体积=棱长×棱长×棱长。

v=a×a×a=a3。

新人教版数学八年级教案篇六

学习目标:

1、巩固对整式乘法法则的理解,会用法则进行计算。

2、在学生大量实践的基础上,是学生认识单项式乘以单项式法则是整式乘法的关键,“多乘多”、“单乘多”都转化为单项式相乘。

3、在通过学生练习中,体会运算律是运算的通性,感受转化思想。。

4、进一步培养学生有条理的思考和表达能力。

学习重点:整式乘法的法则运用。

学习难点:整式乘法中学生思维能力的培养。

学习过程。

1.学习准备。

1.你能写出整式乘法的法则吗?试一试。

2.谈谈在整式乘法的学习过程中,你有什么收获?有什么不足?

利用课下时间和同学交流一下,能解决吗?

2.合作探究。

1.练习。

(1)(-5a2b)(2a2bc)(2)(-ax)(-bx3)。

(3)(2x104)(6x105)(4)(x)•2x3•(-3x2)。

2、结合上面练习,谈谈在单项式乘单项式运算中怎样进行计算?要注意些什么?

3、练习。

(1)(-3x)(4x2-x+1)(2)(-xy)(2x-5y-1)。

(3)(2x+3)(4x+1)(4)(x+1)(x2-2x+3)。

4、结合上面练习,体会单项式乘多项式、多项式乘多项式运算中,都是以单项式乘单项式为基础、运用乘法分配律进行计算。

3.自我测试。

1、3x2•(-4xy)•(-xy)=。

2、若(mx3)•(2xn)=-8x18,则m=。

3、一个长方体的长、宽、高分别为3x-4,2x和x,它的体积是。

4、若m2-2m=1,则2m2-4m+的值是。

5、解方程:1-(2x+1)(x-2)=x2-(3x-1)(x+3)-11。

6、当(x2+mx+8)(x2-3x+n)展开后,如果不含x2和x3的项,求(-m)3n的值.

7、计算:(y+1)(y2-y+1)+y(1+y)(1-y),其中y=-.

8、(北京)已知x2-5x=14,(x-1)(2x-1)-(x+1)2+1的值。

9、某公园要建如图所示的形状的草坪(阴影部分),求铺设草坪多少m2?若每平。

方米草坪260元,则为修建该草坪需投资多少元?

新人教版数学八年级教案篇七

教学目标:

1.认识“左、右”的位置关系,体会其相对性。

2.能够初步运用左右描述物体的位置,解决实际问题。

3.通过生动有趣的数学活动,使学生体会到学习数学的乐趣。

教学重点:

认识“左、右”的位置关系,体会其相对性。

教学难点:

运用左右描述物体的位置,解决实际问题。

教学过程:

一、创设情境,导入新课。

1.同学对你的同桌说一说,哪只是右手,哪只是左手。

2.我们要来认识“左右”。(板书课题:左右)。

二、联系自身,体验左右。

1.摸一摸。

(2)哪只是左脚?哪只是右脚?

(4)还有左耳和右耳。

(5)还有左眼和右眼。

(6)还有左肩和右肩。……。

(7)生每说一种,教师都引导全体学生用手摸一摸。

三、实际操作,探索新知。

1.摆一摆。

游戏做完了,现在我们要开始摆文具了。同桌的同学互相合作,听清楚老师说的话。

请你在桌上放一块橡皮;。

在橡皮的左边摆一枝铅笔;。

在橡皮的右边摆一个铅笔盒;。

在铅笔盒的左边,橡皮的右边摆一把尺子;。

在铅笔盒的右边摆一把小刀。

生摆好后,师用出示正确的排列顺序,生检查自己的排列。

2.数一数。

从左数橡皮是第几个?从右数橡皮是第几个?

从左数橡皮是第二个,从右数橡皮是第四个。

为什么橡皮一会儿排第二?一会儿又排第四?

什么东西反了?能讲得更清楚一些吗?

(数的顺序反了,开始是从左数,后来是从右数。)。

师小结:也就是说,同样一个物体,从左数和从右数,结果就可能不一样。

3.爬楼梯。上楼梯时我们要靠哪边走?

