倒数的认识教案(优质19篇)

格式:DOC 上传日期:2023-12-07 14:33:04
倒数的认识教案(优质19篇)
时间:2023-12-07 14:33:04     小编:纸韵

教案是教学活动的设计纲要,它起着指导教师教学的作用。关注学生的学习情况和心理健康,为学生提供良好的学习环境和支持。如果你正在准备教案,可以参考下面的范文,为你的教学设计提供一些借鉴。

倒数的认识教案篇一

倒数的认识是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。倒数的认识是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

1.理解倒数的意义,掌握求倒数的方法。

2.能熟练地写出一个数的倒数。

3.结合教学实际培养学生的抽象概括能力。

理解倒数的意义,掌握求倒数的方法。

熟练写出一个数的倒数。

1.交流。

师:我们的黑板是什么颜色?

生:黑色。

师:教室的墙面又是什么颜色?

生:黑色。

师:黑与白在语文上是什么关系?

生:黑是白的反义词。

生:白是黑的反义词。

师:能说黑是反义词或白是反义词吗?

生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。

师:那么,数学上有没有相互依存关系的现象呢?

生:约数和倍数。

师:你能举例说明约数和倍数的相互依存关系吗?

生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。

2.导入今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。

对数游戏。

1.学习倒数的意义。

我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4说一个数,同学们跟着根据3和4说一个数。

师:4是3的4/3,

生:3是4的3/4。

师:7是15的7/15;生:15是7的15/7。

提问;看我们做游戏的结果,你们有没有发现什么?

倒数的认识教案篇二

教学目标:

1.知道倒数的意义。

2.经历倒数的意义这一概念的形成过程。

3.会求一个数的倒数。

4.培养学生合作学习,激发学习兴趣,让学生体验学习数学的快乐。

教学重点:

知道倒数的意义,会求一个数的倒数。

教学难点:

1和0倒数的问题。

教学关键:

掌握倒数的意义。

教学过程。

一、谈话导入。

师:同学们,听说我们文城中心小学要举行计算比赛,你们想参加吗?

生:想。

生:分数乘法。

师:我们来算一算怎么样?(出示口算卡算一算。)。

生:好。

师:你们的口算不错,今天要研究的这几道题肯定难不倒你们,但要想发现它们的秘密,必须得有一双火眼金睛才行哦!

二、揭示倒数的意义。

1、出示例1:先计算,再观察,看看有什么规律。

3/8×8/37/15×15/75×1/51/12×12。

师:上面这几道算式你能很快地算出结果吗?

生:能。(指名上去写结果)。

师:你们算得真快!认真观察一下算式,有什么发现吗?先把你的发现与同桌交流一下。

(交流完后请个别学生说一说)。

生:乘积都是1。(师板书:乘积是1)。

师:还有别的发现吗?(相乘的两个数有什么特征?)。

生:相乘的两个数的分子、分母正好颠倒了位置。

师:你们能写出这样的两个数吗?

生:(齐)能。

2、让学生自由写后再归纳倒数的意义。

师:你们写的算式乘积都是多少?

生:乘积都是1。

师:像这样乘积是1的两个数,我们把它们叫做互为倒数。(师又接着板书:的两个数叫做互为倒数。)这也就是这节课我们要学习的内容。(板题:倒数的认识)。

(让生齐读课题和倒数的意义)。

3、理解“互为倒数”的含义。

师:“乘积是1的两个数互为倒数.”你有不理解的地方吗?

生生交流后归纳:因为倒数是表示两个数之间的关系,这两个数是相互依存的,不能单独存在。(举例说明:如3/8和8/3,可以说3/8和8/3互为倒数,也可以说3/8是8/3的倒数,但不能说3/8是倒数)。

师:好像以前也学过有这样关系的两个数,还记得吗?

生:记得,是因数和倍数。

三、探索求倒数的方法。

1、出示例2:下面哪两个数互为倒数?

3/567/25/31/612/70。

让学生说,师板书:3/5――→5/3。

6――→1/6。

师:你是怎样找一个数的倒数的?

生:把分子、分母交换位置。(师板书在箭头上面)。

师:那6的倒数怎么找?

生:把6看作6/1,然后再交换分子、分母的位置。

2、师再次引导学生观察以上的数,哪两个数互为倒数?哪些数没有找到倒数?引发学生质疑。

生:1和0有倒数吗?那它们的倒数是什么呢?为什么?

同桌之间再次交流得出:1的倒数是1,0没有倒数。(师相机板书)。

3、总结求一个数的倒数的方法:求真分数和假分数的倒数只要交换分数的分子、分母的位置,而求整数的倒数要把整数看作分母是1的分数,再交换分子、分母的位置。

4、引导学生打开课本学习。

四、巩固练习。

1、课本24页做一做。

2、互说倒数。(25页练习六第2题,同桌合作,师生合作)。

3、25页第3题:下面的说法对不对?为什么?