下楼梯时我们又要靠哪边走?

请你们两位示范一下,把教室中间过道当楼梯,一个从前往后走是下楼梯,另一个从后往前走是上楼梯。

(生观察时师提醒:下楼梯的同学是靠哪边走?)。

(生还是有的说左边,有的说右边。)。

师:教学楼中间有一个楼梯,同学们想不想去走一走?

(全体学生进行室外活动:走上楼梯,又走下楼梯。下楼梯时,师又提醒:下楼梯时你靠哪边走?)。

回到教室。

现在同学们明白下楼梯时靠哪边走吗?

为什么上、下楼梯都靠右边走?

(如果不这样走,上、下楼梯的人就会相撞。)。

对!特别是要做课间操时楼梯比较拥挤,如果相撞就会发生危险。

4.练一练。

(出示课本第61页第3题图)他们都是靠右走的吗?

五、运用新知,解决问题。

1.转弯判断。同学们想不想去公园玩?

那我们就坐这辆大客车去吧!(师拿出玩具客车。)。

准备好,要出发了,请同学们判断客车是往左转还是往右转?

(师在“十字路口图”上演示转弯。)。

小组讨论一下,客车到底是往哪边转。

(生组内讨论交流意见。)。

师生共同小结:站的方向不同,左右也不同。在日常生活中,汽车转弯的方向常常以司机为准。

2.小游戏:我是小司机。

同桌的同学互相配合,左边的同学说命令,右边的同学用玩具小汽车在“十字路口图”上转弯,然后交换角色。

六、课堂总结。

通过这节课,你有哪些收获?你印象最深的是什么?你有什么感想吗?

新人教版数学八年级教案篇八

1.重点:勾股定理逆定理的应用.

2.难点:勾股定理逆定理的证明.

3.疑点及分析和解决方法:勾股定理逆定理的证明方法,又是学生前所未见的,是运用代数计算方法证明几何问题,是解析几何中研究问题的方法,以后会逐步见到,这一点要让学生有所认识.

新人教版数学八年级教案篇九

1、理解分式的基本性质。

2、会用分式的基本性质将分式变形。

二、重点、难点。

1、重点:理解分式的基本性质。

2、难点:灵活应用分式的基本性质将分式变形。

3、认知难点与突破方法。

教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。

三、例、习题的意图分析。

1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.

四、课堂引入。

1、请同学们考虑:与相等吗?与相等吗?为什么?

2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?

3、提问分数的基本性质,让学生类比猜想出分式的基本性质。

五、例题讲解。

p7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。

p11例3.约分:

[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。

p11例4.通分:

[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号。

[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变。

解:=,=,=,=,=。

六、随堂练习。

1、填空:

(1)=(2)=。

(3)=(4)=。

2、约分:

(1)(2)(3)(4)。

3、通分:

(1)和(2)和。

(3)和(4)和。

4、不改变分式的值,使下列分式的分子和分母都不含“-”号。

(1)(2)(3)(4)。

七、课后练习。

1、判断下列约分是否正确:

(1)=(2)=。

(3)=0。

2、通分:

(1)和(2)和。

3、不改变分式的值,使分子第一项系数为正,分式本身不带“-”号。

(1)(2)。

八、答案:

六、1.(1)2x(2)4b(3)bn+n(4)x+y。

2、(1)(2)(3)(4)-2(x-y)2。

3、通分:

(1)=,=。

(2)=,=。

(3)==。

(4)==。

4、(1)(2)(3)(4)。

新人教版数学八年级教案篇十

教材简析:

《轴对称图形》是六年级《数学》中继“认识圆的特征”,“计算圆的周长和面积”之后的一个学习内容。在本章教材的编排顺序中起着承上启下的作用。把它放在圆的后面,一方面可以更好地说明轴对称图形的特点,另一方面可以对所学的各种平面图形中轴对称的情况作全面的.了解。从而更好地发展学生的空间观念。

教学重点:掌握轴对称图形的概念。

教学难点:能找出轴对称图形的对称轴。

学生分析:学生已学过简单平面图形,对平面图形已有一定的认识,且初步了解研究平面图形的方式方法。高年级的学生具有好胜,好强的特点,班级中已初步形成合作交流,敢于探索与实践的良好学风,学生间相互讨论的气氛较浓。

设计理念:根据基础教育课程改革的具体目标以及鼓励学生在具体、直观操作中发现知识是《数学课程标准》的一个特点。改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放式教学,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成、发展与变化。

教学目标:

1、通过教学向学生渗透事物的特殊性存在于普遍性之中,体会对称美。

2、通过操作活动培养学生观察能力,概括能力。

3、使学生直观的认识轴对称图形,在操作中理解掌握轴对称的概念,并能找出轴对称图形的对称轴。

教学流程:

一、创设问题情境,导入课题。

1、(屏幕出示相关图片)观察下面的图形,(折一折,看一看)这些图形有什么特点?

2、指出:像前三个这样的图形,我们把它叫轴对称图形。

3、引入课题:轴对称图形。

二、学生通过直观感知,操作确认等实践活动,加强对图形的认知和感受。

1、揭示轴对称图形的概念。

思考:现在你能用什么方法来检验一下这几个图形是轴对称图形。

a、学生试说轴对称图形的概念。

b、教师板书:轴对称图形的概念(完全重合重点强调)。

c、让学生谈谈你是如何理解轴对称图形的。(以小组为单位,用手中图形举例说明)。

d、教师结合图形说明对称轴的概念。

2、完成做一做。(让学生来汇报,同时电脑演示。)。

3、我们已经学过不少平面图形,现在你动手折一折、看一看哪些图形是轴对称图形,对称轴各有几条,请你画出来。(汇报从杂乱----有规律)。

4、完成做一做1(口答,屏幕演示)。

5、完成做一做2(口答,屏幕演示)。

教师小结:这节课我们学习了轴对称图形,知道如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。并且知道折痕所在的这条直线叫做对称轴,我们还通过动手操作知道我们学过的平面图形中哪些是轴对称图形以及各有几条对称轴。

6、质疑。

巩固练习:1、数书p1021(口答)(屏幕)。

2、数书p1024(口答)(屏幕)。

3、画出每组图形的对称轴。

4、在自然界和日常生活中具有轴对称性质的事物有很多,你能不能举例说明?

5、欣赏具有轴对称性质的事物。

6、判断:

所有的平行四边形都不是轴对称图形()。

所有的平行四边形都是对称图形()。

三、小结:通过这节课的学习你有哪些收获?

新人教版数学八年级教案篇十一

一、指导思想与理论依据:

语文教学以培养学生[此文转于网]的语文素养为核心任务。语文素养不仅表现为较强的识字和写字能力、阅读与写作能力、口语交际能力,而且表现为综合运用语文素养不断更新知识的能力。语文教学提倡学生开展独立阅读、自主阅读、研究性阅读、创造性阅读,要引导学生走进文本与文本对话,要尊重学生的个人感受和独特体验,鼓励学生发表富有个性的见解,这既是提高学生语文能力的需要,也是发展学生个性品质、培养学生[此文转于网]创新能力的需要。

二、教学背景分析:

这一课是我从教以来上的第一节语文课,之前我几乎没接触过语文教学,经过听课以及和学生近两周的接触,我对五(7)学生的整体学习水平有些了解。这些学生是在吉老师的教导下成长起来的,相对普通五年级学生,他们有更强的自学能力、语言表达能力和逻辑思维能力。我对语文教学极其生疏,不懂该怎样钻研教材;不懂该怎样用教材去教学生;更不懂该怎样合理设计教学环节。吉老师的常态课都上得的出神入化、游刃有余,学生的思维活跃、语言细腻精致,不是经过长时间的积累和实践是很难达到那样的水平的,这就更使我紧张。我只是听了吉老师几节课,就斗胆教吉老师的学生,心里揣揣不安,但不管多困难,总要迈出第一步,哪怕失败,也是宝贵的。

(一)教学内容分析:

《松鼠》是一篇科学小品文,出自法国博物家布丰之笔,文章用词凝练,用比喻、拟人等方法对松鼠的吃食、外形、居住、行动、搭窝、生育等几个方面进行了精当的介绍,字里行间流露着作者对松鼠的喜爱。教学中要着重引导学生通过朗读和抓住文章重点词句,分析得出作者是从哪些方面写松鼠的,体会作者所表达的真挚情感。