(1)7/12与12/7的乘积为1。所以7/12和12/7互为倒数。()。

(2)1/2×4/3×3/2=1,所以1/2、4/3、3/2互为倒数。()。

(3)0的倒数还是0。()。

(4)一个数的倒数一定比这个数小。()。

4、第4题。

五、课堂小结。

这节课我们学习了什么?你学到了什么知识?能说一说吗?

板书设计:

(1)3/8×8/3=17/15×15/7=15×1/5=11/12×12=1。

乘积是1的两个数互为倒数。

(2)3/567/25/31/612/70。

分子、分母交换位置。

3/5――――――――――――→5/33/5的倒数是5/3。

分子、分母交换位置。

6=6/1―――――――――――→1/66的倒数是1/6。

1的倒数是1,0没有倒数。

将本文的word文档下载到电脑,方便收藏和打印。

倒数的认识教案篇三

“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

三、

1.理解倒数的意义,掌握求倒数的方法。

2.能熟练地写出一个数的倒数。

3.结合教学实际培养学生的抽象概括能力。

四、:理解倒数的意义,掌握求倒数的方法。

五、熟练写出一个数的倒数。

(一)、谈话。

1.交流。

师:我们的黑板是什么颜色?

生:黑色。

师:教室的墙面又是什么颜色?

生:黑色。

师:黑与白在语文上是什么关系?

生:黑是白的反义词。

生:白是黑的反义词。

师:能说黑是反义词或白是反义词吗?

生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。

师:那么,数学上有没有相互依存关系的现象呢?

生:约数和倍数。

师:你能举例说明约数和倍数的相互依存关系吗?

生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。

2.导入今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。

(二)、学习新知。

对数游戏。

我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4说一个数,同学们跟着根据3和4说一个数。

师:4是3的4/3,

生:3是4的3/4。

师:7是15的7/15;生:15是7的15/7。

提问;看我们做游戏的结果,你们有没有发现什么?

生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。

生2:两个分数的分子、分母相互调换了位置。

生2:两个分数的乘积是1。

提问:那么怎样的两个数才是互为倒数呢?指导看书。

思考:

(1)什么是倒数?满足什么条件的两个数互为倒数?

(2)你能找出互为倒数的两个数吗。请举例。

评析:回答问题。

理解“互为”的意义。怎样的两个数互为倒数。

找朋友游戏(课前每位同学发一张数字卡片)。

练习。

(!)出示卡片(六位同学举着卡片依次站在黑板前)。

7/911/41/5086/599。

(2)规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队。

提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?

出示例题:找出下列各数的倒数。

2/37/41/591/7/80.4。

小组讨论指名板演。

提问:

1.你是怎么找出2/3的倒数的?

生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3。

生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的.分子与分母调换位置后是3/2,所以2/3的倒数是3/2。

2.你是怎么找出7/4的倒数的?

……。

提问:我们怎样才能很快地找到一个数的倒数?为什么?

4.练习请剩下的没有找到朋友的同学继续找倒数。

5.讨论:

1的倒数是谁?0的倒数呢?

生:1的倒数是1。

师:能说明一下理由吗?

生1:因为1与1的乘积还是1。

生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。

师:0的倒数呢?

生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。

生2:因为0与任何数相乘都得0,所以0的倒数是任何数。

生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。

生4:0可以写成0/1,0/1的倒数是1/0。

生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。

三、巩固练习。

(一)填空。

1.因为5/3*3/5=1,所以()和()互为();

2.因为15*1/15=1,所以()和()互为();

3.4/7与()互为倒数;

4.()的倒数是6/11。

5.()的倒数是2。

6.1/8的倒数是()。

7.1/2/7的倒数是()。

8.0.3的倒数是()。

(二)判断。

1.得数是1的两个数互为倒数。()。

2.互为倒数的两个数乘积一定是1。()。

3.1的倒数是1,所以0的倒数是0。()。

4.分数的倒数都大于1。()。

(四)思考。

4/5*()=()*8。

四、总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?

五、布置作业。

倒数的认识教案篇四

一、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。

二、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。

三、激情投入,挑战自我。

求一个数倒数的方法。

1和0倒数的问题。

离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)

就先聊到这儿吧?好,上课!

一、导入:

生:上下两部分调换了位置,变成了另一个字

师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!

二、合作探究:

(一)揭示倒数的意义

1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。

请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。

师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)

师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)师板书:乘积是1的两个数互为倒数。

你认为哪些字或词比较重要?你是如何理解互为的?你能用举例子的方法来说明吗?(生答)

师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说老师是你的朋友,你是老师的朋友,我们俩是双方面的。

(二)小组探究求一个倒数的方法

1.出示例题2课件:下面哪两个数互为倒数?

师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。

出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)

提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)

师板书:求倒数的方法: 分数的分子、分母交换位置

同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。

2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。

3.出示课件想一想。

我的发现:1的倒数是(1),0(没有)倒数。

师提问:(1)为什么1的倒数是1?

生答:(因为11=1根据乘积是1的两个数互为倒数,所以1的倒数是1)

(2)为什么0没有倒数?

生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)

4.探讨带分数、小数的倒数的求法

师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。


它的倒数




求这一类数的倒数的方法





带分数




2






小数




0.2






1.75






你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。

(师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件5)。

当你给带分数、小于1的小数、大于1的小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现:

发现1:带分数的倒数都(小于)本身;

发现2:比1 小的小数的倒数都(大于)本身,并且都(大于)1。

发现3:比1 大的小数的倒数都(小于)本身,并且都(小于)1。

(三)学以致用:

师:探究到这里,大家肯定有了很大的收获,现在请大家闭上眼睛休息一下,休息时想一想什么是倒数?再想一想求倒数的方法是什么?让学生再次记忆找倒数的方法。

1.想不想检验一下自己学的怎么样?

请打开课本24页完成做一做和25页练习六的第4题,(让学生做在课本上,并找学生口答做一做的题。练习六的第4题连线用投影展示学生的作业)。

2.(课件出示)请你以打手势的形式告诉老师你的答案。

(四)全课总结

今天学习了什么?我们一起回顾总结出来好吗?

本节课一开始创设让学生找朋友的情境,通过此活动帮助学生理解互为的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。

本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。

倒数的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对倒数的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

在课后的巩固练习中,通过这些多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。

最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

倒数的认识教案篇五

“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的,数学教案-倒数的认识。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

1.理解倒数的意义,掌握求倒数的方法。

2.能熟练地写出一个数的倒数。

3.结合教学实际培养学生的抽象概括能力。

理解倒数的意义,掌握求倒数的方法。

熟练写出一个数的倒数。

1.交流

师: 我们的黑板是什么颜色?

生:黑色。

师:教室的墙面又是什么颜色?

生:黑色。

师:黑与白在语文上是什么关系?

生:黑是白的反义词。

生:白是黑的反义词。

师:能说黑是反义词或白是反义词吗?

生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。

师:那么,数学上有没有相互依存关系的现象呢?

生:约数和倍数。

师:你能举例说明约数和倍数的相互依存关系吗?

生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。

2.导入 今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。

对数游戏

1.学习倒数的意义

师:4是3的4/3,

生:3是4的 3/4

师:7是15的7/15; 生:15是7的15/7。

提问;看我们做游戏的结果,你们有没有发现什么?

生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。

生2:两个分数的分子、分母相互调换了位置。

生2:两个分数的乘积是1。

提问:那么怎样的两个数才是互为倒数呢?指导看书。

思考:

(1)什么是倒数?满足什么条件的两个数互为倒数?

(2)你能找出互为倒数的两个数吗。请举例

评析:回答问题

理解“互为”的意义。怎样的两个数互为倒数。

找朋友游戏(课前每位同学发一张数字卡片)

练习

(1)出示卡片 (六位同学举着卡片依次站在黑板前)

7/9 11/4 1/50 8 6/5 99

(2) 规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队

提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?

3教学求一个数倒数的方法

出示例题:找出下列各数的倒数

2/3 7/4 1/5 9 1/7/8 0.4

小组讨论 指名板演

提问:1.你是怎么找出2/3的倒数的?

生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3

生2:因为互为倒数的两个数的分子与分母正好调换位置,小学数学教案《数学教案-倒数的认识》。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 。

2.你是怎么找出7/4的倒数的?

提问: 我们怎样才能很快地找到一个数的倒数?为什么?

4.练习 请剩下的没有找到朋友的同学继续找倒数

5.讨论:1的倒数是谁?0的倒数呢?

生:1的倒数是1

师:能说明一下理由吗?

生1:因为1与1的乘积还是1。

生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。

师:0的倒数呢?

生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。

生2:因为0与任何数相乘都得0,所以0的倒数是任何数。

生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。

生4:0可以写成0/1,0/1的倒数是1/0。

生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。

6.完善求一个数的倒数的方法

(一)填空

1.因为5/3*3/5=1,所以()和()互为();

2.因为15*1/15=1,所以()和()互为 ();

3.4/7与()互为倒数;

4.()的倒数是6/11

5.()的倒数是2

6.1/8的倒数是()

7.1/2/7的倒数是()

8.0.3的倒数是()

(二)判断

1.得数是1的两个数互为 倒数。()

2.互为倒数的两个数乘积一定是1。()

3. 1的倒数是1,所以0的倒数是0 。()

4.分数的倒数都大于1。()

(四)思考

4/5*()=()*8

今天我们学习了什么知识?你有什么收获?还有什么问题吗?