(二)学生情况分析:

学生思维活跃,有一定量的语言积累,比较善于对课文文本进行分析,有能力很好的了解文章主旨和作者写作意图,体会作者情感。

(三)教学方式与教学手段说明:

尝试着通过引导学生朗读,分析文中的重点句子和段落,使学生了解文章的写作特点;通过分析课文,激发学生对小动物的喜爱之情;通过背诵文章中自己喜欢的自然段,做一些语言积累。

(四)教具:课件。

三、本课教学目标设计:

(一)三维目标:

1、知识与技能:

(1)朗读课文,了解作者是哪几个方面写松鼠的。

(2)背诵自己喜欢的自然段。

2、过程与方法:通过朗读和对文章重点词句进行分析,了解怎样运用文字表达情感。

3、情感态度与价值观:体会作者蕴含在文字中的对松鼠的喜爱之情。

(二)教学重点:

了解本文的写作方法;体会作者对松鼠的喜爱之情。

(三)教学难点:

了解本文的写作方法;体会作者对松鼠的喜爱之情。

四、教学过程设计:

学生活动教师活动设计意图。

第一课时。

生:喜欢。

生:不喜欢。

学生活动。

学生朗读并思考。

生:外形居住生活习性。

生:漂亮、乖巧、驯良,讨人喜欢。

生解释“漂亮”。

生解释:“乖巧”。

生解释“驯良”。

生读第一段并画出描写松鼠漂亮的句子。

生自由读自己画的描写松鼠漂亮的句子和重点词。

生齐读描写松鼠漂亮的句子并分析。

生用自己的话理解矫健、轻快、敏捷、机警等词语。

生:生读“衬上一条”到“歇凉。”

生试着用自己的话解释。

生:原文更具体、形象。

生:松鼠吃什么东西。

生:读“它们常常直竖着身子”--”那句。

生:用来形容人。

生:布丰喜欢松鼠。

生:布丰把松鼠当作人看待。

生自由读。分析课文中的词句是怎样表达作者对小松鼠的喜爱的。

生:居住渡溪储食搭窝生育。

生:建筑师。

生用课文中的话说说自己喜欢松鼠的理由。

师:你们喜欢小松鼠吗?

师:我也喜欢小松鼠。

师:相信你学习了。

新人教版数学八年级教案篇十二

1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.

2、会求一组数据的极差.

1、重点:会求一组数据的极差.

2、难点:本节课内容较容易接受,不存在难点、

从表中你能得到哪些信息?

比较两段时间气温的高低,求平均气温是一种常用的方法、

这是不是说,两个时段的气温情况没有什么差异呢?

根据两段时间的气温情况可绘成的折线图、

观察一下,它们有区别吗?说说你观察得到的结果、

本节课在教材中没有相应的例题,教材p152习题分析。

问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大、问题2涉及前一个学期统计知识首先应回忆复习已学知识、问题3答案并不唯一,合理即可。

新人教版数学八年级教案篇十三

1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.

2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。

3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.

将实际问题中的等量 关系用分式方程表示

找实际问题中的等量关系

有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)

如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。

根据题意,可得方程___________________

从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。

这 一问题中有哪些等量关系?

如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。

根据题意,可得方程_ _____________________。

学生分组探讨、交流,列出方程.

上面所得到的方程有什么共同特点?

分母中含有未知数的方程叫做分式方程

分式方程与整式方程有什么区别?

(3)根据分式方程 编一道应用题,然后同组交流,看谁编得好

本节课你学到了哪些知识?有什么感想?

新人教版数学八年级教案篇十四

【学习目标】1.知识与技能:

(1)理解有用功、额外功和总功的含义;。

(2)理解机械效率的定义及物理意义,会进行相关的计算;(3)知道提高机械效率的意义和主要方法。

2.过程与方法:

经过举例理解有用功、额外功、总功及机械效率;通过讨论,了解如何提高机械效率。

3.情感、态度与价值观:

【导入新课】使用机械,有的可以省力,有的可以节省距离,那么我们能不能使用机械而节省功呢?大家能不能设计一个实验来证明自己的猜测。?关注生产、生活中各种机械的机械效率,具有用机械效率来评价机械的意识。

【指导自学】。

自学指导一:

请同学们认真看课本116---117页(时间3分钟).