新课程标准 指出:“学生是学习的主人。”“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践,自主探索,合作交流是学生学习数学的重要方式。”因此,教师在课堂上应相信学生、大胆放手,引导学生主动地进行自学、思考、讨论、合作交流等活动,发现规律,掌握知识,提高能力。让学生在讨论交流中力图创新,学习创新。本案里例中“你有没有发现什么?”“怎样求一个数的倒数”“1的倒数是几,0的倒数呢?”等处的交流促进了学生对知识的感悟与理解。特别是对“0的倒数呢?”一问的回答,学生各抒几见,有的用推理的方法解释0的倒数是谁;有的用旧知识来解决新问题;也有的用反证法来阐述理由。虽然有对也有错,但用不同的方式或不同的角度来思考问题,无疑体现了学生学习方法上的创新,进而实现知识上的统一。

游戏是小学生喜闻乐见的活动方式。游戏可以使学生的注意力更持久,积极性更高。可以让学生在轻松愉快的气氛中学到知识。这节课设计的两个游戏贯穿了新授内容的始终。第一个对数游戏让学生通过听一听,想一想,说一说来感受倒数的特征,即互为倒数的两个数分子与分母调换了位置。为后面学习“求一个数的倒数的方法“打下基础。第二个找朋友游戏,首先,让学生通过找朋友巩固了怎样的两个数互为倒数这一知识点;其次,在剩下的数中选取典型让学生通过讨论想办法找到朋友。并概括出求一个数的倒数的一般方法。这样使学生在不知不觉中接受新知;再次,在剩下的数中继续找朋友,起到了“做一做”的效果;最后,想办法找1和0的朋友,完善找一个数的倒数的方法。本节课上设计的游戏不仅在教学上实现了合理、自然的过度,而且让学生学到了知识,还使学生品尝到游戏带来的快乐。

倒数的认识教案篇六

1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

2、使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

3、通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

:理解倒数的意义,学会求倒数的方法。

:发现倒数的一些特征。

课件。

教学过程。

特色设计。

通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。

一、猜字游戏引入新课。

找找下面文字的构成规律。

呆———杏土———干吞———吴。

按照上面的规律填数。

——()——()——()。

能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数。

二、新知探究。

(一)探究讨论,理解倒数的意义。

1.课件出示算式。

开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。

我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

2.出示倒数的意义:乘积是1的两个数互为倒数。

3.你是怎样理解互为倒数的呢?能举例吗?

(二)深化理解。

1.乘积是1的两个数存在着怎样的倒数关系呢?

2.互为倒数的。两个数有什么特点?

3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

又因为0与任何数相乘都不等于1,所以0没有倒数。)。

(三)运用概念。

1.讨论求一个数的倒数的方法。

出示例2:写出其中3/5、7/2两个分数的倒数。

学生试做讨论后,教师将过程。

小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)。

2、怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)。

三、巩固练习。

(一)完成教材第28页的“做一做”

(二)完成教材第29页练习六的第1-5题。

四、课堂小结。

今天我们学习了有关倒数的哪些新知识?板书设计。

倒数的认识教案篇七

1、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。

2、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。

3、激情投入,挑战自我。

离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)就先聊到这儿吧?好,上课!

生:上下两部分调换了位置,变成了另一个字。

师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!

(一)揭示倒数的意义。

1、(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。

请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。

师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)。

师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)。

师板书:乘积是1的两个数互为倒数。

你认为哪些字或词比较重要?你是如何理解“互为”的?你能用举例子的方法来说明吗?(生答)。

师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说“老师是你的朋友”,“你是老师的朋友”,我们俩是双方面的。

(二)小组探究求一个倒数的方法。

1、出示例题2课件:下面哪两个数互为倒数?

师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。

出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)。

提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)。

师板书:求倒数的方法:分数的分子、分母交换位置。

同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。

2、师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。

3、出示课件想一想。

我的发现:1的倒数是(1),0(没有)倒数。

师提问:(1)为什么1的倒数是1?

生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)。

(2)为什么0没有倒数?

生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)。

4、探讨带分数、小数的倒数的求法。

师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。(课件出示)。

你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。

(师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件5)。

当你给带分数、小于1的小数、大于1的小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现:。

发现1:带分数的倒数都(小于)本身;

发现2:比1小的小数的倒数都(大于)本身,并且都(大于)1。

发现3:比1大的小数的倒数都(小于)本身,并且都(小于)1。

(三)学以致用:

师:探究到这里,大家肯定有了很大的收获,现在请大家闭上眼睛休息一下,休息时想一想什么是倒数?再想一想求倒数的方法是什么?让学生再次记忆找倒数的方法。

1、想不想检验一下自己学的怎么样?

请打开课本24页完成做一做和25页练习六的第4题,(让学生做在课本上,并找学生口答做一做的题。练习六的第4题连线用投影展示学生的作业)。

2、(课件出示)请你以打手势的形式告诉老师你的答案。

(四)全课总结。

今天学习了什么?我们一起回顾总结出来好吗?

什么叫倒数?怎样找出一个数的倒数?

倒数的认识教案篇八

1、能楚地口述10以内数量的排列顺序;知道它们是顺数(一个比一个多1),还是倒数(一个比一个少1)。

2、对生活中运用顺、倒数的事例感兴趣。能将用过的物品摆放整齐。

教具;一段交通红、绿灯和电梯上、下的数字显示录相;按顺、倒数排列的长条数,点卡各1张。

小组操作活动,以轮组方式进行。

第一组:看大小标记排数卡或点卡。

第二组:按标记接着印。

第三组:操作自制顺序卡片,上、下电梯、排数卡。

学习顺、倒数。

讨论小组活动情况。

教师提问:“刚才你玩的是什么,你是怎么做的,怎么知道是这样做的,数字和点子是怎么排的?”

出现依序排列的1至10和10至1的长条数、点卡,帮助幼儿了解从小(或少)数到大(或多)就叫做顺数,从大(或多)数到小(或少)就叫倒数;顺数时后一个数总比前一个数大(或多1),倒数时后一个数总比前一个数小(或少1)。

师生共同玩顺、倒数的游戏。

教师或一位幼儿指一个数,请其余幼儿从这个数开始顺数或倒数。

了解顺、倒数在日常生活中的`运用。

用倒记时方式,开展“比比谁的反应快“的游戏活动。

看录象,判断其中数的运用是顺数还是倒数。

教后感:通过上节课的学习,孩子对这节课掌握的较好。操作时准确率较高。

倒数的认识教案篇九

1、使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。

2、使学生体验找一个数的倒数的方法,会求一个数的倒数。

3、在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。

理解倒数的意义;求一个数的倒数。

理解“互为倒数”的含义。

教学课件、写算式的卡片。

基本训练,强化巩固。

1、出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。

2、学生独立完成上面几组题,小组内检查并订正。

创设情境,激趣导入。

(2分钟)请个别学生说说分数乘法的计算方法,突出分子与分母的约分。

提示目标,明确重点。

(1分钟)通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。

学生自学,教师巡视。

1、观察这些算式,如果将它们分成两类,怎样分?

2、通过观察发现算式的特点。

展示成果,体验成功。

(4分钟)让学生说说乘积为1的算式有什么特点。

学生讨论,教师点拨。

1、学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。

2、认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。

3、引导学生思考:互为倒数的两个数有什么特点?

4、探讨求倒数方法。

(1)出示例题,让学生说说哪两个数互为倒数。

(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书。

倒数的认识教案篇十

教学目标:

1、理解倒数的意义,掌握求一个数倒数的方法,能熟练地写出一个数的倒数。

2、引导同学自主合作交流学习,结合教学实际培养同学的笼统概括能力,激发同学学习的兴趣。

教学重点:理解倒数的意义,掌握求倒数的方法。

教学难点 :熟练写出一个数的倒数。

教具准备:多媒体课件。

教学过程:

一、情境导入。

1、口算。

5/12×2/5 = 15/7 ×7/5 = 11/8 ×8/13 =

5/21×1/5 = 3/16 ×7/3 = 8/21 ×7/8 =

先独立考虑,再指名口算订正。

2、比一比,看谁算得又对又快:

2/3×3/2 = 2×1/2 = 11/8 ×8/11 =

1/10×10= 7/9×9/7 = 1/7×7=

6/5×5/6 = 1/5×5 = 22/35×35/22 =

同学先独立口算,再口答订正。观察这些算式,说说自身有什么发现。

二、合作探索。

1、小组合作交流:

(1)和同桌说一说你的发现。

(2)请你自身举出3个像上面这样的乘法式子。

小组代表说说有什么发现。指名说说自身举出的例子。

教师:像这样的乘积是1的两个数我们说它们的关系是互为倒数。

教师:关于倒数的知识,你已经有哪些认识?(同学说说自身的已有认识)

教师:书上又是怎样讲解倒数的呢?我们一起来读一读。

阅读教材,进一步理解。

教师:现在谁来说一说自身是怎样理解倒数的?

同学口答,教师小结:假如两个数的乘积是1,那么我们称其中一个数是另一个数的倒数,并称这两个数互为倒数。

出示:乘积是1的两个数互为倒数。读一读,强调概念中的关键词:“乘积”、“互为”。

2、强化概念理解。

你认为下面这两种说法是否正确?

(1) 2/3 是倒数。

(2) 得数是1的两个数互为倒数。

同学先独立考虑,再口答,说明理由。

倒数的认识教案篇十一

1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。

3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

教学重点:理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。

教学难点:掌握求倒数的方法。

一、导入。

课件出示:

1、找规律:指生回答。

2、找规律,填空,指生回答。

3、口算,开火车口算。

4、你能找出乘积是1的两个数吗?指生说。

今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识。

二、新授。

(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。

(2)学生汇报研究的结果:什么是倒数?生生说,举例说明。

乘积是1的两个数互为倒数。举例说明。课件出示。

观察每一对数字,你发现了什么?

像这样乘积是1的数字有多少对呢?

(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)。

(4)互为倒数的两个数有什么特点?

像这样的每组数都有什么特点呢?

两个数的分子和分母交换了位置(两个数的`分子、分母正好颠倒了位置)。

2、教学求倒数的方法。试着写出3/5、7/2的倒数。

(1)写出3/5的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

(2)写出7/52的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

想:写出6的倒数。独立完成。

先把整数看成分母是1的分数,再交换分子和分母的位置。6。

=6/11/6。

求一个数(0除外)的倒数,只要把这个数的分子、分母交换位置就可以了。

3、教学特例,

深入理解。

(1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)。

(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)。

4、课件出示,巩固练习:这些数怎样求倒数呢?