【检测交流】。

检测一:利用一个动滑轮把重为400n的货物匀速提高2m,所用的拉力f是250n,求总功、有用功、额外功和动滑轮的机械效率。

【小结及作业】。

堂清和本节导与练。

新人教版数学八年级教案篇十五

本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:

学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点p,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

新人教版数学八年级教案篇十六

三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

多边形的内角:多边形相邻两边组成的角叫做它的内角。

多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

三、公式与性质。

三角形的内角和:三角形的内角和为180°。

三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

多边形内角和公式:n边形的内角和等于(n-2)·180°。

多边形的角和:多边形的外角和为360°。

多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。n(n-3)。

2条对角线。(2)n边形共有。

新人教版数学八年级教案篇十七

一、教学目标:熟练地进行分式乘除法的混合运算。

二、重点、难点。

1、重点:熟练地进行分式乘除法的混合运算。

2、难点:熟练地进行分式乘除法的混合运算。

3、认知难点与突破方法:

紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的。课堂练习以学生自己讨论为主,教师可组织学生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则。

三、例、习题的意图分析。

1、p17页例4是分式乘除法的混合运算。分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式。

教材p17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点。

2,p17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题。

四、课堂引入。

计算。

(1)(2)。

五、例题讲解。

(p17)例4.计算。

[分析]是分式乘除法的混合运算。分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的。

(补充)例。计算。

(1)。

=(先把除法统一成乘法运算)。

=(判断运算的符号)。

=(约分到最简分式)。

(2)。

=(先把除法统一成乘法运算)。

=(分子、分母中的多项式分解因式)。

=

=

六、随堂练习。

计算。

(1)(2)。

(3)(4)。

七、课后练习。

计算。

(1)(2)。

(3)(4)。

八、答案:

六。(1)(2)(3)(4)-y。

七。(1)(2)(3)(4)。

新人教版数学八年级教案篇十八

教学目标:

1.通过种子发芽实验,启发学生对实验观察的兴趣;。

3.了解设计实验、制订实验计划的步骤和内容,能按要求设计出自己的实验计划。

教学重点:能设计种子发芽的实验。

教学难点:会提出种子发芽实验要解决的两个问题。

教学准备:

设计实验用的表格。

教学过程:

一、引入:

1.引导学生阅读p1上的文字。

2.谈话引入。

师:“上学期同学们学习得很认真,还记得种凤仙花吗?科学研究通常通过实验进行,首先要制订周密的实验计划,现在我们先来研究哪些条件影响绿豆种子发芽,好吗?”

二、探究内容:

1.讨论绿豆种子发芽需要的条件。

1)让学生说说绿豆种子怎样才能发芽。

2)归纳学生所说的绿豆种子发芽的条件。(板书:要浇水,要种到土里,要有合适的温度。)。

3)改变其中的一个条件可能会有什么结果?说说可以改变什么条件?(板书:少浇一点水行不行呢?不种在土里行不行呢?让它受到光照行不行呢?温度低一些或放到冰箱的冷藏室里能不能发芽呢?)。

2.讨论怎样用实验证明。

让学生通过下面五方面进行讨论:

1)你想研究什么问题,你打算怎样做?

2)你猜想做的结果会是怎样?

3)像你那样做是改变了什么条件?

4)哪些条件是没有改变的?

5)改变了条件是不是对种子发芽产生了影响,我们怎样知道?

3.确定研究的问题,并写出实验计划。

1)小组讨论准备选择什么问题进行研究。

2)对学生选择的课题进行调整和平衡,使每个项目都有学生进行研究。

3)引导学生阅读教材上的举例和表格,弄清内容要求,然后着手写实验计划。

三、全课总结。

四、课后拓展。

查找有关种子发芽的资料。

【本文地址:http://www.xuefen.com.cn/zuowen/17936752.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档