(1)学生独立解答,教师巡视。

(2)汇报时有意识地让学有困难的学生说一说求倒数的方法。

三、巩固应用。

课件出示:

1、练习六第2题:填一填。

2、找朋友。

4、辨析练习:练习六第3题“判断题”。

5、我的发现。

6、马小虎日记,开放性训练。

7、谜语:

五四三二一。

(打一数学名词)。

四、总结。

倒数的认识教案篇十二

教学目标:

(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:求一个数倒数的方法。

教学难点:1和0倒数的问题。

一、导入:

生:上下两部分调换了位置,变成了另一个字。

师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!

二、合作探究:

(一)教学例题例1(出示例题课件)。

师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?

你认为哪些字或词比较重要?你是如何理解“互为”的?

教师:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说“老师是你的朋友”,“你是老师的朋友”,我们俩是双方面的`。

(二)教学例题2:

师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。

出示课件,请看这里,哪两个数互为倒数?

提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)。

师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。

课件展示问题:

发现:1的倒数是(1),0(没有)倒数。

师提问:(1)为什么1的倒数是1?

生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)。

(2)为什么0没有倒数?

生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)。

(三)探讨带分数、小数的倒数的求法。

发现1:带分数的倒数都(小于)本身;。

发现2:比1小的小数的倒数都(大于)本身,并且都(大于)1。

发现3:比1大的小数的倒数都(小于)本身,并且都(小于)1。

三、练习巩固:

做一做练习六的题,学生汇报,集体订正。

四、全课总结。

今天学习了什么?我们一起回顾总结出来好吗?

五、课堂总评价。

对学生整节课的表现评价。

倒数的认识教案篇十三

1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

2.使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

3.通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

:理解倒数的意义,学会求倒数的方法。

:发现倒数的一些特征。

课件

教学过程

特色设计

通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。

一、猜字游戏引入新课

找找下面文字的构成规律

呆———杏 土———干吞———吴

按照上面的规律填数

——( ) ——( ) ——( )

能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数

二、新知探究

(一)探究讨论,理解倒数的意义。

1.课件出示算式。

开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。

我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

2.出示倒数的意义:乘积是1的两个数互为倒数。

3.你是怎样理解互为倒数的呢? 能举例吗?

(二)深化理解。

1.乘积是1的两个数存在着怎样的倒数关系呢?

2.互为倒数的两个数有什么特点?

3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

因为1×1=1,根据“乘积是1的两个数互为倒数”,所 以1的倒数是1。

又因为0与任何数相乘都不等于1,所以0没有倒数。)

(三)运用概念。

1.讨论求一个数的倒数的方法。

出示例2:写出其中3/5 、7/2 两个分数的倒数。

学生试做讨论后,教师将过程 。

小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

2.怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

三、巩固练习

(一)完成教材第28页的“做一做”

(二)完成教材第29页练习六的第1-5题。

四、课堂小结

今天我们学习了有关倒数的哪些新知识? 板书设计

倒数的认识教案篇十四

这个教学设计符合知识本身的内在联系以及学生的认知规律,教学目的明确,要求具体,重点突出,结构严谨,层次清晰。

教学中教师紧紧围绕倒数的意义,使学生在观察比较中理解知识、掌握知识,体现了学生学习新知形成能力的过程。

练习中,通过“教、扶、放”使讲练有机结合,既加强了双基,又开发了智力。

倒数的认识教案篇十五

这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。

使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。

一、用汉字作比喻引入。

(7/1也就是7)这叫做“倒数”,随即板书课题。

2、提一个开放性的问题:看到这个课题,你们想到了什么?

(学生各抒己见)。

师生共同确定本节课的目标——研究倒数的意义、方法和用处。

二、新知探索:

师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。

学生自学后,问:有没有疑问?

师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

2、学生自主举例,推敲方法:

(1)师:下面,请大家各自举例加以说明。

(2)学生先独立思考,再交流。

(a、以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)。

(b、以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)。

(c、以“带分数”为例;带分数的倒数是真分数。)。

(d、以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)。

(e、以“整数”为例;整数相当于分母是1的假分数)。

学生举例的过程同时将如何寻找倒数的方法也融入其中。

3、讨论“0”、“1”的情况:

1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)。

4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)。

三、反馈巩固:

1、完成“练一练”。

学生独立完成后,集体订正。重点问:“8”的倒数是几?

2、练习六5(判断)。

3、补充判断:

a、a是自然数,a的倒数是1/a。

倒数的认识教案篇十六

教学内容教科书第28~29页例1、“做一做”及相关内容。

1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。

2.使学生体验找一个数的倒数的方法,会求一个数的倒数。

3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。

教学重点理解倒数的意义;求一个数的倒数。

教学难点理解“互为倒数”的含义。

教学准备教学课件、写算式的卡片。

教学过程具体内容修订。

基本训练,强化巩固。

(3分钟)1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。

2.学生独立完成上面几组题,小组内检查并订正。

创设情境,激趣导入。

(2分钟)请个别学生说说分数乘法的计算方法,突出分子与分母的约分。

提示目标,明确重点。

(1分钟)通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。

学生自学,教师巡视。

(6分钟)1.观察这些算式,如果将它们分成两类,怎样分?

2.通过观察发现算式的特点。

展示成果,体验成功。

(4分钟)让学生说说乘积为1的算式有什么特点。

学生讨论,教师点拨。

(8分钟)1.学生讨论并说出自己的发现:两个数的'乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。

2.认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。

3.引导学生思考:互为倒数的两个数有什么特点?

4.探讨求倒数方法。

(1)出示例题,让学生说说哪两个数互为倒数。

(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书。

倒数的认识教案篇十七

教科书第28~29页例1、“做一做”及相关内容。

1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。

2.使学生体验找一个数的倒数的方法,会求一个数的倒数。

3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。

理解倒数的意义;求一个数的倒数。

理解“互为倒数”的含义。

教学课件、写算式的卡片。

具体内容修订。

基本训练,强化巩固。(3分钟)。

1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。

2.学生独立完成上面几组题,小组内检查并订正。

创设情境,激趣导入。(2分钟)。

请个别学生说说分数乘法的计算方法,突出分子与分母的约分。

提示目标,明确重点。(1分钟)。

通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。

学生自学,教师巡视。(6分钟)。

1、观察这些算式,如果将它们分成两类,怎样分?

2.通过观察发现算式的特点。

展示成果,体验成功。(4分钟)。

让学生说说乘积为1的算式有什么特点。

学生讨论,教师点拨。(8分钟)。

1、学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。

2、认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。

3.引导学生思考:互为倒数的两个数有什么特点?

4.探讨求倒数方法。

(1)出示例题,让学生说说哪两个数互为倒数。

(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书。

倒数的认识教案篇十八

《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。

1、知道倒数的意义,会求一个数的倒数。

2、经历倒数的意义这一概念的形式过程。

3、培养学生观察、归纳、推理和概括的能力。

4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。

理解倒数的意义,会求一个数的倒数。

教学环节

教师活动

预设学生行为

设计意图

倒,你对这个字怎么理解?

那要是在这个字的后面加个数,就变成。。。倒数,你对这个词又是怎么理解?

出示1/5×5,3/8×8/3,1/12×12,15/7×7/15这几组算式,开展小组活动,算一算,找一找,这几组算式有什么特点? 同学们发现了每组算式两个分数的分子与分母正好颠倒了位置, 并且它们的乘积是1.

具有这种关系的数叫做互为倒数。谁来说一说什么样的两个数叫做互为倒数?出示倒数的意义:乘积是1的两个数叫做互为倒数。

学生说,就是把它倒过来,还做了个手势颠倒位置。

学生有可能会说,每组中都是一个是真分数一个是假分数。

学生有可能只计算出结果。没发现这几组算式它们的分子,分母的位置是颠倒的。

设疑,让学生产生求知的欲望。

从两个数的关系入手研究,抓住了数学的本质,使学生体会到数学的研究是一脉相连的。

让学生通过观察﹑计算发现这几组算式的乘积都是1.并且它们的分子分母的位置刚好颠倒。

让学生说说对倒数意义的理解,在这个概念中你认为哪个词比较关键?

学生有可能会说1/5是倒数。5/1也是倒数。并让学生知道这种说法是不正确的。

乘积是1的两个数叫做互为倒数。只能说1/5和5/1互为倒数或1/5的倒数是5/1。但也有可能会说得很完整。

让学生重点去理解“互为”是什么意思,加深对倒数的概念的理解。

3/5的倒数是( ),

8的倒数是( ),

0.5的倒数是( )

1. 3/5交换分子分母的位置,得5/3,所以3/5的倒数是5/3。

2. 8可以写成8/1,所以8的倒数是1/8。

3. 0.5也可以写成1/2,所以0.5的倒数是2.

让学生归纳总结出找倒数的方法。

0和1 有没有倒数,如果有,它的倒数是几,如果没有,为什么?同学们试着研究。

1的倒数是1 。

0没有倒数。因为0不能做为分数的分母。

加深对0没有倒数的理解;

加深对倒数知识的理解;

学生的思维逐步深刻,较好地实现了对于概念的建构,而且渗透了认真,严谨的学习态度。

1.同桌互说倒数;

2.判断。

(1) 5/9是倒数,9/5也是倒数。( )

(2)0的倒数还是0.( )

(3)一个数的倒数一定比这个数小。( )。

3.开放性训练。3/5 ×( )=( ) ×4/7=( ) ×( )

学生会很活跃。

加深对0没有倒数的理解;

加深对倒数知识的理解;

开放题让学生的思维得到更深层次的拓展。

这节课你学会了什么?

与教师一起总结

培养学生的表达能力以及加深对倒数知识的理解。

板书设计

倒数的认识

倒数的意义:乘积是1的两个数叫做互为倒数。

求倒数的方法:1.分数——分子分母调换位置。

2.整数或小数——先化成分数,再调换分子分母的位置。

1的倒数是1, 0没有倒数。

倒数的认识教案篇十九

教学目标:

达能力的提高。

情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。教学重点:理解倒数的意义和怎样求一个数的倒数。教学难点:正确理解倒数的意义及0为何没有倒数。

教学过程:

一、情境导入,引出问题。

1.风景倒影图。

2.游戏,按规律填空。

吞———吴呆———。

3/8———(/)10/7———(/)。

(1)学生观察填空,指名回答,并说出是怎么样想的。

(2)师:你们能按照上面的规律再说出几组数吗?(学生举例,教师板书)。

3.学生观察板书的几组分数,看看每组中的两个数有什么特点?根据预习单小组交流后汇报。

教师注意引导。(主要是分子、分母的数字特点和两个分数的乘积方面。)。

a:分子、分母相互调换位置的两个数叫做互为倒数。

b:乘积是1的两个数叫做互为倒数。

师生根据学生汇报归纳倒数的意义:乘积是1的两个数叫做互为倒数。(教师板书)。

二、合作探究、解决问题。

大家知道了什么是倒数,在看看倒数的意义,你发现哪些词我们要重点理解?

引导学生理解“两个数”“乘积是1”“互为”

教师重点指导“互为”,学生先说说自己的想法,师根据情况可以加入握手的游戏引导。

倒数是两个数的关系,这两个数是互相依存的,如果是一个数就不存在倒数的关系。

2.根据说法理解倒数。

(1)观察3/8与8/3,说说哪两个数互为倒数?还可以怎么样说?

(2)谁能说说10/7与7/10中谁和谁互为倒数?也可以怎么样说?

(3)学生练习说。

2.探究求倒数的方法。

学习例1:写出7/8、5/2的倒数。

教师根据预习单让学生说说自己找倒数的方法。总结出分子、分母交换位置可以找出一个数的倒数。

(2)师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?那么怎么样求整数、小数的倒数呢?选择一种,在小组内探究。

a:学生选择一种研究,教师巡视指导。

b:学生交流汇报,教师分别板书一例。

c:引导学生概括求倒数的方法。

(3)教师引导质疑:0有没有倒数?为什么?学生讨论释疑。

1×()=1,所以1的倒数是1。而0×()=1呢?

1的倒数是它本身,0没有倒数。

求一个数(0除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。

(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

三、巩固联系、拓展深化。

1.下面哪两个数是互为倒数。

4/3,7/6,8,6/7,3/4,1/8。

2.写出下面各数的倒数。

4/11,16/9,35,15/8,1/5。

学生在课练本上写出这些数的倒数,指名回答,并说出是怎么样求的,集体评价。

3.争当小法官,明察秋毫。

(1)1的倒数是1。(2)所有的数都有倒数。

(3)3/4是倒数。(4)a的倒数是1/a。

(5)因为0.5×2=1,所以0.5与2互为倒数。

(6)7/5的倒数是7/2。

(7)真分数的倒数都大于1。(8)假分数的倒数都小于1。

(9)因为8-7=1,3÷3=1,所以8和7,3和3是互为倒数。

4.填空。

3/4×()=17×()=1。

2/5×()=()×4=5/4×()=0.5×()=1。

5.游戏:找朋友。

一名学生说出一个数,谁能又对又快地说出这个数的倒数,谁就和这名同学互为好朋友。

(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。

四、总结反思、评价体验。

这节课你们有什么收获?还有什么疑问?

(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

五、布置作业。

“倒数的认识”是在学生掌握了整数乘法、分数乘法的.意义和计算法则、分数乘法解决问题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。

“倒数的认识”这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。

本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,如意义的引入中,我在学生预习的基础上,安排学生交流互学,发现“两个数乘积是1”这一规律,让学生自己研究学习例子,给学生提供放手的思维空间,并尊重学生的自主性。在教学的设计中我还结合实际情况,借助语言学科与数学学科之间的联系为切入点,由文字的规律引发学生数学思维的火花;实现社会、语、数的整合。在教学中我们还有允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切知识都要由学生自己获得或由他们发现,如“1”和“0”这两个特例,让学生独立思考,分组探讨,教师及时引导。得出1的倒数是1,而0没有倒数的结论。让学生从讨论中充分展示了自己的能力,调动学生的积极性,利于学生对问题的思考解决。我认为这样做不仅增添了课堂活力,提高了学生的注意力,而且还让学生经历了探索的过程,解决了学生的困惑,更让学生体会到了成功了快乐”。

“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

在课后的巩固练习中,我设计了“填空,判断”、“连线”等题型,根据重点内容和关键点进行了多层次的练习,帮助学生巩固新知,活跃思维,让学生获得愉悦的情感体验。

最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义,好像时时都是我引导学生在我思维的引导下,被动的学习知识。现在想起来有一种牵着学生鼻子走的感觉。通过新课标理论的学习,我重新改变了教学理念,我觉得只有立足于学生的设计才是好的设计,只有学生自己通过观察、比较、归纳总结出倒数的意义,学生自己通过参与整个学习过程后才会有真正的收获。所以在今后的教学中,我们应该更好考虑学生学的情况。当然我的教学中还有很多不足之处,希望各位老师提出宝贵意见。

【本文地址:http://www.xuefen.com.cn/zuowen/17913487.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档